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Chapter 1  Positional Number Systems 
 

When we write 235 we are using a positional number system because the position of each 

digit matters.  In particular, we recognize that  

 

235 = 200 + 30 + 5 = 2(102) + 3(101) + 5(100) 

 

in the decimal (base 10) system.  If there was any chance of ambiguity, we could be more 

explicit and write this as 23510 where the subscript “10” refers to the chosen base number. 

In the same manner we use 2357 to represent the number 235 in base 7.  What does mean?   

 

In the base 𝒃 positional number system the number (𝑐𝑛𝑐𝑛−1⋯𝑐1𝑐0)𝑏 represents 𝑐𝑛𝑏
𝑛 +

𝑐𝑛−1𝑏
𝑛−1 +⋯+ 𝑐1𝑏 + 𝑐0 where by definition 𝑐𝑛 ≠ 0 and 𝑐𝑗 ∈ {0,1, … , 𝑛 − 1} for each 𝑗 from 1 

to 𝑛. 

 

(In some texts, especially in computer science, the base number 𝑏 is referred to as the radix of 

the number system and if you dig into pre-1970 math books you will see that base number 

problems were called scale of notation problems.  So don’t be throw off by these different 

names.) 

 

If we simplify 𝑐𝑛𝑏
𝑛 + 𝑐𝑛−1𝑏

𝑛−1 +⋯+ 𝑐1𝑏 + 𝑐0 to single number 𝒂 using base 10 arithmetic, 

then we would can say that 𝑎 = 𝑐𝑛𝑏
𝑛 + 𝑐𝑛−1𝑏

𝑛−1 +⋯+ 𝑐1𝑏 + 𝑐0 is the base 𝟏𝟎 equivalent of 

the base 𝑏 number (𝑐𝑛𝑐𝑛−1⋯𝑐1𝑐0)𝑏. 

 

For example, in base 7 the number 2357 represents 2(72) + 3(71) + 5(70) = 98 + 21 + 5 =

12410 or just 124 in base 10.  In general, if no base subscript is attached to a number, it is 

assumed that you are using base 10 notation. 

 

In base 7 we only use the digits {0,1,2,3,4,5,6}.  The next number after 6 in the base seven 

sequence would be 107 = 1(7
1) + 0(70) = 7 + 0 = 710. 

 

Notice that by these definitions, in base 7 (just for example), 𝑛7 = 𝑛10 for 𝑛 = 0,1,2,3,4,5,6. 

 

∗ Notation: The 𝒃 in 𝒏𝒃 is understood to be a base 𝟏𝟎 number 

 

By definition, when we write 2357, or more generally 𝑛𝑏, the base number 7 or 𝑏 is to be 

interpreted as a base 10 number. 

 

So, for example, when we write the hexadecimal (base 16) number 𝑛16, the base number 𝑏 =

16 is interpreted as 1610 = 1 ⋅ 10
1 + 6 ⋅ 100 and not as 1616 = 1 ⋅ 16

1 + 6 ⋅ 160 = 22. 
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Base Representation Theorem 

 

Let 𝑏 be an integer greater than 1.  Then every 𝑎 > 0 can be uniquely represented in the form  

 

𝑎 = 𝑐𝑛𝑏
𝑛 + 𝑐𝑛−1𝑏

𝑛−1 +⋯+ 𝑐1𝑏 + 𝑐0 

 

with 𝑐𝑛 ≠ 0, 𝑛 ≥ 0, and 0 ≤ 𝑐𝑖 < 𝑏 for 𝑖 = 0,1,2,… , 𝑛. 

 

 

1.1 Converting from Base 𝒃 to Base 10 
 

Example 1.1 

 

Find the base 10 representation of 32016. 

 

Solution 

 

32016 = 3(6
3) + 2(62) + 0(61) + 1(60) 

= 3(216) + 2(36) + 0(6) + 1(1) 

= 648 + 72 + 0 + 1 

= 721 

 

That is, 32016 = 72110 = 721. 

∎ 

 

Example 1.2 

 

Find the base 10 representation of 544017. 

 

Solution 

 

544017 = 5(7
4) + 4(73) + 4(72) + 0(71) + 1(70) 

= 5(2401) + 4(343) + 4(49) + 0(7) + 1(1) = 13574 

That is,  

544017 = 1357410 = 13574. 

∎ 

 

1.2 Converting from Base 10 to Base 𝒃: Top-Down Method 
 

Example 1.3 
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Find the base 5 representation of 107310 = 1073. 

 

Solution 

 

Step 1.  Find the largest integer 𝑛 for which 5𝑛 ≤ 1073.  We note that 54 = 625 but 55 =

3125.  So 𝑛 = 4. 

 

Thus, by base representation theorem, there exists constants 𝑐𝑖 ∈ {0,1,2,3,4} for 𝑖 = 0,1,2,3,4 

and 𝑐4 ≠ 0 such that 

 

1073 = 𝑐45
4 + 𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0. 

 

Step 2.  𝑐4 equals the largest whole number of times 54 = 625 goes into 1073. 

 
1073

54
=
1073

625
= 𝟏 +

448

625
⟹ 𝑐4 = 𝟏. 

 

Step 3.  Repeat Step 2 with 1073 − 𝑐45
4 = 1073 − 625 = 448. 

 
448

53
=
448

125
= 𝟑 +

73

125
⟹ 𝑐3 = 𝟑. 

 

Steps 4,5,…   Continue 

 

1073 − 𝑐45
4 − 𝑐35

3 = 448 − 375 = 73. 

 
73

52
=
73

25
= 𝟐 +

23

25
⟹ 𝑐2 = 𝟐. 

 

 

1073 − 𝑐45
4 − 𝑐35

3 − 𝑐25
2 = 73 − 50 = 23. 

 
23

51
=
23

5
= 𝟒 +

3

5
⟹ 𝑐1 = 𝟒. 

 

 

1073 − 𝑐45
4 − 𝑐35

3 − 𝑐25
2 − 𝑐15

1 = 23 − 20 = 3. 

 
3

50
= 𝟑 +

0

5
⟹ 𝑐0 = 𝟑. 
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Therefore, 

 

1073 = (𝑐4𝑐3𝑐2𝑐1𝑐0)5 = (13243)5. 

∎ 

 

Check (time permitting this is always a good idea) 

 

𝑐45
4 + 𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0 =
?
1073 

 

1 ⋅ 54 + 3 ⋅ 53 + 2 ⋅ 52 + 4 ⋅ 51 + 3 =
?
1073 

 

1073 =
✓

1073. 

∎ 

 

Why it Works 

 

Let 𝑑4 equal the largest whole number of times 54 = 625 goes into 1073. 

 

Here we will only give a justification of the above Step 2 that 𝑐4 = 𝑑4.  The justification of the 

remaining steps follows the same line of reasoning. 

 

𝑐4 ≯ 𝑑4 
 

Clearly 𝑐4 ≯ 𝑑4 because in this case  

 

𝑐45
4 + 𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0 ≥ 𝑐45
4 > 1073. 

 

by definition. 

 

𝑐4 ≮ 𝑑4 
 

We know from the standard result on geometry series that  

 

𝑏𝑛−1 + 𝑏𝑛−2 +⋯+ 𝑏1 + 𝑏0 =
𝑏𝑛 − 1

𝑏 − 1
 

 

for all 𝑛 ∈ {1,2,3, … } and  𝑏 ∈ {2,3,4,… }.  Hence 
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(𝑏 − 1) ⋅ 𝑏𝑛−1 + (𝑏 − 1) ⋅ 𝑏𝑛−2 +⋯+ (𝑏 − 1) ⋅ 𝑏1 + (𝑏 − 1) = 𝑏𝑛 − 1. 

 

Taking 𝑏 = 5 and 𝑛 = 4 in this identity we see that 

 

4 ⋅ 53 + 4 ⋅ 52 + 4 ⋅ 51 + 4 = 54 − 1. 

 

Notice that it follows from the restriction that 𝑐𝑖 ∈ {0,1,2,3,4} for 𝑖 = 0,1,2,3,4 and 𝑐4 ≠ 0 that 

 

𝑐35
3 + 𝑐25

2 + 𝑐15
1 + 𝑐0 ≤ 4 ⋅ 5

3 + 4 ⋅ 52 + 4 ⋅ 51 + 4 = 54 − 1 < 54. 

 

Now suppose we take 𝑐4 to be less than 𝑑4 so that 𝑑4 ≥ 𝑐4 + 1.  In this case 

 

𝑐45
4 + 𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0 

 = 𝑐45
4 + (𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0) 

 < 𝑐45
4 + 54 

 = (𝑐4 + 1)5
4 

 ≤ 𝑑45
4 

 ≤ 1073. 

 

That is, if 𝑐4 ≮ 𝑑4 then 𝑐45
4 + 𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0 < 1073.   

 

But assuming 𝑐4 exists (by the base representation theorem), the only remaining possibility is 

that 𝑐4 = 𝑑4, the largest whole number of times 54 = 625 goes into 1073. 

∎ 

 

1.3 Converting from Base 10 to Base 𝒃: Bottom-Up Method 
 

In this section we will consider an alternative approach to converting from base 10 to base 𝑏 

that is generally easier to implement than the Top-Down Method considered in the previous 

section. 

 

Example 1.4 

 

Find the base 5 representation of 1073. 

 

Answer 

1073 = 1(54) + 3(53) + 2(52) + 4(51) + 3(50) = 132435. 
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Solution 

 

Step 1.  Divide 1073 by 5 with remainder.  That is, express 1073 in the form 1073 = 5 ⋅ 𝑑1 + 𝑟1 

where 𝑟1 ∈ {0,1,2,3,4}. 

 

1073 = 214(5) + 3 

 

Step 2.  Divide 𝑑1 by 5 with remainder.  That is, express 𝑑1 = 214 in the form 214 = 5 ⋅ 𝑑2 + 𝑟2 

where 𝑟2 ∈ {0,1,2,3,4}. 

 

214 = 42(5) + 4 

 

Step 3.  Divide 𝑑2 by 5 with remainder.  That is, express 𝑑2 = 42 in the form 42 = 5 ⋅ 𝑑3 + 𝑟3 

where 𝑟3 ∈ {0,1,2,3,4}. 

 

42 = 8(5) + 2. 

 

Steps 4,5,…  Continue like this until you reach 𝑑𝑘 < 5 and the line 𝑑𝑘 = 0(5) + 𝑟𝑘+1. 

 

8 = 1(5) + 3 

1 = 0(5) + 1. 

 

The remainders (shown in red), reading from the bottom up, reveal the digits of the base five 

representation of 1073. 

∎ 

 

Why it Works 

 

Step 1. 

 

If 

1073 = 𝑐45
4 + 𝑐35

3 + 𝑐25
2 + 𝑐15

1 + 𝑐0 

 

then 

1073 = 5(𝑐45
3 + 𝑐35

2 + 𝑐25
1 + 𝑐1) + 𝑐0. 

 

 

So, when we divide 1073 by 5 the remainder equals 𝑐0.  That is, 

 

1073 = 214(5) + 𝟑 ⟹ 𝑐0 = 𝟑. 
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Step 2.   

 

From Step 1 we have 

 

𝑑1 = 𝑐45
3 + 𝑐35

2 + 𝑐25
1 + 𝑐1 = 5(𝑐45

2 + 𝑐35 + 𝑐2) + 𝑐1. 

 

So, when we divide 𝑑1 by 5 the remainder equals 𝑐1.  That is, 

 

𝑑1 = 214 = 42(5) + 𝟒 ⟹ 𝑐1 = 𝟒. 

 

The justification of the remaining steps follows the same line of reasoning. 

∎ 

 

Example 1.5 

 

Find the base 2 representation of 1073 using the bottom-up method. 

 

Solution  

 
 

The remainders (shown in red), reading from the bottom up, reveal the digits of the base two 

representation of 1073.  That is, 

 

1073 = 100001100012. 

∎ 

 

1.4 Converting from Base 𝒂 to Base 𝒃, (𝒂 ≠ 𝟏𝟎, 𝒃 ≠ 𝟏𝟎) 
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Example 1.6 

 

Find the base-nine number that is equivalent to 2456. 

