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Lecture 1.  Monday Morning, 1st Hour, June 23 

 

To contrast planar trigonometry with spherical trigonometry think about the differences 

between a triangle drawn on a (planar) chalkboard versus a triangle drawn on a spherical 

chalkboard. 

 

 
 

 

(You might notice one important difference between the two if you add the degrees of the 

angles in both cases.) 
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Introduction 

Spherical trigonometry is the study of triangles drawn on the surface of a sphere. The principal 

applications of spherical trigonometry are in navigation, aviation, and geography on the 

terrestrial sphere (earth) and in astronomy of the celestial sphere (the apparent surface of the 

heavens containing the stars). 

Here are a dozen spherical trigonometry problems that you will be able to answer after taking 

this course: 

(1) At what longitude will the most direct flight (i.e., shortest path) from Miami to the 

Aleutians cross latitude 40°0′ N? 

(2) In what latitude is the shortest day of the year just one hour long? 

(3) Colorado extends from 37° to 40° N latitude and from 102° to 107° W longitude. 

What is the area of Colorado in square miles? 

(4) What is the latitude of three points on the Earth equally distant from each other 

and from the North Pole? 

(5) Where are you if you are 625 miles away from Boise, 690 miles away from 

Minneapolis and 615 miles away from Tucson by the way the crow flies, i.e. how 

does GPS work? 

(6) According to the Islamic faith a follower must offer their prayers facing Mecca by 

means of the most direct route. If a follower is in Boston, what direction should 

they face to make their prayers? 

(7) If the face angle at the vertex of a regular four-sided pyramid on a square base is 

50°, what is the angle between any two adjacent lateral faces? 

(8) How high above the earth would a satellite have to be to see both New York and 

Los Angeles?  

(9) How long does it take the sun to set on October 24th in Duluth, Minnesota? 

(10) What is your latitude if on April 13th the shortest shadow of a pole occurs at 

12: 10 p.m. and is exactly equal to its height? 

(11) What is the velocity of Iowa City, Iowa in space due to the rotation of the earth on 

its axis? 

(12) A destroyer is notified that an enemy ship is in a position due south of the 

destroyer and is steaming at 18 knots on a course bearing 𝑁 52° 𝐸. On what 

course should the destroyer set out in order to intercept the enemy ship in 20 

hours, if the destroyer makes 27 knots? 
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Our first lesson will introduce the terms and theorems of spherical trigonometry. What you will 

begin to notice is that every theorem in planar trigonometry has a companion result for the 

sphere. 

 

Great Circles 

Consider a plane that cuts a sphere in more than one point. Then the intersection of that plane 

and the sphere is a circle on the surface of the sphere. 

Any circle on the surface of a sphere whose interior contains the center 𝑂 of the sphere is 

called a great circle or orthodrome. Every circle on a sphere which is not a great circle is called a 

small circle.  

   
 

Two points 𝐴 and 𝐵 on a circle produce two arcs depending on the direction you take in moving 

from point 𝐴 to point 𝐵. 

 

 

 
(i) 

 
(ii) 

 



5 
 

We define arc 𝐴𝐵⏜  as the great circle distance between points 𝐴 and 𝐵 if it is the shorter of the 

two arcs (Case (i)) created by points 𝐴 and 𝐵 on a great circle. We will refer to the shorter of 

the two arcs as the great circle arc or more simply the great arc. 

 

 
 

In the theorems and results that follow in these notes, we will always assume (unless 

specified otherwise) that 𝐴𝐵⏜  refers to the great circle arc, the shorter of the two arcs created 

by the points 𝐴 and 𝐵 on a sphere. 

 

Axis and Poles of a Circle 

Consider any circle (great or small) on sphere 𝑆. The axis of that circle is the diameter of 𝑆 (i.e. 

goes through the center point 𝑂 of that sphere) which is perpendicular to any line in the plane 

containing that circle. 

The extremities of the axis (points where the axis intersects the circle) are called the poles of 

that circle. 