 

Solution 

 

First convert from base 6 to base 10.   

 

2456 = 2(6
2) + 4(61) + 5(60) = 10110 = 101. 

 

Then convert from base 10 to base 9. 

 
 

Therefore 

2456 = 1229. 

∎ 

 

 

1.5 Converting from Base 𝒂 to Base 𝒂^𝒌 and Vice Versa  
 

Section 1.5 covers a special case of the general base conversion problem introduced in Section 

1.4.   

 

The methods in Section 1.5 are a time saving shortcut you can use when the two bases of the 

conversion problem are powers of each other. 

 

 

1.5.1 Base 𝒂 to Base 𝒂^𝒌 

 

In this section we will develop a shortcut method for converting a number from base 𝑎 to base 

𝑎𝑘 .  The first step of the procedure is to partition the base 𝑎 number into groups of size 𝑘 

starting from the right (the units digit).  Add leading 0’s (if needed) to make the last group a full 

group (of size 𝑘).  The final step is to convert each group of size 𝑘 from base 𝑎 to base 𝑎𝑘 . 

 

We illustrate this procedure and explain why it works in the example that follows. 

 

Example 1.7 (Source: MSHSML 1A984) 
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Using binary notation (base 2), let 𝑁 = 11110101.  Write 𝑁 in octal notation (base 8).  

 

Solution 

 

Procedure:  We want to go from base 2 to base 2𝟑.  Group the base 2 number into sets of size 

𝟑.  Putting in leading 0’s as needed to make the last group a full group of three digits. 

 

 
 

Now convert each base 2 group of three digits into a single base 8 digit. 

 

0112 = 0(2
2) + 1(21) + 1(20) = 3 

1102 = 1(2
2) + 1(21) + 0(20) = 6 

1012 = 1(2
2) + 0(21) + 1(20) = 5 

 

These are the digits of our base 8 conversion. 

 

111101012 = 3658. 

∎ 

 

Why it Works 

 

Consider the grouping of 𝑘 digits (going from right to left, starting with the unit’s digit) of the 

base 𝑎 number 𝑛𝑎 

 

𝑛𝑎 = | ⋆𝑟𝑘−1 ⋯⋆(𝑟−1)𝑘 |   ⋯  | ⋆𝑚𝑘−1⋯⋆(𝑚−1)𝑘 |  ⋯  | ⋆2𝑘−1 ⋯⋆𝑘 | ⋆𝑘−1 ⋯⋆0 |. 

 

Note: Here we are using the notation ⋆𝑗  to represent the (𝑗 + 1)𝑠𝑡 digit of the base 𝑎 number 

𝑛𝑎 . 

 

Expanding the group of 𝑘 digits (⋆𝑚𝑘−1 ⋯⋆(𝑚−1)𝑘) gives us 

 

(⋆𝑚𝑘−1)𝑎
𝑚𝑘−1 + (⋆𝑚𝑘−2)𝑎

𝑚𝑘−2 +⋯+ (⋆(𝑚−1)𝑘)𝑎
(𝑚−1)𝑘 

 = 𝑎(𝑚−1)𝑘 ((⋆𝑚𝑘−1)𝑎
𝑘−1 + (⋆𝑚𝑘−2)𝑎

𝑘−2 +⋯+ (⋆(𝑚−1)𝑘)𝑎
0) 

 = (𝑎𝑘)𝑚−1 ((⋆𝑚𝑘−1)𝑎
𝑘−1 + (⋆𝑚𝑘−2)𝑎

𝑘−2 +⋯+ (⋆(𝑚−1)𝑘)𝑎
0) 
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 = (𝑎𝑘)𝑚−1𝑐𝑚−1 

 

where 𝑐𝑚−1 = (⋆𝑚𝑘−1)𝑎
𝑘−1 + (⋆𝑚𝑘−2)𝑎

𝑘−2 +⋯+ (⋆(𝑚−1)𝑘)𝑎
0. 

 

The important fact to notice the lower and upper bounds on 𝑐𝑚−1.  In particular, we have 

 

𝑐𝑚−1 ≥ 0 ⋅ 𝑎
𝑘−1 + 0 ⋅ 𝑎𝑘−2 +⋯+ 0 ⋅ 𝑎0 = 0 

and 

𝑐𝑚−1 ≤ (𝑎 − 1) ⋅ 𝑎
𝑘−1 + (𝑎 − 1) ⋅ 𝑎𝑘−2 +⋯+ (𝑎 − 1) ⋅ 𝑎1 + (𝑎 − 1) ⋅ 𝑎0 

= (𝑎𝑘 − 𝑎𝑘−1) + (𝑎𝑘−1 − 𝑎𝑘−2) +⋯+ (𝑎2 − 𝑎1) + (𝑎1 − 𝑎0) 

= 𝑎𝑘 − 1. 

 

That is, 𝑐𝑚−1 ∈ {0,1,… , 𝑎
𝑘 − 1} for all 𝑚 − 1.  It follows that 

 

𝑛𝑎 = | ⋆𝑟𝑘−1 ⋯⋆(𝑟−1)𝑘 |   ⋯  | ⋆𝑚𝑘−1 ⋯⋆(𝑚−1)𝑘 |  ⋯  | ⋆2𝑘−1⋯⋆𝑘 | ⋆𝑘−1 ⋯⋆0 | 

= 𝑐𝑟−1(𝑎
𝑘)𝑟−1 +⋯+ 𝑐𝑚−1(𝑎

𝑘)𝑚−1 +⋯𝑐1(𝑎
𝑘)1 + 𝑐0(𝑎

𝑘)0 

 

where each 𝑐𝑗 ∈ {0,1,… , 𝑎
𝑘 − 1}.  Thus we have verified that this procedure does convert the 

base 𝑎 number into its equivalent base 𝑎𝑘  form as claimed. 

 

To make this more tangible we will illustrate these steps for the previous problem of converting 

111101012 into base 23 = 8. 

 

 111101012 = 1(2
7) + 1(26) + 1(25) + 1(24) + 0(23) + 1(22) + 0(21) + 1(20) 

 

  = (0(28) + 1(27) + 1(26)) + (1(25) + 1(24) + 0(23)) + (1(22) + 0(21) + 1(20)) 

 

  = 26(0(22) + 1(21) + 1(20)) + 23(1(22) + 1(21) + 0(20)) 

   + 20(1(22) + 0(21) + 1(20)) 

 

  = (23)2(0(22) + 1(21) + 1(20)) + (23)1(1(22) + 1(21) + 0(20)) 

   + (23)0(1(22) + 0(21) + 1(20)) 

 

  = (0(22) + 1(21) + 1(20)) ⋅ 82 + (1(22) + 1(21) + 0(20)) ⋅ 81 

   + (1(22) + 0(21) + 1(20)) ⋅ 80 

 

  = 3(82) + 6(81) + 5(80) = 3658. 
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∎ 

 

Example 1.8  (Source: 2008 Mu Alpha Theta Convention, Open Division Number Theory Test, 

Problem 5) 

 

Find the sum of digits of the base 16 expression of (1101010010001001)2.  Express the sum 

in base 16. 

 

Solution 

 

Procedure:  We want to go from base 2 to base 16 = 2𝟒.  Group the base 2 number into sets of 

size 𝑘 = 𝟒 starting from the right. 

 

1 1 0 1 0 1 0  0 1 0   0  0 1 0  0  1 

 

In this problem the final group is a full group (contains 𝑘 = 4 digits) and hence it is not 

necessary to put in leading 0’s to make it a full group. 

 

Convert each base 2 group of four digits into a single base 16 digit. 

 

10012 = 1(2
3) + 0(22) + 0(21) + 1(20) = 910 = 916 

10002 = 1(2
3) + 0(22) + 0(21) + 0(20) = 810 = 816 

01002 = 0(2
3) + 1(22) + 0(21) + 0(20) = 410 = 416 

11012 = 1(2
3) + 1(22) + 0(21) + 1(20) = 1310 = 𝐷16. 

 

Notation: In these notes we adopt the convention of using letters (in alphabetic order) for the 

extra symbols needed beyond 9 for bases larger than ten.  For example, in hex (base 16) the 

needed sixteen single digit numbers are 0,1,2,… ,9, 𝑨, 𝑩, 𝑪,𝑫,𝑬, 𝑭.  With this convention we 

have: 

 

𝐴16 = 1010 

𝐵16 = 1110 

𝐶16 = 1210 

𝐷16 = 1310 

𝐸16 = 1410 

𝐹16 = 1510 

1016 = 1(16
1) + 0(160) = 1610 

1116 = 1(16
1) + 1(160) = 1710 

           ⋮ 

1𝐴16 = 1(16
1) + 𝐴(160) 

= 1610 + 1010 = 2610 

                                    etc. 

 

Thus, 

(1101010010001001)2 = 𝐷48916 
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and the sum of the digits of 𝐷48916 (expressed in base 16) equals 

 

𝐷16 + 416 + 816 + 916 = 1310 + 410 + 810 + 910 

= 3410 

= 2(161) + 2(160) 

= 2216. 

∎ 

 

Example 1.9 

 

Find the base 9 equivalent to 120121113. 

 

Solution 

We are converting from base 3 to base 3𝟐 so form groups of size 𝟐 from right to left adding 

leading 0’s if necessary to form a complete group of size 2. 

 
 

Convert each group (base 3). 

 

123 = 1(3
1) + 2(30) = 5 

013 = 0(3
1) + 1(30) = 1 

213 = 2(3
1) + 1(30) = 7 

113 = 1(3
1) + 1(30) = 4 

 

These are the digits of our base 9 equivalent. 

 

120121113 = 51749. 

∎ 

 

1.5.2 Base 𝒂^𝒌 to Base 𝒂 

 

We can reverse the procedure in the previous section when we need to convert a number from 

base 𝑎𝑘  to base 𝑎.  The reverse of the final step in the previous section is to convert each of the 

base 𝑎𝑘  digits into a set of 𝑘 base 𝑎 digits.  (We include leading 0’s (if necessary) to make each 

set have 𝑘 digits.) 

 

We illustrate this method in the next example. 

 

Example 1.10 
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Find the base 3 equivalent to 51749. 

 

Solution 

 

To reverse the procedure in the previous example we want to convert each of the base 9 = 32 

digits 5,1,7 and 4 into their base 31 equivalent.  Because we are going from base 3𝟐 to base 3 

so our group size is 𝑘 = 2. 

 

IMPORTANT!  We must include leading 0’s (if necessary) to make the equivalent number in 

base three a 𝑘 = 2 digit number. 

 

59 = 1(3
1) + 2(30)  = 𝟏𝟐3

19 = 1(3
0) = 13 = 𝟎𝟏3  (put in the leading 0 as needed)

79 = 2(3
1) + 1(30)  = 𝟐𝟏3

49 = 1(3
1) + 1(30)  = 𝟏𝟏3

 

 

 

These four two-digit groups when placed side by side form our base 3 equivalent. 

 

51749 = 1   2   0   1   2   1   1   13 = 120121113 

 

∎ 

 

Analysis of a Mistake: 

 

If we had forgotten to express 13 as 013 in this last example, we would have gotten  

 

51749 ≠ 1   2    1   2   1   1   13 = 12121113. 

 

which is the incorrect answer.  

∎ 

 

Example 1.11 (Source: Alpha Mu Theta Florida State Convention 2005, Number Theory Test, 

Problem #4) 

 

In a base-32 number system, the digits 0 - 9 represent themselves and the other digits are given 

by A = 10, B = 11,… ,V = 31.  If you convert (MAO)32 into binary, what are the last 5 digits? 

 

Solution 
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To convert from base 32 = 25 to base 21 we must convert each base 32 digit in (MAO)32 to its 

base 2 equivalent.  We must include leading 0’s (if necessary) to each of these base 2 

equivalents in order to make it into a 𝑘 = 5 digit base 2 number. 

 

This tells us that the last 5 digits of the base 2 equivalent of (MAO)32 will be the base 2 

equivalent of O32 padded with leading 0’s (if necessary) to make it a 5-digit base 2 number. 

 

The following chart shows that the base 10 equivalent of O32 equals 2410.   

 

A B C D E F G H I J K L M N O 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

 

P Q R S T U V 

25 26 27 28 29 30 31 

 

 

Converting 2410 to base 2 we have 

 

2410 = 16 + 8 = 1 ⋅ 2
4 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 0 ⋅ 20 

= (11000)2. 

 

The base 2 number 11000 already has 5 digits so we do not need to add any leadings 0’s. 

It follows that when you the convert (MAO)32 into binary the last 5 digits are 11000. 

∎ 

 

Example 1.12 (Source: MSHSML 1T985) 

 

A number written in base 3 has six “digits”: 1 ∗ 210 ∗, where the asterisk’s represent smudges 

that can’t be read.  What is the middle digit of this number when it is written in base 9 

notation?   Note: You should not assume the two smudges represented by asterisk’s were the 

same number. 

 

Solution 

 

Let 𝑁 = (1 ∗ 210 ∗)3.  Following the procedure developed in Section 1.5.1 we break 𝑁 into 

groups of size 𝑘 = 2 digits. 

 

1 ∗    21      0 ∗ 

  

Now convert each base 3 group of two digits into a single base 9 digit. 
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(0 ∗)3 = 0(3
1) + (∗)(30) = (∗)10

(21)3 = 2(3
1) + 1(30) = (7)10

(1 ∗)3 = 1(3
1) + (∗)(30) = (3 + ∗)10

 

 

Note that ∗ ∈ {0,1,2} because in both occurrences of ∗ in 𝑁 it represents a single digit in a base 

three number.  

 

It follows that (3 + ∗) ∈ {3,4,5}.  Hence, 

 
(3 + ∗)10  =  (3 + ∗)9      is a single digit number in base 9

710  =  79       is a single digit number in base 9

(∗)10  =  (∗)9       is a single digit number in base 9

 

 

So 𝑁 = (1 ∗ 210 ∗)3 is a 3 digit number in base 9 and the middle digit is a 7. 

∎ 

 

1.6 Converting in a Variable Base 
 

In this section we will consider some examples where the question is to carry out a base 

conversion in terms an unspecified base.  This is a vague description but the examples should 

make the issue clear. 

 

Example 1.13 (Source: MSHSML TA991) 

 

In base 𝑏, 𝑐2 is written 10.  How do you write 𝑏2 in case 𝑐? 

 

Solution 

 

𝑐2 = 10𝑏 = 1(𝑏
1) + 0(𝑏0) = 𝑏. 

Therefore, 

(𝑐2)2 = (𝑏)2. 

That is, 

𝑏2 = 𝑐4 = 1𝑐4 + 0𝑐3 + 0𝑐2 + 0𝑐1 + 0𝑐0. 

Hence 

𝑏2 = (10000)𝑐 . 

∎ 

 

Example 1.14 (Source: Mu Alpha Theta 1991 National Convention, Number Theory Topic Test, 

Problem 16) 
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When the number 𝑛 is written in base 𝑏 its representation is the two-digit number (𝐴𝐵)𝑏 

where 𝐴 = 𝑏 − 2 and 𝐵 = 2.  What is the base 𝑏 − 1 representation of 𝑛? 

 

Solution 

 

The first point to notice is that the base 𝑏 − 1 representation of 𝑛 will be a three-digit number 

because the largest possible two-digit number in base 𝑏 − 1 equals (𝐶𝐷)𝑏−1 where 𝐶 = 𝑏 − 2 

and 𝐷 = 𝑏 − 2 which is less than (𝐴𝐵)𝑏.  To see this, note that 

 

(𝐶𝐷)𝑏−1 = (𝑏 − 2) ⋅ (𝑏 − 1) + (𝑏 − 2) 

= (𝑏 − 2) ⋅ 𝑏 + (𝑏 − 2)(−1) + (𝑏 − 2) 

= (𝑏 − 2) ⋅ 𝑏 

< (𝑏 − 2) ⋅ 𝑏 + 2 

= (𝐴𝐵)𝑏. 

So, the problem reduces to finding nonnegative integers 𝑐, 𝑑 and 𝑒, all less than or equal 𝑏 − 2 

such that (𝑐𝑑𝑒)𝑏−1 = (𝐴𝐵)𝑏.  That is, 

 

(𝑐𝑑𝑒)𝑏−1 = 𝑐(𝑏 − 1)
2 + 𝑑(𝑏 − 1) + 𝑒 = (𝐴𝐵)𝑏 = (𝑏 − 2) ⋅ 𝑏 + 2. 

 

Expanding both sides, we have the identity 

 

𝑐𝑏2 + (−2𝑐 + 𝑑)𝑏 + (𝑐 − 𝑑 + 𝑒) = 𝑏2 − 2𝑏 + 2. 

in the variable 𝑏. 

 

Matching coefficients of like powers of 𝑏 on both sides we have 

 

𝑐 = 1, (−2𝑐 + 𝑑) = −2, and (𝑐 − 𝑑 + 𝑒) = 2. 

 

Solving this system we find 

𝒄 = 𝟏 

−2𝑐 + 𝑑 = −2⟹ −2(1) + 𝑑 = −2 ⟹ 𝒅 = 𝟎 

𝑐 − 𝑑 + 𝑒 = 2 ⟹ 1+ 0 + 𝑒 = 1 ⟹ 𝒆 = 𝟏. 

 

This shows 

𝑛 = (𝐴𝐵)𝑏 = (𝑐𝑑𝑒)𝑏−1 = (101)𝑏−1. 

∎ 

 

Example 1.15 
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If (2𝑐 + 7)10 is written 13 in base 𝑏, how would you write (2𝑏 − 7)10 in base 𝑐?  You can 

assume 𝑏 ≥ 4 and 𝑐 ≥ 5 are both integers. 

 

Solution 
(2𝑐 + 7)10 = 13𝑏 = (1𝑏 + 3)10 

2𝑐 + 7 = 𝑏 + 3 

𝑏 = 2𝑐 + 4 

2𝑏 = 4𝑐 + 8 

2𝑏 − 7 = 4𝑐 + 1 = (41)𝑐 

∎ 

 

1.7 Finding the base 𝒃 such that … 
 

In this section we will consider problems where the goal is to solve for the unknown number 

base(s) given information about a conversion problem(s). 

 

Example 1.16 (Source: MSHSML TA092) 

 

In what base 𝑏 does the integer 63𝑏 equal 11710? 

 

Solution 

 

63𝑏 = 6𝑏
1 + 3𝑏0 = 6𝑏 + 3 = 117 ⟹ 6𝑏 = 114 ⟹ 𝑏 = 19. 

∎ 

 
Example 1.17 (Source: Mu Alpha Theta 2011 National Convention, Open Division, Number 

Theory Topic Test, Problem 20) 

 

Find the value of 𝑛 such that 251𝑛 + 121𝑛−1 = 415𝑛. 

 

Solution 

 

(2𝑛2 + 5𝑛1 + 1𝑛0) + (1(𝑛 + 1)2 + 2(𝑛 + 1)1 + 1(𝑛 + 1)0) = 4𝑛2 + 1𝑛1 + 5𝑛0 

 

⟺ 3𝑛2 + 9𝑛 + 5 = 4𝑛2 + 𝑛 + 5 

⟺ 𝑛2 − 8𝑛 = 0 

⟺ 𝑛 = 0 or 𝑛 = 8. 

 

But we do not define a base number 𝑛 = 0 so 𝑛 = 8. 
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∎ 

 
Example 1.18  (Source: MSHSML 1T122) 

 

In some number base 𝑏, the number 121 is equal to the decimal (base-10) number 324. 

Calculate 𝑏. 

 

Solution 

121𝑏 = 1𝑏
2 + 2𝑏1 + 1 = 324 

⟹ (𝑏 + 1)2 = 324 

⟹ 𝑏 + 1 = √324 = 18 

⟹ 𝑏 = 17. 

∎ 

 
Example 1.19 (Source: MSHSML TA013) 

 

A certain integer is represented base 5 by 401425 and base 𝑏 by 1583𝑏.  Find 𝑏.   

 

Solution 

401425 = 4(5
4) + 0(53) + 1(52) + 4(51) + 2(50) = 2547 

1583𝑏 = 1(𝑏
3) + 5(𝑏2) + 8(𝑏1) + 3(𝑏0) 

 

⟹ 𝑏3 + 5𝑏2 + 8𝑏 + 3 = 2547 

⟹ 𝑏3 + 5𝑏2 + 8𝑏 − 2544 = 0 

⟹ 𝑏 must divide 2544 = 24 ⋅ 3 ⋅ 54  (rational root theorem). 

 

Synthetic division shows 𝑏 = 8 is not big enough 

  

8 1 5 8 −2544 

  8 104 896 

 1 13 112 −1648 

 

but that the next largest potential root is 𝑏 = 12 is in fact a root. 

 

12 1 5 8 −2544 

  12 204 2544 

 1 17 112 0 

 

We can also see from this division that 
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𝑏3 + 5𝑏2 + 8𝑏 − 2544 = (𝑏 − 12)(𝑏2 + 17𝑏 + 112) 

 

and because 𝑏2 + 17𝑏 + 112 is an irreducible quadratic (the discriminant is negative) there are 

no other real roots.  So 𝑏 = 12 is the only possible answer. 

∎ 

 

Example 1.20 (MSHSML 1T136) 

 

Let 𝑁 be a number in base 𝑏 such that 𝑁𝑏 = 14𝑏 ⋅ 17𝑏.  What is the greatest base 𝑏 for which 

𝑁𝑏 would be written with “2” as its left-most digit? 

 

Solution 

 

First note that 𝑏 ≥ 8 or 17𝑏 could not be a base 𝑏 number.  Now 

 

𝑁𝑏 = 14𝑏 ⋅ 17𝑏 ⟹𝑁 = (𝑏 + 4)(𝑏 + 7) = 𝑏2 + 11𝑏 + 28. 

 

To get a sense for what is going on think base 10 for a moment.  In this case (𝑏 = 10) we get 

 

𝑏2 + 11𝑏 + 28 = 100 + 110 + 28 = 22810 

 

and we observe the left most digit is a “2” as required.  In particular, it was necessary that 

110 + 28 ≥ 100 so that our hundreds digit could increase from 1 to 2.  In the general case this 

means that we must choose 𝑏 such that 

 

11𝑏 + 28 ≥ 𝑏2. 

 

Solving this inequality, we will find that 𝑏 ≤ 13.  Checking 𝑏 = 13 we see that 

 

𝑁 = 132 + 11(13) + 28 = 340 = 2(132) + 0(131) + 2(130) = 20213. 

 

Therefore 𝑏 = 13. 

∎ 

 

Example 1.21  (Source: MSHSML TT095) 

 

What is the smallest base 𝑏, with 𝑏 > 5, for which 35𝑏 ⋅ 53𝑏 is a 3-digit number in base 𝑏? 

 

Solution 

 

The base 10 expansion of this product becomes 
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35𝑏 ⋅ 53𝑏 = (3𝑏 + 5)(5𝑏 + 3) = 15𝑏
2 + 34𝑏 + 15. 

 

Writing  

15
𝑏
2
   34
𝑏
1
   15
𝑏
0

 

 

in standard base 𝑏 notation will require some “carrying” unless 𝑏 ≥ 35. 

 

For example, if 𝑏 = 22, the 15 in the 𝑏0 column is fine but the 34 in the 𝑏1 column has to be 

split up and the extra must be “carried” into the 𝑏2 column. 

 

In particular, 3422 = 1 ⋅ 22
1 + 12 ⋅ 220, so in standard base 𝑏 = 22 notation we have to 

replace the 34 with 12 and carry the excess 1 group of 221 into the 𝑏2 column. 

 

15
+1

222
   12
221
   15
220

   =  16
222
   12
221
   15
220

  = (  16    12    15  )
22

 

 

This shows that 

( 3   5 )
22
⋅ ( 5   3 )

22
= (  16    12    15  )

22
 

 

is a three-digit number in base 𝑏 = 22. 

 

Now consider the case 𝑏 = 13. In this case, “carrying” is required in all three columns. 