In the example below, diameter 𝑃1𝑃2 is the axis of circle 𝑢 because it is perpendicular to the 

radii 𝐶𝐴 of circle 𝑢 (which is a line in that plane). 
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Spherical Triangles 

A spherical triangle is a closed three-sided figure drawn on a sphere where each side is the 

great circle distance between two points on that sphere. 

 
Spherical Triangle Δ𝑠𝐴𝐵𝐶 with sides 𝐴𝐵⏜ , 𝐴𝐶⏜  and 𝐵𝐶⏜ . 

 

(Remember by our definition that 𝐴𝐵⏜  always refers to the shorter of the two arcs of a great 

circle connecting points 𝐴 and 𝐵.) 
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Geodesics on a Sphere 

We are generally tempted by the geodesic (shortest possible) path when going from any point 

𝐴 to any point 𝐵. 

 

 

But we would have to dig a tunnel to connect points 𝐴 and 𝐵 on a sphere with the shortest 

possible path. 

 

That is why the assumed surface must be specified when constructing a geodesic path. So, on a 

sphere, the geodesic is the shortest possible path on the surface of a sphere between points 𝐴 

and 𝐵. 

Intuitively, we can find the geodesic route from point 𝐴 to point 𝐵 on a globe by stretching a 

string between the two points and pulling it tight – the intuition being that the shortest route 

will be the route using the least string. 
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https://aerosavvy.com/great-circle-routes/ 

 

This figure suggests the following theorem. (The proof is in the appendix to this lecture.) 

 

Theorem 1. The great arc 𝐴𝐵⏜  connecting points 𝐴 and 𝐵 on a sphere is the shortest possible 

path on a sphere connecting point 𝐴 to point 𝐵. 

 

It follows that each side of Δ𝑠𝐴𝐵𝐶 is the shortest possible arc between the points 𝐴, 𝐵 and 𝐶. 

 

Spherical Angles 

Let Δ𝑠𝐴𝐵𝐶 be a spherical triangle on sphere 𝑆 with center point 𝑂. 

The measure of the spherical angle ∢𝐵𝐴𝐶 at vertex 𝐴 between the great arcs 𝑐 and 𝐶𝐴⏜  is 

defined as the measure of the planar angle between the lines 𝑙1 and 𝑙2 where 𝑙1 is that line 

tangent to 𝑆 at 𝐴 and in the plane containing the great arc 𝐵𝐴⏜  and 𝑙2 is that line tangent to 𝑆 at 

𝐴 and in the plane containing the great arc 𝐶𝐴⏜ . 

https://aerosavvy.com/great-circle-routes/
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Connecting Sides of a Spherical Triangle to Central Angles of a Sphere 

 

 

 

The central angle 𝜃 in this pair (𝜃, 𝐴𝐵⏜) is called the angular length of 𝐴𝐵⏜ .  So we can say  

physical length =  𝑟 ⋅ (angular length) = 𝑟𝜃 

provided 𝜃 is measured in radians. 
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Polar Triangle 

Every spherical triangle Δ𝑠𝐴𝐵𝐶 can be paired with another spherical triangle Δ𝑠𝐴′𝐵′𝐶′ called 

the polar of Δ𝑠𝐴𝐵𝐶 

In this section we will demonstrate how to construct Δ𝑠𝐴′𝐵′𝐶′ and will state some of its most 

important properties.  We will include the proofs of these properties in the appendix to this 

lecture. 

In the lecture that follows, we will see the primary role of the polar triangle Δ𝑠𝐴′𝐵′𝐶′ in proving 

two important theorems about its dual spherical triangle Δ𝑠𝐴𝐵𝐶, namely the spherical law of 

cosines for angles and the spherical triangle inequality theorem. 

 

 The Construction of the Polar Triangle of 𝚫𝒔𝑨𝑩𝑪. 