 

15
132
   34
131
   15
130

  =   15
132
  34
131

+1

   2
130

  =   15
+2

132
   9
131
   2
130

  =   1
133
    4
132
   9
131
   2
130

 

 

15 in the 130 column gives us 2 plus a carry of 1 group of 131 into the 131 column. 

34 + 1 in the 131 column gives us 9 plus a carry of 2 groups of 132 into the 132 column. 

15 + 2 in the 132 column gives us 4 plus a carry of 1 group of 133 into the 133 column. 

 

That is, 

( 3   5 )
13
⋅ ( 5   3 )

13
= ( 1    4    9    2  )

13
 

 

which is a four-digit number. 

 

It was this final carry of 1 group of 133 into the 133 column that made this product a four-digit 

number in base 𝑏 = 13. 
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To avoid making the product a four-digit number we need to make 𝑏 large enough to avoid 

carrying anything into the 𝑏3 column. 

 

15
𝑏2
   34
𝑏1
   15
𝑏0

 

𝑏 = 16 15 = 0(161) + 15(160). No carry from the 𝑏0 column into the 𝑏1 

column required. 

34 = 2(161) + 2(160).  Carry of 2 from the 𝑏1 column into the 𝑏2 

column required. 

15 + 2 = 1(161) + 1(160).  Carry of 1 from the 𝑏2 column into the 𝑏3 

column required. 

𝑏 = 17 15 = 0(171) + 15(170).  No carry from the 𝑏0 column into the 𝑏1 

column required. 

34 = 2(171) + 0(170).  Carry of 2 from the 𝑏1 column into the 𝑏2 

column required. 

15 + 2 = 1(171) + 0(170).  Carry of 1 from the 𝑏2 column into the 𝑏3 

column required. 

𝑏 = 18 15 = 0(181) + 15(180).  No carry from the 𝑏0 column into the 𝑏1 

column required. 

34 = 1(181) + 16(180).  Carry of 1 from the 𝑏1 column into the 𝑏2 

column required. 

16 + 1 = 0(181) + 17(180).  No carry from the 𝑏2 column into the 𝑏3 

column required. 

 

So 𝑏 = 18 is the smallest base that will not require any carry from the 𝑏2 column into the 𝑏3 

column.  That is 𝑏 = 18 is the smallest base value where the product will be a three-digit 

number in that base. 

∎ 

 

Example 1.22  (Source: Number Theory, Freud and Gyarmati, Section 1.2, Exercise 18) 

 

A positive integer 𝑛 has four digits when expressed in base 𝑏 but only two digits when 

expressed in base 𝑏 + 1, 𝑏 ≥ 2.  Determine 𝑛 and 𝑏. 

 

Solution 

 

The smallest four digit number in base 𝑏 is 1000𝑏 = 𝑏
3 and the largest four digit number in 

base 𝑏 is  
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((𝑏 − 1)(𝑏 − 1)(𝑏 − 1)(𝑏 − 1))
𝑏
= (𝑏 − 1)𝑏3 + (𝑏 − 1)𝑏2 + (𝑏 − 1)𝑏1 + (𝑏 − 1)𝑏0 

= 𝑏4 − 1. 

 

Therefore, 

𝑏3 ≤ 𝑛 ≤ 𝑏4 − 1. 

 

Similarly, the smallest two digit number in base 𝑏 + 1 is 10𝑏+1 = 𝑏 + 1 and the largest two 

digit number in base 𝑏 + 1 is  

 

(𝑏𝑏)𝑏+1 = 𝑏(𝑏 + 1)
1 + 𝑏(𝑏 + 1)0 = 𝑏2 + 2𝑏. 

 

Therefore, 

𝑏 + 1 ≤ 𝑛 ≤ 𝑏2 + 2𝑏. 

 

Hence, we are looking for integers 𝑛 and 𝑏 such that 

 

max(𝑏3, 𝑏 + 1) ≤ 𝑛 ≤ min(𝑏4 − 1, 𝑏2 + 2𝑏). 

 

However, for all 𝑏 ≥ 2 we can see that 

 

max(𝑏3, 𝑏 + 1) = 𝑏3 

and 

min(𝑏4 − 1, 𝑏2 + 2𝑏) = 𝑏2 + 2𝑏. 

 

So we want to find some positive integer 𝑛 such that 

 

𝑏3 ≤ 𝑛 ≤ 𝑏2 + 2𝑏   for all 𝑏 ≥ 2. 

 

However, 

𝑏3 = 𝑏2 + 2𝑏 = 8   for 𝑏 = 2 

 

and 

𝑏3 > 𝑏2 + 2𝑏   for 𝑏 ≥ 3. 

 

Thus, 𝑏 = 2 and 𝑛 = 8 is the only possible solution. 

∎ 

 

Example 1.23  (Source: School Science and Mathematics, February 1972, Problem 3399, Charles 

Trigg.) 
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The three-digit positive number 𝑎𝑏𝑎 in base 𝑥 equals the three-digit positive number 𝑏𝑎𝑏 in 

base 𝑦, 𝑥 ≠ 𝑦.  If 𝑥 + 𝑦 = 10, find the two numbers and their bases of numeration. 

 

Solution 

 

Without loss of generality, we can assume that 𝑥 < 𝑦.  Also because 𝑎𝑏𝑎 is a three-digit 

number we can assume 𝑎 ≠ 0.  Similarly 𝑏 ≠ 0 because 𝑏𝑎𝑏 is a three-digit number. 

 

𝑎𝑥2 + 𝑏𝑥 + 𝑎 = 𝑏𝑦2 + 𝑎𝑦 + 𝑏 

𝑎(𝑥2 − 𝑦 + 1) = 𝑏(𝑦2 − 𝑥 + 1) 

𝑎(𝑥2 − (10 − 𝑥) + 1) = 𝑏(𝑦2 − (10 − 𝑦) + 1) 

𝑎(𝑥2 + 𝑥 − 9) = 𝑏(𝑦2 + 𝑦 − 9). 

 

Because 𝑥 < 𝑦, we know that 𝑥 ∈ {2,3,4}.  But (𝑥, 𝑦) = (2,8) tells us that 

  

𝑎(22 + 2 − 9) = 𝑏(82 + 8 − 9) 

or 

−𝑎 = 21𝑏. 

 

But this contradicts the assumption that 𝑎 and 𝑏 are both positive.  So 𝑥 ≠ 2. 

 

Suppose 𝑥 = 3.  Then 𝑦 = 7.  𝑎(9 + 3 − 9) = 𝑏(49 + 7 − 9).  3𝑎 = 47𝑏.  But in base 3, 𝑎, 𝑏 ∈

{0,1,2} and for no choice of 𝑎 and 𝑏 will 3𝑎 = 47𝑏.  So 𝑥 ≠ 3. 

 

Suppose 𝑥 = 4.  Then 𝑦 = 6.  𝑎(16 + 4 − 9) = 𝑏(36 + 6 − 9).  11𝑎 = 33𝑏.   𝑎, 𝑏 ∈ {0,1,2,3}.   

In this case the only solution is 𝑎 = 3, 𝑏 = 1. 

 

Therefore, the numbers are 3134 and 1316.  As a check we note that 

 

3134 = 3(4
2) + 1(4) + 3 = 55 

And 

 

1316 = 1(6
2) + 3(6) + 1 = 55. 

∎ 

 

1.8 Disguised polynomial factorization problems 
 

Example 24. 
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The integer 𝑁 = 10100 is expressed using base 𝑏 > 1.  Express 𝑁 as a product of two integers, 

expressed as polynomials in 𝑏, that are both greater than 1.  (Source: 2005-06, Meet 1, Event A) 

 

Solution 

 

10100𝑏 = 1(𝑏
4) + 0(𝑏3) + 1(𝑏2) + 0(𝑏1) + 0(𝑏0) 

= 𝑏4 + 𝑏2 

= 𝑏2(𝑏2 + 1) 

 

Note: 𝑏 > 1 implies 𝑏2 > 1 and 𝑏1 + 1 > 1 as required. 

∎ 

 
Example 25. 

 

Expressed using base 𝑏 > 3, the integer 𝑀 = 231.  Write 𝑀 as a product of two integers, also 

expressed using base 𝑏.  (Note carefully, you are not being asked to express them as 

polynomials in 𝑏, but as integers, just as 𝑀 is expressed.)  (Source: 2005-06, State Tournament, 

Event D) 

 

Solution 

𝑀 = 231𝑏 = 2(𝑏
2) + 3(𝑏1) + 1(𝑏0) 

= 2𝑏2 + 3𝑏 + 1 

= (2𝑏 + 1)(𝑏 + 1) 

= (21𝑏)(11𝑏). 

∎ 

 

1.9 Addition and Subtraction in Base 𝒃 

 
Example 26. 

 

Find  3156 + 1536. 

 

Solution 

 

It can help to write out a base 6 addition table when you first learning to add in a different 

base. 
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Using this table, we can see that 

 
That is, 3156 + 1536 = 5126. 

∎ 

 
Example 27. 

 

Given the following summation in base 6 

 
find the sum of 𝑎 + 𝑏 + 𝑐 in base 6.  (Source: Greater New Haven Mathematics League, 2009) 

 

Solution 

 

Forces that 𝑎 = 1 because we can 

carry at most 1 in adding two 

numbers in the right most column 

of the addition. 
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After substituting for 𝑎 we can see 

that 𝑐 = 3 from the left most 

column of addition. 

 

Now we can see that 𝑏 = 5 from 

the second column from the left 

of addition, noticing that we also 

had to carry 1 from the previous 

column. 

 

 

 

Therefore, 

(𝑎 + 𝑏 + 𝑐)6 = (1 + 5 + 3)6 = 136. 

∎ 

 
Example 28. 

 

Add the following binary numbers and express the sum as a number in base three.  (Source: 

2000-01, Meet 4, Event C)  

 
Solution 

 

 
 

1011101002 = 2
8 + 26 + 25 + 22 = 372 
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But, 

 

 
Therefore, 

 

sum = 1112103. 

∎ 

 

 

Mu Alpha Theta Theta Washington State Convention 2007, Number Theory Test, Problem #8 

What is 13214 + 110010012 expressed as a base 8 number? 

Solution 

5028 

 

00,01,10,11 

14 = 012, 24 = 102, 34 = 112, 14 = 012 

13214 = 01 11 10  012 

11110012 + 110010012 = 1001101102 

   1 1 1 1 0 0 1 

+  1 1 0 0 1 0 0 1 

 1 0 1 0 0 0 0 1 0 

 

0102 = 28 

0002 = 08 

1012 = 58 

5028 

∎ 

 

Example 1.29 

 

Assuming 𝐺𝐴𝐵 and 𝐵𝐴𝐺 represent positive three-digit numbers in base 𝑟, find all possible 

solutions to the cryptarithm 

 𝐺 𝐴 𝐵 

+ 𝐺 𝐴 𝐵 
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 𝐵 𝐴 𝐺 

 

for all possible positive integer bases 𝑟 ≤ 10.  

 

Solution 

 

Because 𝐵𝐴𝐺 and 𝐺𝐴𝐵 are positive, 𝐵𝐴𝐺 > 𝐺𝐴𝐵 and it follows that 𝐵 > 𝐺.  Hence 𝐵 + 𝐵 ≠ 𝐺 

unless there is a carry from the 𝑟0 column into the 𝑟1 column.  That is,  

 

𝐵 + 𝐵 = 𝐺 + 𝑟. 

 

By the same reasoning it follows that 

 

𝐴 + 𝐴 + 1 = 𝐴 + 𝑟 

and 

𝐺 + 𝐺 + 1 = 𝐵. 

 

Solving for 𝐵, 𝐴 and 𝑟 in terms of 𝐺 we have 𝐵 = 2𝐺 + 1,   𝐴 = 3𝐺 + 1,   𝑟 = 3𝐺 + 2. 