 

 

Each side of spherical triangle Δ𝑠𝐴𝐵𝐶 has two poles.  In particular, the great circle containing 

side 𝐵𝐶⏜  of Δ𝑠𝐴𝐵𝐶 has poles 𝑃𝐴1  and 𝑃𝐴2. 
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The great circle containing the side 𝐴𝐶⏜  of Δ𝑠𝐴𝐵𝐶 has poles 𝑃𝐵1  and 𝑃𝐵2. 

 

 

The great circle containing the side 𝐴𝐵⏜  of Δ𝑠𝐴𝐵𝐶 has poles 𝑃𝐶1  and 𝑃𝐶2. 
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Now suppose that from poles 𝑃𝐴1  and 𝑃𝐴2  we only keep the pole which is closer to point 𝑨.  

And from poles 𝑃𝐵1  and 𝑃𝐵2  we only keep the pole which is closer to point 𝐵. And from poles 

𝑃𝐶1  and 𝑃𝐶2  we only keep the pole which is closer to point 𝐶. 

Notice that in our example, this means we would keep poles 𝑃𝐴1, 𝑃𝐵2, and 𝑃𝐶2.  The standard 

labels used in spherical trigonometry textbooks and papers for the three closer poles are 𝐴′, 𝐵′, 

and 𝐶′. 

 

 

The spherical triangle Δ𝑠𝐴′𝐵′𝐶′ connecting these three points is called the polar of spherical 

triangle Δ𝑠𝐴𝐵𝐶. 
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Properties of 𝚫𝒔𝑨′𝑩′𝑪′, the polar triangle of 𝚫𝒔𝑨𝑩𝑪. 

(i) If Δ𝑠𝐴′𝐵′𝐶′ is the polar triangle of Δ𝑠𝐴𝐵𝐶, then Δ𝑠𝐴𝐵𝐶 is the polar triangle of the 

polar triangle Δ𝑠𝐴
′𝐵′𝐶′.  Similar to how the complement of the complement of a set 

𝐴 is again the set 𝐴. 
 

(ii) Let Δ𝑠𝐴′𝐵′𝐶′ be the polar triangle of Δ𝑠𝐴𝐵𝐶 on a sphere and let the angles and sides 

of Δ𝑠𝐴𝐵𝐶 and Δ𝑠𝐴′𝐵′𝐶′ be labeled as indicated as in figure below.   
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 Then the sides and angles of these two triangles are related as given in the following 

 table. 

𝑎′ = 𝑟(𝜋 − 𝛼) 𝑏′ = 𝑟(𝜋 − 𝛽) 𝑐′ = 𝑟(𝜋 − 𝛾) 

𝛼′ = 𝜋 −
𝑎

𝑟
 𝛽′ = 𝜋 −

𝑏

𝑟
 𝛾′ = 𝜋 −

𝑐

𝑟
 

 

 

  



15 
 

Theorem – Spherical Law of Cosines for Sides 

 

 

Let 𝑟 equal the radius of sphere 𝑆.  Then  

cos (
a

𝑟
) = cos (

b

𝑟
) cos (

𝑐

𝑟
) + sin (

b

𝑟
) sin (

c

𝑟
) cos(𝛼) 

cos (
b

𝑟
) = cos (

a

𝑟
) cos (

c

𝑟
) + sin (

a

𝑟
) sin (

c

𝑟
) cos(𝛽) 

and 

cos (
c

𝑟
) = cos (

a

𝑟
) cos (

b

𝑟
) + sin (

a

𝑟
) sin (

b

𝑟
) cos(𝛾) 

 

assuming we are working in radian mode. 
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Theorem – Spherical Law of Cosines for Angles 

 

Recall the Spherical Law of Cosines for Sides applied to spherical triangle Δ𝐴𝐵𝐶 

cos (
a

𝑟
) = cos (

b

𝑟
) cos (

𝑐

𝑟
) + sin (

b

𝑟
) sin (

c

𝑟
) cos(𝛼) 

and the Polar Spherical Triangle to “Regular” Spherical Triangle translation table. 

a′= 𝑟(𝜋 − 𝛼)          b′= 𝑟(𝜋 − 𝛽)          c′= 𝑟(𝜋 − 𝛾)

𝛼′= 𝜋 −
a

𝑟
 𝛽′= 𝜋 −

b

𝑟
 𝛾′= 𝜋 −

c

𝑟

  

Now apply the Spherical Law of Cosines for Sides to the polar spherical triangle Δ𝐴′𝐵′𝐶′ and 

simplify. What do you get? 
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Theorem – Spherical Law of Sines 

 

 

 

Let 𝑟 equal the radius of sphere 𝑆.  Then 

sin(𝛼)

sin (
𝑎
𝑟
)
=
sin(𝛽)

sin (
𝑏
𝑟
)
=
sin(𝛾)

sin (
𝑐
𝑟
)

 

where 𝑎, 𝑏 and 𝑐 are measured in the same units as the radius of the sphere. 
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“Sum of the Three Sides” and “Sum of the Three Angles” 

 

 

For any spherical triangle Δ𝑆(𝐴𝐵𝐶) on a sphere with radius 𝑟,  

a+ b + c < 2𝜋𝑟 (𝑖) 

 

and 

𝜋 < 𝛼 + 𝛽 + 𝛾 ≤ 3𝜋. (𝑖𝑖) 
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Sum of the Three Sides of a Spherical Triangle is Less Than 𝟐𝝅𝒓. 

 

For any spherical triangle Δ𝑆(𝐴𝐵𝐶) on a sphere with radius 𝑟, 𝑎 + 𝑏 + 𝑐 < 2𝜋𝑟. 

 

Proof 

Extend 𝐴𝐵⏜  and 𝐴𝐶⏜  out from 𝐵 and 𝐶 until they intersect for the second time at 𝐴⋆.  

Let 𝐵𝐴⋆ ⏜ = 𝑐⋆ and 𝐶𝐴⋆ ⏜ = 𝑏⋆. 

 

 

We know that 𝐴 and 𝐴⋆ are antipodal points which means that 𝐴𝐵𝐴⋆ ⏜    and 𝐴𝐶𝐴⋆ ⏜    are meridians 

(i.e. semicircles on a sphere). 

Therefore, 
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𝐴𝐵𝐴⋆ ⏜   =
1

2
(2𝜋𝑟) = 𝜋𝑟    and    𝐴𝐶𝐴⋆ ⏜   =

1

2
(2𝜋𝑟) = 𝜋𝑟. 

 

Now consider the spherical triangle Δ𝑆(𝐴
⋆𝐵𝐶).  From the spherical triangle inequality theorem 

we know that 

𝑎 < 𝑏⋆ + 𝑐⋆. 

Thus, 

𝑎 + 𝑏 + 𝑐  < (𝑏⋆ + 𝑐⋆) + 𝑏 + 𝑐

   = (𝑏⋆ + 𝑏) + (𝑐⋆ + 𝑐)

   = 𝐴𝐶𝐴⋆ ⏜   + 𝐴𝐵𝐴⋆ ⏜   

   = 𝜋𝑟 + 𝜋𝑟

   = 2𝜋𝑟.

 

∎ 

 

 

Having proven (𝒊), we can prove (𝒊𝒊) by using the same “angle-side” swap that 

we used to establish the Spherical Law of Cosines for Angles. 

 

Proof 

 

Let Δ𝑠𝐴′𝐵′𝐶′ be the polar triangle of Δ𝑠𝐴𝐵𝐶 with the angles and sides of each labeled as 

follows. 
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Recall the relationships between the sides and angles of these two spherical triangles. 

a′ = 𝑟(𝜋 − 𝛼) b′ = 𝑟(𝜋 − 𝛽) c′ = 𝑟(𝜋 − 𝛾) 

𝛼′ = 𝜋 −
a

𝑟
 𝛽′ = 𝜋 −

b

𝑟
 𝛾′ = 𝜋 −

c

𝑟
 

 

 

 

Hence, 

a′ + b′ + c′ = 3𝜋𝑟 − 𝑟(𝛼 + 𝛽 + 𝛾) 

or 

𝛼 + 𝛽 + 𝛾 = 3𝜋 −
1

𝑟
(a′ + b′ + c′). 