 

 
𝐵 = 2𝐺 + 1 
𝐴 = 3𝐺 + 1 
𝑟 = 3𝐺 + 2 

 𝐺 𝐴 𝐵 

+ 𝐺 𝐴 𝐵 

 𝐵 𝐴 𝐺 
 

𝐺 = 0 
𝐵 = 1 
𝐴 = 1 
𝑟 = 2 (base number) 

 0 1 1 

+ 0 1 1 

 1 1 0 
 

𝐺 = 1 
𝐵 = 3 
𝐴 = 4 
𝑟 = 5 (base number) 

 1 4 3 

+ 1 4 3 

 3 4 1 
 

𝐺 = 2 
𝐵 = 5 
𝐴 = 7 
𝑟 = 8 (base number) 

 2 7 5 

+ 2 7 5 

 5 7 2 
 

 

For 𝐺 ≥ 3, we find that 𝑟 > 10 and hence 𝐺 = 0,𝐺 = 1 and 𝐺 = 2 are the only possible cases. 

∎ 
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1.10  Multiplication and Division in Base 𝒃 

 
(1A964) 

Let the distinct digits of the base twelve number system be 0,1,2,3,4,5,6,7,8,9, 𝑡, 𝑒.  Find 

(𝑡𝑒)12 × (𝑒𝑡)12, giving the answer in base twelve notation.  

Solution 

 

 

 
 

 

𝑒12 ⋅ 𝑡12 = (10)10 ⋅ (11)10 = (110)10 = 9(12
1) + 2(120) ⟹ 2 and carry 9 

 

𝑡12 ⋅ 𝑡12 + 912 = (10)10 ⋅ (10)10 + 910 = (109)10 = 9(12
1) + 1(120) = (91)12 

 

 

So, our top row of the multiplication is (912)12. 

 

𝑒12 ⋅ 𝑒12 = (11)10 ⋅ (11)10 = (121)10 = 10(12
1) + 1(120) ⟹ 1 and carry 10 

 

𝑒12 ⋅ 𝑡12 + (10)12 = (10)10 ⋅ (11)10 + (10)10 = (120)10 = 10(12
1) + 0(120) = (𝑡0)12 

 

 

So, our bottom row of the multiplication is (t010)12. 

 

Now we need to add (in base 12)  (912)12 + (t010)12. 

 

 

 
 

    2+0=2  2 with no carry 

    1+1=2  2 with no carry 

    9+0=9  9 with no carry 

    t=t  t 

 

That is, 
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Therefore, (𝑡𝑒)12 × (𝑒𝑡)12 = (𝑡922)12. 

 

 
∎ 

 

(1T962) 

Let the digits of the base sixteen number system (the so-called hexadecimal system) be 

0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f.  Write (ab) × (ba) using base sixteen notation. 

Solution 

 
∎ 

 

(TA964) 
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Let the digits of the base sixteen number system (the so-called hexadecimal system) be 

0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f.  Write (db) × (bd) using base sixteen notation. 

Solution 

 

           ab 

        x  ba  

         ????  

 

b ⋅ a = 11 ⋅ 10 = 110 = 6(16) + 14 ⟹ e and carry 6   (e = 14) 

 

a ⋅ a+ 6 = 10 ⋅ 10 + 6 = 106 = 6(16) + 10 = 6a (a = 10) 

 

So, our top row of the multiplication is 6ae. 

 

b ⋅ b = 11 ⋅ 11 = 121 = 7(16) + 9 ⟹ 9 and carry 7 

 

a ⋅ b = 10 ⋅ 11 + 7 = 117 = 7(16) + 5 ⟹ 75 

 

So, our bottom row of the multiplication is 7590. 

 

Now we need to add (in base 16)  6ae+ 7590. 

 

 

           6ae 

        + 7590 

          ????  

 

 

e+0=e     e with no carry 

a+9=10+9=19=1(16)+3 3 carry 1 

6+5+1=12=c    c with no carry 

0+7=7    7 

 

 

That is, 

  

           6ae 

        + 7590 

          7c3e  

 

Therefore,   (ab)⋅(ba)= 7c3e16 
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∎ 

 

Mathematics Teacher, Calendar Problem 28, November 1991 

 
Solution 

 
∎ 

 

 

 

Five Hundred Mathematical Challenges, Barbeau, Klamkin, Moser, Problem #299 

Let the base two number 𝑎 be  𝑎 = (11⋯1⏟  
𝑘   1′s

)

2

 .  Find the last (𝑘 + 2) digits of 𝑎2 expressed in 

base two notation. 

Solution 

We can get a sense for the problem by grinding out the base two arithmetic in the case 𝑘 = 4. 



mathcloset.com  40 

 
In this case the last 𝑘 + 2 = 4 + 2 = 6 digits are 100001.  A different approach will make it 

easier to sort out the problem for general 𝑘. 

 

(11⋯1)2 = 1 ⋅ 2
𝑘−1 + 1 ⋅ 2𝑘−2 +⋯1 ⋅ 21 + 1 ⋅ 20 

=
2𝑘 − 1

2 − 1
= 2𝑘 − 1. 

Hence  

𝑎2 = (2𝑘 − 1)2 = 22𝑘 − 2𝑘+1 + 1 

= 2𝑘+1(2𝑘−1 − 1) + 1 

= 2𝑘+1(2𝑘−2 + 2𝑘−3 +⋯+ 1) + 1 

= 1 ⋅ 22𝑘−1 + 1 ⋅ 22𝑘−2 +⋯+ 1 ⋅ 2𝑘+1 + 0 ⋅ 2𝑘 +⋯+ 0 ⋅ 21 + 1 ⋅ 20 

= (11⋯1⏟  
(𝑘−1)  1's

 00⋯0⏞    
𝑘   0's

 1)

2

. 

Therefore, the last (𝑘 + 2) digits of 𝑎2 expressed in base two are 100⋯0⏞    
𝑘   0's

 1. 

∎ 

 

 

1.11 Carrying in Base 𝒃 
 

 

 

1.12 Largest and Smallest Numbers in Base 𝒃 
 

(4T165)  Let 𝑏 be a positive integer greater than 1.  Determine all values of 𝑏 such that there 

are exactly 306 two-digit numbers with a base of 𝑏. 

Solution 
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∎ 

 

1.13 Balanced Ternary System 
 

 
∎ 

 

1.14 Recreational Mathematics Involving Alternative Base Number Systems 
 

Nim 

In his 2008 recreational book entitled  Group Theory in the Bedroom, Brian Hayes also 

mentions the design of the ubiquitous "menus" in automated telephone helplines:  Directing a 

phone customer to one of many final destinations is best accomplished by offering successive 

options in groups of 3  (assuming we just want to minimize the total number of choices 

presented to stranded callers). 

http://www.numericana.com/answer/numeration.htm#bestradix 

Third Base. (American Scientist, Vol. 89, No. 6, November–December 2001, pages 488–492. 

Online version.) 

People count by 10s and machines count by 2s—that pretty much sums up the way we do 

arithmetic on this planet. But there are countless other ways to count. Here I want to offer 

three cheers for base 3, the ternary system. The numerals in this sequence—beginning 0, 1, 2, 

10, 11, 12, 20, 21, 22, 100, 101, 102—are not as widely known or widely used as their decimal 

and binary cousins, but they have charms all their own. They are the Goldilocks choice among 

numbering systems: when base 2 is too small and base 10 is too big, base 3 is just right. 

On the Teeth of Wheels. (American Scientist, Vol. 88, No. 4, July–August 2000, pages 296–300. 

Online version.) 

For many years, the basic raw material of the computer industry was not silicon but brass. 

Calculators built before 1700... were all based on the meshing of metal gears. 

 

 

http://www.numericana.com/answer/magic.htm#ternary 

 

 

http://www.solbakkn.com/math/triadic-nums.htm 

http://www.numericana.com/answer/recreational.htm
http://grouptheoryinthebedroom.com/
http://www.americanscientist.org/authors/detail/brian-hayes
http://www.numericana.com/answer/numeration.htm#bestradix
http://www.americanscientist.org/issues/pub/third-base
http://www.americanscientist.org/issues/pub/on-the-teeth-of-wheels
http://www.numericana.com/answer/magic.htm#ternary
http://www.solbakkn.com/math/triadic-nums.htm
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A puzzle solved using a base 3 number system 

I applied the above form of base 3 to a math puzzle discussed by Ken Pledge in the May, 1993 

issue of Dramatic University (what he refers to as a 'reversed notation' on pages 23-25). The 

puzzle gives you a balance scale and some coins, from which you are to distinguish which coin is 

counterfeit and whether it is heavy or light. And you're to use as few weighings with the scale 

as possible. If the scale balances, you know all the coins on the scale are of the proper weight. If 

it does not, then either a coin on the heavy side is too heavy, or a coin on the light side is too 

light. Either could cause the imbalance. As I re-phrased the problem: If you have 13 coins, of 

which no more than one is counterfeit (too heavy or too light), and a 14th coin, known to be 

authentic, how many weighings will it take to determine if a coin is bad, and if so which, and 

whether it is heavy or light. There are 27 possible outcomes (all coins OK, coin one to thirteen 

light, coin one to thirteen heavy). 

Three uses of the scale produce 3*3, or 27, results - making it theoretically possible to solve the 

above problem in three weighings. 

A hint to solving the puzzle: arrange the digits expressing one to thirteen in three columns. Each 

column (9's, 3's, 1's) determines what gets weighed at one time. Each row determines whether 

a given coin will be weighed, and if so, on which side of the scale. 

 

 

Answer to the Coin-Weighing Problem 

 

1 0 0 + 

2 0 + - 

3 0 + 0 

4 0 + + 

5 + - - 

6 + - 0 

7 + - + 

8 + 0 - 

9 + 0 0 

10 + 0 + 

11 + + - 

12 + + 0 

13 + + + 
 

 

 

To the left is a box with each of the numbers one to thirteen (one row 

for each coin) expressed in the zero-centered base three. The columns 

are the nine's, three's, and one's places. Each column determines how 

to position the coins for one of the weighings on the scale-zero for 

coins not being weighed, and + and - indicating on which side of the 

scale to put a coin. The fourteenth coin is used as necessary to equalize 

the number of coins on each side of the scale.  

The trick here is to use one rule for odd-numbered coins and a different 

rule for even-numbered coins. For odd-numbered coins let + indicate 

the right-hand side of the scale and - the left-hand side. Reverse this 

rule for even-numbered coins. For the first weighing, then, coins 5, 7, 9, 

11 and 13 would go on the right side of the scale, and coins 6, 8, 10, 12 

and 14 (so that there are 5 coins on each side) would go on the left. For 

the second weighing, coins 3, 6, 11, 13 and 14 would go on the right, 

and coins 2, 4, 5, 7, and 12 would go on the left.  

To convert the results of the three weighings into an answer to the 

puzzle, one takes the first weighing to have a value of +9 (if the right 

side is heavier) or -9 (if the left side is heavier). The second weighing 

http://www.solbakkn.com/math/index.htm
http://www.solbakkn.com/math/triadic-nums.htm
http://www.solbakkn.com/math/n-grams.htm
http://www.solbakkn.com/math/dimensionalities.htm
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would have a value +3 or -3, and the third weighting a value of +1 or -1. 

Add the results. If zero, no coins are counterfeit. For non-zero results, 

the absolute value of the answer indicates which coin is off. A negative 

result indicates a light odd-numbered coin or a heavy even-numbered 

coin. A positive result indicates the opposite.  

 

 

Problem 1.1  Total Geek Magic 

Write down a polynomial 𝑝(𝑥) with integer coefficients greater than or equal to zero, but don’t 

show it to me.  Do remember that the leading coefficient of a polynomial 𝑝(𝑥) cannot be zero.  

Then pick any integer you like which is strictly greater than each of coefficients of 𝑝(𝑥).  

Suppose you call this number 𝑎.    As an example, you might choose to let 𝑝(𝑥) = 4𝑥4 + 2𝑥 + 5 

and then you might pick 𝑎 = 8 (which is greater than all three coefficients 4, 2 and 5 of 𝑝(𝑥) as 

required). 

 

Now if you tell me just 𝑎 and 𝑝(𝑎) I will reveal your polynomial 𝑝(𝑥) in its entirety.  However, 

please do be kind to me and don’t make the degree of 𝑝(𝑥) too high and don’t pick your 

number 𝑎 to be too large because you will likely get bored waiting for me to figure everything 

out! 