Hence, 

𝛼 + 𝛽 + 𝛾 < 3𝜋. 

 

Now we determined in the last theorem that for any spherical triangle on a sphere with radius 𝑟 

the sum of the sides is less than 2𝜋𝑟. 

So  
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1

𝑟
(a′ + b′ + c′) < 2𝜋. 

 

Hence 

𝛼 + 𝛽 + 𝛾 = 3𝜋 −
1

𝑟
(a′ + b′ + c′) > 3𝜋 − 2𝜋 = 𝜋. 

∎ 

 

By the way, looking one more time at our table 

a′ = 𝑟(𝜋 − 𝛼) b′ = 𝑟(𝜋 − 𝛽) c′ = 𝑟(𝜋 − 𝛾) 

𝛼′ = 𝜋 −
a

𝑟
 𝛽′ = 𝜋 −

b

𝑟
 𝛾′ = 𝜋 −

c

𝑟
 

 

 

is it possible for an individual angle in a spherical triangle to equal or exceed 180°?  Why or why 

not? 
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In a Spherical Triangle the sum of the angles is strictly larger than 𝟏𝟖𝟎°. 

 

Does this has you wondering whether there is another type of triangle where the sum of the 

angles is strictly less than 180°? 

 

There are and they are called hyperbolic triangles. We will not be discussing them in these 

notes but they are important too. The theory of special relativity depends on hyperbolic 

triangles. 
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Can a spherical triangle have two right angles? 

Can a spherical triangle have three right angles? 

 

The only restrictions on the size of angles in a spherical triangle are 

0 < 𝛼 < 180°, 0 < 𝛽 < 180°, 0 < 𝛾 < 180° 

and 

180° < 𝛼 + 𝛽 + 𝛾 < 540°. 

 

Can 𝛼 = 90° and 𝛽 = 90° and 𝛾 ≠ 90° without violating the above rules? 

Can 𝛼 = 90° and 𝛽 = 90° and 𝛾 = 90° without violating the above rules? 
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But there’s more. Multiple angles of 90° will force restrictions on the sides. 

Theorem 

Suppose 𝛼 = 90° and 𝛽 = 90° and suppose 𝛾 might be a right angle but does not have to be. 

 

By the Spherical Law of Cosines for Angles we know that 

cos(𝛼) = −cos(𝛽) cos(𝛾) + sin(𝛽) sin(𝛾) cos (
𝑎

𝑟
) 

cos(𝛽) = − cos(𝛼) cos(𝛾) + sin(𝛼) sin(𝛾) cos (
𝑏

𝑟
) 

cos(𝛾) = − cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) cos (
𝑐

𝑟
). 

 

Plug in 𝛼 = 90° and 𝛽 = 90°.  What can you determine about the sides 𝑎, 𝑏 and 𝑐? 
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Spherical Pythagorean Theorem 

 

It’s not 𝑐2 = 𝑎2 + 𝑏2.  Can you figure out what it should be?  Look back at the theorems and 

stated results listed so far. Which one(s) look relevant? 

 

 

Use the following data to test any of your conjectures. 
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Consequences of the Spherical Pythagorean Theorem 

Suppose Δ𝑆(𝐴𝐵𝐶) is a right spherical triangle on a sphere with radius 𝑟 and with a right angle at 

𝐶 as labeled in the figure below.  

 

Then 

(R1)    cos (
𝑐

𝑟
)  =  cos (

𝑎

𝑟
) cos (

𝑏

𝑟
)                       (R6)     tan (

𝑏

𝑟
)  =  cos(𝐴) tan (

𝑐

𝑟
)

(R2) sin (
𝑎

𝑟
) = sin(𝐴) sin (

𝑐

𝑟
)  (R7) tan (

𝑎

𝑟
) = cos(𝐵) tan (

𝑐

𝑟
)

(R3) sin (
𝑏

𝑟
) = sin(𝐵) sin (

𝑐

𝑟
)  (R8) cos (𝐴) = sin(𝐵) cos (

𝑎

𝑟
)

(R4) tan (
𝑎

𝑟
) = tan(𝐴) sin (

𝑏

𝑟
)  (R9) cos(𝐵) = sin(𝐴) cos (

𝑏

𝑟
)

(R5) tan (
𝑏

𝑟
) = tan(𝐵) sin (

𝑎

𝑟
)  (R10) cos (

𝑐

𝑟
) = cot(𝐴) cot(𝐵)
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Exercise 

Find 𝑏 and 𝛽 in the right isosceles spherical triangle Δ𝐴𝐵𝐶 in the diagram below if the sphere 

has radius 𝑟 = 1. 

 

Solution 

From (R1) we know cos (
𝜋/3

1
) = cos (

𝑏

1
) cos (

𝑏

1
) . So 

cos2(𝑏) = cos (
𝜋

3
) = cos(60°) =

1

2
 

cos(𝑏) =
1

√2
⟹ 𝑏 = 45°. 

From (R10) we know cos (
𝜋/3

1
) = cot(𝛽) cot(𝛽) . So 

cot(𝛽) =
1

√2
. 

or 

tan(𝛽) = √2. 

Therefore, 

𝛽 = tan−1(√2) ≈ 54.73561032°. 

∎ 
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Spherical Stewart’s Theorem 

Consider the spherical triangle 𝐴𝐵𝐶 as labeled in the figure below.  Let 𝐶𝐷⏜  be a great arc drawn 

from 𝐶 to 𝐴𝐵⏜ .  Let 𝑟 be the radius of the sphere. 

      

In this case, 

sin (
𝑝 + 𝑞

𝑟
) cos (

𝑥

𝑟
) = sin (

𝑝

𝑟
) cos (

𝑏

𝑟
) + sin (

𝑞

𝑟
) cos (

𝑎

𝑟
) 

or 

cos (
𝑥

𝑟
) =

sin (
𝑝
𝑟) cos (

𝑏
𝑟) + sin (

𝑞
𝑟) cos (

𝑎
𝑟)

sin (
𝑝 + 𝑞
𝑟 )

. 

 

Proof 

From the spherical law of cosines for sides applied to Δ𝑆(𝐵𝐶𝐷) and Δ𝑆(𝐴𝐶𝐷) we have 

cos (
𝑎

𝑟
) = cos (

𝑥

𝑟
) cos (

𝑞

𝑟
) + sin (

𝑥

𝑟
) sin (

𝑞

𝑟
) cos(𝜃) 

and 
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cos (
𝑏

𝑟
)  =   cos (

𝑥

𝑟
) cos (

𝑝

𝑟
) + sin (

𝑥

𝑟
) sin (

𝑝

𝑟
) cos(180 − 𝜃)

   = cos (
𝑥

𝑟
) cos (

𝑝

𝑟
) − sin (

𝑥

𝑟
) sin (

𝑝

𝑟
) cos(𝜃) .

 

 

Now multiply the first equation by sin(𝑝/𝑟) and the second equation by sin(𝑞/𝑟) to get 

 

cos (
𝑎

𝑟
) sin (

𝑝

𝑟
) = cos (

𝑥

𝑟
) cos (

𝑞

𝑟
) sin (

𝑝

𝑟
) + sin (

𝑥

𝑟
) sin (

𝑞

𝑟
) sin (

𝑝

𝑟
) cos(𝜃) 

cos (
𝑏

𝑟
) sin (

𝑞

𝑟
) = cos (

𝑥

𝑟
) cos (

𝑝

𝑟
) sin (

𝑞

𝑟
) − sin (

𝑥

𝑟
) sin (

𝑝

𝑟
) sin (

𝑞

𝑟
) cos(𝜃). 