 

Your question is to figure out how I manage to find your polynomial 𝑝(𝑥) from knowing just 

one point. 

 

Solution 

It is best understood by stepping through an example.  Suppose you had picked 𝑝(𝑥) = 4𝑥4 +

2𝑥 + 5 and then chose 𝑎 = 8. 

In this case you will reveal to me that your 𝑎 = 8 and that 𝑝(8) = 16,405.  At this point I know 

a little more than just these two numbers.  I also know that 𝑝(𝑥) is a polynomial with 

nonnegative coefficients and all of these coefficients are strictly less than 8. 

Suppose we let 𝑐0, 𝑐1, 𝑐2, … be the unknown coefficients of your polynomial 𝑝(𝑥).  So 

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 + 𝑐4𝑥
4 + 𝑐5𝑥

5 +⋯ .  

Therefore, I know that 

𝑝(8) = 𝑐0 + 𝑐1 ⋅ 8
1 + 𝑐2 ⋅ 8

2 + 𝑐3 ⋅ 8
3 + 𝑐4 ⋅ 8

4 + 𝑐5 ⋅ 8
5 +⋯ = 16,405 

with each 𝑐𝑗 ≤ 7.   

Do you see now that this is exactly the problem of converting 16405 into its base 8 equivalent! 

There is a standard method for doing this.   

First find the highest power of 8 that is less than or equal to 16,405.  With a calculator I can 

easily find that 84 = 4096 and 85 = 32,768 so I know that 𝑐5, 𝑐6, 𝑐7, … etc. all have to be 0 and 

that 𝑐4 ≥ 1. 

How do I know that 𝑐4 ≠ 0.  Notice that the maximum 𝑐0 + 𝑐1 ⋅ 8
1 + 𝑐2 ⋅ 8

2 + 𝑐3 ⋅ 8
3 can be is 
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7 + 7 ⋅ 81 + 7 ⋅ 82 + 7 ⋅ 83 = 4095 < 16405. 

So, I cannot achieve 16405 if 𝑐4 = 0. 

By the way, is it just a coincident that the value of 7 + 7 ⋅ 81 + 7 ⋅ 82𝑠 + 7 ⋅ 83 = 4095 and 

that 84 − 1 = 4095? 

No.  This comes from the identity 

(𝑏 − 1) + (𝑏 − 1)𝑏1 + (𝑏 − 1)𝑏2 +⋯+ (𝑏 − 1)𝑏𝑘 = 𝑏𝑘+1 − 1. 

Where does this come from?  Write it out the left-hand side in full. 

(𝑏 − 1) + (𝑏2 − 𝑏) + (𝑏3 − 𝑏2) + (𝑏4 − 𝑏3) + ⋯+ (𝑏𝑘 − 𝑏𝑘−1) + (𝑏𝑘+1 − 𝑏𝑘) 

= −1+ (𝑏 − 𝑏) + (𝑏2 − 𝑏2) + (𝑏3 − 𝑏3) +⋯+ (𝑏𝑘 − 𝑏𝑘) + 𝑏𝑘+1 

= 𝑏𝑘+1 − 1. 

Second, find out the largest whole number of times 84 = 4096 goes into 16405.  This will give 

us the value of 𝑐4. 
16405

4096
= 4 +

21

4096
⟹ 𝑐4 = 4. 

Third, go back to step one using the remainder 21 as your new number. 

 81 = 8 ≤ 21 but 82 = 64 > 21.  As a result, 𝑐2 = 𝑐3 = 0. 

How many whole numbers of times does 81 go into 21?  Twice, with a remainder of 5.  So 𝑐1 =

2. 

Now start over with the remainder 5. 

How many whole numbers of times does 80 = 1 go into 5?  Five times.  So 𝑐0 = 5. 

Now I can state that your polynomial must have been 

𝑐4𝑥
4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0 = 4𝑥

4 + 0𝑥3 + 0𝑥2 + 2𝑥 + 5 = 4𝑥4 + 2𝑥 + 5. 

Everyone cheers! 

∎ 

 

 

1.15 Negative Integer Bases 
 

Pg. 32, Ex. 8 

Let 𝑏 be greater than 1.  Show that every integer 𝑎 (positive, negative, or zero) can be 

represented uniquely in base −𝑏, that is, in the form 

𝑎 = 𝑐𝑛(−𝑏)
𝑛 + 𝑐𝑛−1(−𝑏)

𝑛−1 +⋯+ 𝑐1(−𝑏) + 𝑐0 

with 𝑐𝑛 ≠ 0 if 𝑎 ≠ 0 and 0 ≤ 𝑐𝑖 < 𝑏 for 0 ≤ 𝑖 ≤ 𝑛.  If 𝑎 < 0, show that 𝑛 is odd.  If 𝑎 > 0, show 

that 𝑛 is even. 

 

Ex. 9 

Show that the method for changing from base 10 notation to base 𝑏 is also valid for changing 

to base −𝑏.  For example, to write 39210 in base −10, we have that 

392 = (−10)(−39) + 2 

−39 = (−10)(4) + 1 

4 = (−10)(0) + 4 
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So that 39210 = 412−10.  In short form as above, this could have been written  

−10 392 
 

  

−10 −39 
 

= 𝑞1 𝑟1 = 2 

−10 4 
 

= 𝑞2 𝑟2 = 1 

0 = 𝑞3 𝑟3 = 4 

 

Ex. 10 

Write (a) 8210 and (b) −76110 in base −10 notation. 

 

Ex. 12 

Show that, in addition or multiplying numbers in base −10, one must subtract the “carries.”  

For example, 87−10 and 206−10 are added in the following way: 

 -1  

 8 7 

2 0 6 

2 7 3 

 

Write these numbers in base 10 notation and check that the addition is correct. 

∎ 

 

 

1.16 𝒂_𝒃 is the Square of an Integer 
 

AMC 1962 Problem #22 

The number 121𝑏 written in the integral base 𝑏, is the square of an integer for 

(A) 𝑏 = 10, only (B) 𝑏 = 10 and 𝑏 = 5, only (C) 2 ≤ 𝑏 ≤ 10 

(D) 𝑏 > 2 (E) no value of 𝑏  

 

Solution 

 

 

∎ 

AMC 1973 Problem #6 

If 554 is the base 𝑏 representation of the square of the number who’s base 𝑏 representation is 

24, then 𝑏, when written in base 10, equals 

(A) 6 (B) 8 (C) 12 (D) 14 (E) 16 

 

Solution 
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∎ 

 

 

AMC 1982 Problem #26 

If the base 8 representation of a perfect square is 𝑎𝑏3𝑐, where 𝑎 ≠ 0, then 𝑐 is 

(A) 0 (B) 1 (C) 3 (D) 4  

(E)  not uniquely determined 

 

Solution 
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∎ 

 

 

Challenging Problems in Algebra, Posamentier and Salkind 

Chapter 4, Bases: Binary and Beyond 

 

4-4  In what base 𝑏 is 441𝑏 the square of an integer? 
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Challenge 1  If 𝑁 is the base 4 equivalent of 441 written in base 10, find the square root of 𝑁 in 

base 4. 

 
 

 

Challenge 2  Find the smallest base 𝑏 for which 294𝑏 is the square of an integer. 
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National mathematics magazine 

 
National Mathematics Magazine, Vol. 15, No. 3 (Dec., 1940), pp. 145-153 
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Problem Department 

National Mathematics Magazine, Vol. 15, No. 7 (Apr., 1941), pp. 378-383 

National Mathematics Magazine, Vol. 16, No. 2 (Nov., 1941), pp. 102-109 
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1.17 Extra Problems in Base Number Systems 
 

1.  (TT895) 

The numeral (ABC)nine (that is, a numeral represented base nine) represents the same number 

as does (CBA)seven.  What is the base ten representation of this number? 

 

2.  School Science and Mathematics, Problem 1725, December 1941. 

A number of three digits in base 7 when expressed in base 9 has the order of its digits reversed.  

What is the number in base 10? 
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3.  School Science and Mathematics, Problem 3824, Volume 80, Issue 6, October 1980, page 

525.  Proposed by Herta Freitag. 

Let 𝑁 be a two-digit number in some base 𝑏, where 𝑏 is an integer ≥ 2.  Find all bases such that 

reversing the digits of 𝑁 yields twice 𝑁. 

 

4.  Saint Mary’s College Mathematics Contest Problems 

48.  Take any number in base 5.  Rearrange the digits and find the difference between the 

original number and the rearranged number.  What is the largest integer that ALWAYS divides 

the difference? 

 

5.  (1A173)  What is the base 𝑏 for which 68𝑏 is 25% larger than 53𝑏?  (Note that the percent is 

given in base 10.) 

 

6.  (1T163)  Find the smallest integer 𝑥 such that sin(124𝑥) = sin(221𝑥), where both angles 

are measured in degrees in base 𝑥. 

 

7.  (4T165)  Let 𝑏 be a positive integer greater than 1.  Determine all values of 𝑏 such that there 

are exactly 306 two-digit numbers with a base of 𝑏. 

 

8.  (TI1313)  Find the smallest positive integer 𝑛 such that 𝑛2 = (4   7   6   𝑋   𝑌)
𝑏

 for some number 

base 𝑏 and base-𝑏 digits 𝑋 and 𝑌.  (Express your value of 𝑛 in base 10.) 

 

 

 

10.  (5T012)  A popular method for multiplying numbers during the Renaissance was that of 

“geloxia,” or grating.  The grid in Figure 2a illustrates the multiplication of 2375 by 127.  Figure 

out how it works, and then fill in the grid in Figure 2b (an essential part of the problem), 

showing how to multiply the base eight numbers 375 by 25, putting in the margin at the left 

your answer in base eight. [College Math Journal., 2000] 
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11.  (TA991) 

In base 𝑏, 𝑐2 is written 10.  How do you write 𝑏2 in base 𝑐? 

 

12.  (1A974) 

 
 

13.  National Mu Alpha Theta Convention 1991, Number Theory Topic Test, Problem 16 

When the number 𝑛 is written in base 𝑏 its representation is the two-digit number 𝐴𝐵𝑏 where 

𝐴 = 𝑏 − 2 and 𝐵 = 2.  What is the base 𝑏 − 1 representation of 𝑛? 

 

14.  Jim Totten 

 
 

15.  AMC 1965 Problem #15 
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The symbol 25𝑏 represents a two-digit number in the base 𝑏.  If the number 52𝑏 is double the 

number 25𝑏, then 𝑏 is: 

(A) 7 (B) 8 (C) 9  (D) 11 (E) 12 

 

 

16.  AMC 1978 Problem #14 

If an integer 𝑛, greater than 8, is a solution of the equation 𝑥2 − 𝑎𝑥 + 𝑏 = 0 and the 

representation of 𝑎 in the base 𝑛 numeration system is 18, then the base 𝑛 representation of 𝑏 

is 

(A) 18 (B) 28 (C) 80 (D) 81 (E) 280 

 

 

17.  Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 

30 

A number 𝑁 expressed in base (𝐴 + 1) is 𝐴𝐴𝐴𝐴.  If 𝑁 = 𝑄(𝑄 − 2), what is 𝑄 expressed in base 

(𝐴 + 1)? 

 

 

18.  Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 

24 

How many whole numbers are there less than 10,000 which have units and tens digits of 1 

when expressed in bases 4, 5, and 6? 

 

 

19.  Mu Alpha Theta National Convention 2003, Number Theory Test, Alpha Division, Problem 

#23 

How many base 10 counting numbers will have a three-digit representation in bases 4, 5 and 

7 ? 

 

20.  Koshy 
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21.  Problem 9  (AHSME Dropped Problem) 

 

In the small hamlet of Abaze, two base systems are in common use.  Also, everyone speaks the 

truth.  One resident said: “26 people use my base, base 10, and only 22 people speak base 14.”  

Another said, “Of the 25 residents, 13 are bilingual and 1 cannot use either base.”  How many 

residents are there?  (Use base 10 please!). 

 

The following “caution” was not included in the statement of the original problem. 

 

Caution:  The wording in this problem can be misleading.  To get to the root of the confusion let’s 

think through the following imagined scenario. 

 

Suppose the single digit numbers for Resident 1 of the hamlet of Abaze are 

{0,1,2,3,4,5,6,7,8,9} and suppose that Resident 1 has no perception whatsoever of any 

base system other than their own. 

 

Suppose the single digit numbers for Resident 2 of the hamlet of Abaze are 

{0,1,2,3,4,5,6,7} and suppose that Resident 2 has no perception whatsoever of any base 

system other than their own. 

 

Now imagine you asked both Resident 1 and Resident 2 what base they use.  What would 

be their answers? 

 

Assuming Resident 1 answers “base 10”, what has Resident 1 actually told us from their 

own truthful perspective?  They have told us that in their system the next number after 9 
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is 10. 

 

Now assume that Resident 2 thinks in the same way.  Then they would also answer “base 

10” because in their system the next number after 7 is 10. 

 

The confusion in the wording of this problem is that readers are naturally drawn to interpret a 

statement by what that statement means within their own personal system.   

 

A very simple example would be if someone who “speaks in” base 5 tells me (a decimal speaker) 

there are 14 students in their math class.  To correctly understand their statement, I have to 

interpret it from the perspective of their base system and not mine. 

 

 

22.  Problem 2  

When the first Martian to visit Earth attended a high school algebra class, he watched the 

teacher show that the only solution of the equation 5𝑥2 − 50𝑥 + 125 = 0 is 𝑥 = 5. 

“How strange,” thought the Martian.  “On Mars, 𝑥 = 5 is a solution of this equation, but there 

is another solution.” 

If Martians have more fingers than Earthers, how many fingers do Martians have*? 

* Historically, at least part of the reason that we have adopted the base ten for our number 

system is that humans have ten fingers; the implication for this problem then is that the 

number of fingers that Martians have is the base of their number system. 

 

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #16 

 
Solution 

 
∎ 

 

 

AMC 10A 2003 Problem 20 

 

A base-10 three-digit number 𝑛 is selected at random.  What is the probability that the base-9 

representation and the base-11 representation of 𝑛 are both three-digit numbers? 

 

Solution 
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Because the three-digit number 𝑛 was selected at random from all numbers with 3 digits in 

base 10, the required probability equals 

 

𝑁(3 digits in base 9 and base 10 and base 11)

𝑁(3 digits in base 10)
. 

 

The number 𝑛 will have 3 digits in base 9 provided 1009 ≤ 𝑛 ≤ 8889, will have 3 digits in base 

10 provided 100 ≤ 𝑛 ≤ 999 and will have 3 digits in base 11 provided 10011 ≤ 𝑛 ≤ 𝑎𝑎𝑎11.   

 

We note that 

1009 = 1 ⋅ 9
2 + 0 ⋅ 91 + 0 ⋅ 90 = 81 

8889 = 8 ⋅ 9
2 + 8 ⋅ 91 + 8 ⋅ 90 = 728 

10011 = 1 ⋅ 11
2 + 0 ⋅ 111 + 0 ⋅ 110 = 121 

𝑎𝑎𝑎11 = 10 ⋅ 11
2 + 10 ⋅ 111 + 10 ⋅ 110 = 1330. 

Therefore, 

 

 𝑁(3 digits in base 9 and base 10 and base 11) 

  = 𝑁((81 ≤ 𝑛 ≤ 728) and (100 ≤ 𝑛 ≤ 999) and (121 ≤ 𝑛 ≤ 1330)) 

  = 𝑁(max{81,100,121} ≤ 𝑛 ≤ min{728,999,1330}) 

  = 𝑁(121 ≤ 𝑛 ≤ 728) 

  = 728 − 121 + 1 = 608 

and 

 𝑁(3 digits in base 10) 

  = 𝑁(100 ≤ 𝑛 ≤ 999) 

  = 999 − 100 + 1 = 900. 

 

Hence, the required probability equals 

 

𝑁(3 digits in base 9 and base 10 and base 11)

𝑁(3 digits in base 10)
=
608

900
=
152

225
. 

∎ 

 

Example  (Source: 

 

A certain integer is represented base 5 by 401425 and base 𝑏 by 1583𝑏.  Find 𝑏.  (Source: 

2001-02, State Tournament, Event A) 

 

Solution 

401425 = 4(5
4) + 0(53) + 1(52) + 4(51) + 2(50) = 2547 
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1583𝑏 = 1(𝑏
3) + 5(𝑏2) + 8(𝑏1) + 3(𝑏0). 

⟹ 𝑏3 + 5𝑏2 + 8𝑏 + 3 = 2547 

⟹ 𝑏3 + 5𝑏2 + 8𝑏 − 2544 = 0 

⟹ 𝑏 must divide 2544 = 24 ⋅ 3 ⋅ 54  (rational root theorem). 

 

Synthetic division shows 𝑏 = 8 is not big enough 

  

8 1 5 8 −2544 

  8 104 896 

 1 13 112 −1648 

 

but that the next largest potential root is 𝑏 = 12 is in fact a root. 

 

12 1 5 8 −2544 

  12 204 2544 

 1 17 112 0 

 

We can also see from this division that 

 

𝑏3 + 5𝑏2 + 8𝑏 − 2544 = (𝑏 − 12)(𝑏2 + 17𝑏 + 112) 

 

and because 𝑏2 + 17𝑏 + 112 is an irreducible quadratic (the discriminant is negative) there are 

no other real roots.  So 𝑏 = 12 is the only possible answer. 
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Chapter 2. Factoring, Prime Numbers and Prime Factorization 
 

2.1 Factoring 
 

Special Case Factoring Formulas 

 

Difference of two powers 

 
𝑎𝑛 − 𝑏𝑛 = (𝑎 − 𝑏)(𝑎𝑛−1 + 𝑎𝑛−2𝑏 + 𝑎(𝑛−3)𝑏2 

+⋯+ 𝑎𝑏𝑛−2 + 𝑏𝑛−1) 

 

Sum of two odd powers 𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + 𝑎(𝑛−3)𝑏
2
− 

…+ 𝑎2𝑏𝑛−3−𝑎𝑏𝑛−2 + 𝑏𝑛−1) 

 

𝑛 = 3,5,7,9, … 

 

(𝑥 − (𝑐 + 𝑑))(𝑥 − (−𝑐 + 𝑑))(𝑥 − (𝑐 − 𝑑))(𝑥 − (−𝑐 − 𝑑)) 

 = 𝑥4 − 2(𝑐2 + 𝑑2)𝑥2 + (𝑐2 − 𝑑2)2 

 

Exercise 2.1 

Fully factor 𝑥12 − 𝑦12. 

  

Solution 

 

𝑥12 − 𝑦12 

 = (𝑥6)2 − (𝑦6)2 2 is the smallest prime factor of 12 

 = (𝑥6 − 𝑦6)(𝑥6 + 𝑦6) Difference of two squares 

   

𝑥6 − 𝑦6 

 = (𝑥3)2 − (𝑦3)2 2 is the smallest prime factor of 6 

 = (𝑥3 − 𝑦3)(𝑥3 + 𝑦3) Difference of two squares 

   

𝑥6 + 𝑦6 

 = (𝑥2)3 + (𝑦2)3 3 is the smallest odd prime factor of 6 

 = (𝑥2 + 𝑦2)(𝑥4 − 𝑥2𝑦2 + 𝑦2) Sum of two cubes 

   

𝑥3 − 𝑦3 
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 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) Difference of two cubes 

   

𝑥3 + 𝑦3 

 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2) Sum of two cubes 

   

𝑥4 − 𝑥2𝑦2 + 𝑦2  

 = (𝑥4 − 𝑥2𝑦2 + (𝟑𝒙𝟐𝒚𝟐) + 𝑦2) − (𝟑𝒙𝟐𝒚𝟐) Adding and subtracting like factor 

 = (𝑥4 + 2𝑥2𝑦2 + 𝑦2) − 3𝑥2𝑦2  

 = (𝑥2 + 𝑦2)2 − (√3𝑥𝑦)
2
  

 = (𝑥2 + 𝑦2 − √3𝑥𝑦)(𝑥2 + 𝑦2 + √3𝑥𝑦) Difference of two squares 

 

Piecing these results together, we have 

 

𝑥12 − 𝑦12 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)(𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2)(𝑥2 + 𝑦2) 

⋅(𝑥2 + 𝑦2 − √3𝑥𝑦)(𝑥2 + 𝑦2 + √3𝑥𝑦). 

∎ 

 

Sophie Germain Identity  

𝑎4 + 4𝑏4 = (𝑎2 + 2𝑏2 + 2𝑎𝑏)(𝑎2 + 2𝑏2 − 2𝑎𝑏). 

 

Fermat Factorization 

 

Completing the Rectangle (Simon’s Favorite Factoring Trick) 

 

 

2.2 Prime Numbers 
 

Pg. 17, Definition 1.2 (Prime and Composite Numbers) 

If 𝑝 is an integer greater than 1 whose only positive divisors are 1 and 𝑝 itself, then 𝑝 is called a 

prime.  If 𝑝 exceeds 1 and is not a prime, then it is called composite. 

 

Pg. 17, Theorem 1.2 

Every integer 𝑛 ≥ 2 is either a prime or can be represented as a product of primes. 

 

Note:  The positive integer 1 is neither prime nor composite by definition. 
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Lemma 1.5:  Every integer greater than 1 has a prime divisor. 

 

Theorem 1.6:  (Euclid)  There are infinitely many prime numbers. 

 

 

Proposition 1.7:  Let 𝑛 be a composite number.  Then 𝑛 has a prime divisor 𝑝 with 𝑝 ≤ √𝑛. 

 

•  2 is the only even prime number 

 

•  2 and 3 are the only consecutive integers which are both prime 

 

•  twin primes : a pair of prime numbers whose difference equals two   

 

e.g.  3 and 5 are twin primes and 11 and 13 are twin primes because they are all 

prime numbers and  5 − 3 = 2 and 13 − 11 = 2. 

 

 

Properties 

 

 

Every prime number greater than 3 is of the form 6𝑘 + 1 or 6𝑘 + 5, where 𝑘 is some integer. 

 

(Equivalently, of the form 6𝑘 + 1 or 6𝑘 − 1.  In this way it is clear that every prime (greater 

than 3) is an immediate neighbor of 6.) 

 

 

 

𝑝2 − 1 is divisible by 24 for all prime 𝑝 > 3. 

 

 

Pg. 55, Fundamental Theorem of Arithmetic  

Every integer 𝑛 ≥ 2 is either prime or a product of primes and the product is unique apart from 

the order in which the factors appear. 

 

2.3 Prime Factorization 
 

Pg. 55, Definition (Prime Factorization) 
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The Fundamental Theorem of Arithmetic tells us that there is a unique (up to the order in which 

the factors appear) way to express an integer 𝑛 ≥ 2 as a product of primes.  This expression is 

called the prime factorization of that integer.  For example, 

 

2,094,840 = 5 ⋅ 23 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 23 ⋅ 11 ⋅ 3 ⋅ 2. 

 

Of course, we could have represented 2,094,840 in the form 

 

2,094,840 = 23 ⋅ 11 ⋅ 3 ⋅ 2 ⋅ 5 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 23. 

 

The canonical (or standardized) representation is that representation where the primes are 

listed in increasing order and with exponents to account for a prime occurring multiple times. 

That is, in the form 

2,094,840 = 23 ⋅ 32 ⋅ 5 ⋅ 11 ⋅ 232. 

 

In a problem where we are comparing the prime factorization of two integers you will often see 

“place holders primes” included for those primes that are factors of one number but not the 

other. 

 

For example, if we want to compare the integers 462 and 495 it can be visually helpful to 

include the place holder prime factor 50 in 462 and the place holder prime factors 20 and 70 in 

495.  That is, to express 462 and 495 in the forms 

 

462 = 21 ⋅ 31 ⋅ 50 ⋅ 71 ⋅ 111 

495 = 20 ⋅ 32 ⋅ 51 ⋅ 70 ⋅ 111. 