 

Adding these two resulting equations and simplifying we find 

cos (
𝑎

𝑟
) sin (

𝑝

𝑟
) + cos (

𝑏

𝑟
) sin (

𝑞

𝑟
) 

 = (cos (
𝑥

𝑟
) cos (

𝑞

𝑟
) sin (

𝑝

𝑟
) + cos (

𝑥

𝑟
) cos (

𝑝

𝑟
) sin (

𝑞

𝑟
)) 

 = cos (
𝑥

𝑟
) (cos (

𝑞

𝑟
) sin (

𝑝

𝑟
) + cos (

𝑝

𝑟
) sin (

𝑞

𝑟
)) 

 +(sin (
𝑥

𝑟
) sin (

𝑞

𝑟
) sin (

𝑝

𝑟
) cos(𝜃) − sin (

𝑥

𝑟
) sin (

𝑝

𝑟
) sin (

𝑞

𝑟
) cos(𝜃)) 

 = cos (
𝑥

𝑟
) (cos (

𝑞

𝑟
) sin (

𝑝

𝑟
) + cos (

𝑝

𝑟
) sin (

𝑞

𝑟
)) 

 = cos (
𝑥

𝑟
) sin (

𝑝 + 𝑞

𝑟
) 

 = cos (
𝑥

𝑟
) sin (

𝑐

𝑟
). 

 

Thus 

cos (
𝑥

𝑟
) =

cos (
𝑎
𝑟) sin (

𝑝
𝑟) + cos (

𝑏
𝑟) sin (

𝑞
𝑟)

sin (
𝑐
𝑟)

. 

∎ 
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Appendix 

Theorem  The great arc 𝐴𝐵⏜  connecting points 𝐴 and 𝐵 on a sphere is the shortest possible path 

on a sphere connecting point 𝐴 to point 𝐵. 

Proof 

Let (𝐶𝐷)1 be the (unique) great arc connecting points 𝐶 and 𝐷 and let 𝐸 be some point on 

(𝐶𝐷)1.  

  
 

Draw the small circle 𝑜1 centered at 𝐶 and containing the point 𝐸 and then draw the small circle 

𝑜2 centered at 𝐷 and containing the point 𝐸.  There are two potential cases.  

  

Case 1. 
Small Circles 𝑜1 and 𝑜2 Have One  

Point of Intersect 

Case 2. 
Small Circles 𝑜1 and 𝑜2 Have Two  

Points of Intersection 

𝑪 𝑫 
𝑪 𝑬 𝑫 

𝑪 𝑬 𝑫 

𝑪 

𝑬 

𝑫 

𝒐𝟏 

𝒐𝟐 
𝒐𝟏 

𝒐𝟐 

(𝑪𝑫)𝟏 
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The first step in our proof is to eliminate Case 2.  That is to show that the figure drawn below 

cannot really “in the real world”. 

We will prove this by contradiction.  That is, we will assume Case 2 is possible and then show 

that this assumption leads us into a contradiction. 

Label the second point of intersection of small circles 𝑜1 and 𝑜2 in Case 2 as point 𝐹. 

 

 

Draw the great arc connecting 𝐶 and 𝐹 and the great arc connecting 𝐷 and 𝐹. 

 

 

𝑪 

𝑬 

𝑫 

𝒐𝟏 
𝒐𝟐 

𝑭 

𝑪 

𝑬 

𝑫 

𝒐𝟏 
𝒐𝟐 

𝑭 
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This yields the spherical triangle 𝐶𝐷𝐹 (the three sides are 𝐶𝐷, 𝐷𝐹 and 𝐹𝐶) unless 𝐶𝐹 and 𝐷𝐹 

are arcs on the same great circle 

 

 

(which would mean “triangle” 𝐶𝐷𝐹 only has two sides).  But this cannot be true because if it 

were then 𝐶𝐸𝐷 and 𝐶𝐹𝐷 would be distinct great circles connecting the points 𝐶 and 𝐷, which 

violates the fact that great circles through two points are unique. 

But could we have the situation where 𝐶𝐹 and 𝐷𝐹 are arcs on different great circles and 𝐶𝐷𝐹 is 

a three-sided spherical triangle?  

 

𝑪 

𝑬 

𝑫 

𝒐𝟏 
𝒐𝟐 

𝑭 

𝑪 

𝑬 

𝑫 

𝒐𝟏 
𝒐𝟐 

𝑭 
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Let’s consider this.  We have already established the triangle inequality for spherical triangles.  

That is, 

𝐶𝐹 + 𝐹𝐶 > 𝐶𝐷. 

 

On the other hand, all arcs of small circles have the same length.  That is, 

𝐶𝐸 = 𝐶𝐹  and 𝐷𝐸 = 𝐷𝐹. 

But this means 

𝐶𝐹 + 𝐹𝐶 = 𝐶𝐸 + 𝐷𝐸 = 𝐶𝐷. 

 

And this contradicts the previous result that 

𝐶𝐹 + 𝐹𝐶 > 𝐶𝐷. 

So, we can rule out Case 2. It cannot possibly occur. 

 

 

Let (𝐶𝐷)1 be the great circle path connecting points 𝐶 and 𝐷 and let (𝐶𝐷)2 be the shortest 

possible path connecting point 𝐶 and 𝐷. 

Let 𝐸 be a point on the great circle path (𝐶𝐷)1 and draw the small circle 𝑂1 centered at 𝐶 and 

containing the point 𝐸 and the small circle 𝑂2 centered at 𝐷 and containing the point 𝐸. 

Claim.  The point 𝐸 must be on path (𝐶𝐷)2. 

We will prove this claim by contradiction.  So, assume 𝐸 is not a point on (𝐶𝐷)2.   

Obviously, every path from 𝐶 to 𝐷 must eventually cross over small circle 𝑂1 (at least once).  Let 

𝐹 be the point where (𝐶𝐷)2 crosses over 𝑂1 for the final time.  Similarly, let 𝐺 be the point 

where (𝐶𝐷)2 crosses over 𝑂2 for the final time. 
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Because we are assuming that 𝐸 is not on (𝐶𝐷)2, the segment 𝐹𝐺 on (𝐶𝐷)2 has positive 

length. 

Now construct the path (𝐶[𝐹𝐸])2 by rotating the path (𝐶𝐹)2 about the point 𝐶 until 𝐹 matches 

up with 𝐸.  In the same way construct the path (𝐷[𝐺𝐸])2 by rotating the path (𝐷𝐺)2 about the 

point 𝐷 until 𝐺 matches up with 𝐸.  (illustrated below) 

  

 

The new path (𝐶[𝐹𝐸])2 + (𝐷[𝐺𝐸])2 is still a path connecting 𝐶 to 𝐷 and is shorter than the 

path 𝐶𝐹𝐺𝐷 which did not include the point 𝐸. 
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Thus, the path 𝐶𝐹𝐺𝐷 which did not include the point 𝐸 cannot possibly be the shortest path 

from 𝐶 to 𝐷.  That is, the point 𝐸 on the great circle arc from 𝐶 to 𝐷 must be on (𝐶𝐷)2, the 

theoretical shortest path from 𝐶 to 𝐷. 

But 𝐸 is an arbitrary point on the great circle arc 𝐶𝐷⏜ .  So, the above argument shows that every 

point on the great circle arc 𝐶𝐷⏜  must be on (𝐶𝐷)2. 

And if (𝐶𝐷)2 contains any extra points that are not on 𝐶𝐷⏜ , then (𝐶𝐷)2 would necessarily be 

longer than 𝐶𝐷⏜ , which would contradiction the definition that (𝐶𝐷)2 is the theoretical shortest 

path from 𝐶 to 𝐷. 

Hence, (𝐶𝐷)2 = 𝐶𝐷⏜ . 

∎ 

 

 

 

 

 