 

Pg. 55, Theorem 2.23 

Let 𝑎 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑟
𝑎𝑟 =∏𝑝𝑖

𝑎𝑖

𝑟

𝑖=1

 with 𝑎𝑖 > 0 for each 𝑖 be the canonical representation for 𝑎 

and let 𝑏 > 0.  Then 𝑏|𝑎 if and only if 𝑏 = 𝑝1
𝑏1𝑝2

𝑏2⋯𝑝𝑟
𝑏𝑟 =∏𝑝𝑖

𝑏𝑖

𝑟

𝑖=1

 with 0 ≤ 𝑏𝑖 ≤ 𝑎𝑖 for each 𝑖. 

 

 

 

2.4 Exercises in Prime Factorization 
 

Calendar Problem 30, Mathematics Teacher, March 1987 
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𝑎, 𝑏, and 𝑐 are three positive integers such that 𝑎2, 2𝑏3, and 3𝑐5 are equal.  Find the smallest 

values for 𝑎, 𝑏, 𝑐. 

 

Solution 

 

Let the prime factorizations of 𝑎, 𝑏 and 𝑐 be given by 

 
𝑎 = 2𝑝1  ⋅  3𝑝2  ⋅  5𝑝3  ⋅  7𝑝4    ⋯

𝑏 = 2𝑞1  ⋅  3𝑞2  ⋅  5𝑞3  ⋅  7𝑞4    ⋯

𝑐 = 2𝑟1  ⋅  3𝑟2  ⋅  5𝑟3  ⋅  7𝑟4    ⋯ .

 

 

Then the prime factorizations of 𝑎2, 2𝑏3 and 3𝑐5 would be 

 

𝑎2 =   22𝑝1  ⋅    32𝑝2  ⋅    52𝑝3    ⋅    72𝑝4      ⋯

2𝑏3 =   23𝑞1+1  ⋅    33𝑞2  ⋅    53𝑞3    ⋅    73𝑞4      ⋯

5𝑐5 =   25𝑟1  ⋅    35𝑟2+1  ⋅    55𝑟3    ⋅    75𝑟4      ⋯ .

 

 

We are given that 𝑎2 = 2𝑏3 = 3𝑐5 and because prime factorizations are unique this requires 

that 
2𝑝1 = 3𝑞1 + 1 = 5𝑟1

2𝑝2 = 3𝑞2 = 5𝑟2 + 1

2𝑝3 = 3𝑞3 = 5𝑟3

2𝑝4 = 3𝑞4 = 5𝑟4.

⋮

 

 

Notice that we can take 𝑝𝑗 = 𝑞𝑗 = 𝑟𝑗 = 0 for all 𝑗 ≥ 3 but this is not the case for 𝑗 = 1 or 2.  

Notice that if 𝑝1 = 0 then 2𝑝1 ≠ 3𝑞1 + 1.  Similarly, if 𝑞1 = 0 then 3𝑞1 + 1 ≠ 2𝑝1 and if 𝑟1 = 0 

then 5𝑟1 ≠ 3𝑞1 + 1. 

 

So 𝑝1 ≥ 1, 𝑞1 ≥ 1 and 𝑟1 ≥ 1. 

 

The same reasoning will also show that 𝑝2 ≥ 1, 𝑞2 ≥ 1 and 𝑟2 ≥ 1. 

 

Because we are looking for the smallest positive 𝑎, 𝑏 and 𝑐 we will take 𝑝𝑗 = 𝑞𝑗 = 𝑟𝑗 = 0 for all 

𝑗 ≥ 3. 

 

So, the entire problem is reduced to finding positive integers 𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, and 𝑟2 such that 
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2𝑝1 = 3𝑞1 + 1 = 5𝑟1

2𝑝2 = 3𝑞2 = 5𝑟2 + 1 .
 

 

We can immediately see that 𝑝1|5 and 𝑟1|2 so the minimum value of 𝑝1 is 5 and the minimum 

value of 𝑟1 is 2.  Furthermore we can see that 𝑞1 = 1 will not work because in this case we 

would need 3(1) + 1 = 5𝑟1 which is impossible.  Similarly, 𝑞1 = 2 will not work because in this 

case 3(2) + 1 = 5𝑟1 which is again impossible.  So, the minimum value of 𝑞1 is 3. 

 

Notice that setting 𝑝1 = 5, 𝑞1 = 3 and 𝑟1 = 2, their respective minimum values, will satisfy that 

the requirement that 2𝑝1 = 3𝑞1 + 1 = 5𝑟1.  Therefore, 𝑝1 = 5, 𝑞1 = 3 and 𝑟1 = 2. 

The same type of reasoning will also show that 𝑝2 = 3, 𝑞2 = 2 and 𝑟2 = 1. 

 

Therefore, 

𝑎 = 2𝑝1  ⋅  3𝑝2   =     2533

𝑏 = 2𝑞1  ⋅  3𝑞2   =     2332

𝑐 = 2𝑟1  ⋅  3𝑟2   =    2231  .

 

∎ 

 

Exercise 

 

Find the prime factorization of 999936. 

 

Solution 

 

The leading four 9’s is a clue to the direction to take!  In particular, consider that 

 

999936 = 100000 − 64 = 106 − 26 

= 26(56 − 1) 

= 26(53 − 1)(53 + 1) 

= 26(5 − 1)(52 + 5(1) + 12)(5 + 1)(52 − 5(1) + 12) 

= 26(4)(31)(6)(21) 

= 29 ⋅ 32 ⋅ 71 ⋅ 31. 

 

∎ 

 

Mathematics Teacher, Calendar Problem 24, April 2004 

 

Positive integers 𝐵 and 𝐶 satisfy 𝐵(𝐵 − 𝐶) = 23.  What is the value of 𝐶 ? 
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Solution 

 

Because 𝐵 is positive and the product 𝐵(𝐵 − 𝐶) is positive, it follows that 𝐵 − 𝐶 is positive.  

Therefore, we can conclude that 𝐵 > 𝐶 > 0.  Because 23 is prime we know that 23 =

𝐵(𝐵 − 𝐶) implies 

𝐵 = 1 and 𝐵 − 𝐶 = 23 

or 

𝐵 = 23 and 𝐵 − 𝐶 = 1. 

 

But the former case makes 𝐶 = −22 which contradicts 𝐶 > 0.  So, it follows from the latter 

case that 𝐶 = 𝐵 − 1 = 23 − 1 = 22.  

∎ 

 

 

National Mu Alpha Theta Convention 1991, Number Theory Topic Test, Problem #21 

The number 222 + 1 has exactly one prime factor greater than 1000.  Find it. 

Solution 

Let 𝑛 be a positive odd integer and define 𝑎 through the relationship 𝑛 + 1 = 2𝑎.  In this case, 

22𝑛 + 1 = (2𝑛 + 1)2 − 2𝑛+1 

= (2𝑛 + 1)2 − (2𝑎)2 

= (2𝑛 + 1 + 2𝑎)(2𝑛 + 1− 2𝑎). 

Applying this factorization in the case 𝑛 = 11, 𝑎 = (𝑛 + 1)/2 = 12/2 = 6, we have 

 

222 + 1 = (211 + 1 + 26)(211 + 1− 26) 

= 2113 ⋅ 1985 

= 2113 ⋅ 397 ⋅ 5. 

This shows that if a prime factor greater than 1000 really does exist it will have to be 2113 

because 2113 is clearly not divisible by 2 and 2113/3 is less than 1000. 

In a test situation you would be “test smart” to just assume that the problem would not be 

worded as it is unless there was actually an answer and put 2113, and move on to the next 

problem. 

 

If you want to verify that 2113 really is a number prime outside a test situation you will have to 

do test divisions of 2113 by all primes less than or equal to √2113 which is time consuming 

and tedious. 

 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 29 

The product of two prime numbers between 60 and 80 is one less than a perfect square.  What 

is the greater of the two primes? 
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Solution 

 
 

 

∎ 

 

 

 
Solution 

 
∎ 

 

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #2 

Find the prime factorization of 12221. 

Solution 

Taking advantage of the symmetry present is a good first step.  We note that 

12221 = 12100+ 121 = 121(100 + 1) = 112 ⋅ 101. 

101 is prime so we have the complete prime factorization. 

∎ 

 

Mu Alpha Theta 2019 National Convention, Number Theory Test, Open Division, Problem #27 

 
Solution 
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∎ 

 

https://artofproblemsolving.com/wiki/index.php/Sophie_Germain_Identity 

 

ARML 2016 Individual #10 

Find the largest prime factor of 134 + 165 − 1722, given that it is the product of three distinct 

primes. 

Solution 

Let 𝑁 = 134 + 165 − 1722.  Notice that 165 = (24)5 = 220 and  

134 − 1722 = 1692 − 1722 

= (169 − 172)(169 + 172) 

= −3 ⋅ 341 = 1 − 210. 

Thus 

𝑁 = 220 − 210 + 1. 

 

Multiply by 1025 = 210 + 1 to obtain 

1025 ⋅ 𝑁 = (220 − 210 + 1)(210 + 1) = 230 + 1 

= 4(27)4 + 1. 

Now recall the Sophie Germain Identity which states that: 

𝑎4 + 4𝑏4 = (𝑎2 + 2𝑏2 + 2𝑎𝑏)(𝑎2 + 2𝑏2 − 2𝑎𝑏). 

From this identity we have 

1025 ⋅ 𝑁 = 4(27)4 + 1 

= (12 + 2(27)2 + 2(1)(27)) (12 + 2(27)2 − 2(1)(27)) 

 

= (1 + 32768+ 256)(1 + 32768 − 256) 

= 33025 ⋅ 32513 

= (25 ⋅ 1321)(41 ⋅ 793) 

 

(25 ⋅ 41) ⋅ 𝑁 = (25 ⋅ 1321)(41 ⋅ 793) 

 

𝑁 = 1321 ⋅ 793 

= 1321 ⋅ 61 ⋅ 13. 

 

https://artofproblemsolving.com/wiki/index.php/Sophie_Germain_Identity
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So 1321 is the largest prime factor of 𝑁 = 134 + 165 − 1722. 

∎ 

 

Mock AIME 5 2005-2006 Problems/Pro 

Find the largest prime divisor of 54 + 4 ⋅ 64. 

Solution 

 

The Sophie Germain Identity states that: 

𝑎4 + 4𝑏4 = (𝑎2 + 2𝑏2 + 2𝑎𝑏)(𝑎2 + 2𝑏2 − 2𝑎𝑏). 

 

Therefore 

54 + 4 ⋅ 64 = (52 + 2 ⋅ 62 + 2 ⋅ 5 ⋅ 6)(52 + 2 ⋅ 62 − 2 ⋅ 5 ⋅ 6) 

= (25 + 72 + 60)(25 + 72 − 60) 

= 157 ⋅ 37. 

 

157 and 37 are both prime numbers.  Hence 157 is the largest prime divisor of 54 + 4 ⋅ 64. 

∎ 

 

Find the smallest prime divisor of 154 + 174. 

Solution 

This is something of a “trick” question but I’ve variations used in many contests.  The “trick” is 

to see if you might overthink this and waste time with a complicated approach. 

154 and 174 are both odd numbers.  Hence there sum is an even number.  Thus 154 + 174 is 

divisible by the smallest prime number 2. 

∎ 

 

 

 

 
Solution 
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∎ 

 

 

Mu Alpha Theta, Number Theory Topic Test, 1991 National Convention, Problem #25 

The number 222 + 1 has exactly one prime factor greater than 1000.  What is it? 

Solution 

222 + 1 = (211 + 1)2 − 212 

= (211 + 1+ 26)(211 + 1 − 6) 

= 2113 ⋅ 1985 

= 2113 ⋅ 5 ⋅ 397. 

 

We could check to see if 2113 is prime (and it will be) but we can work backwards to see that it 

must be based on the wording of the question.  Suppose 2113 isn’t prime.  That is, suppose 

2113 = 𝑎 ⋅ 𝑏 with 𝑎 ≤ 𝑏.  Clearly 𝑎 ≠ 2 because 2113 is odd.  But if 𝑎 > 2, then 𝑏 < 1000 and 

hence 222 + 1 could not have a prime factor greater than 1000.  But this contradicts the 

wording of the problem.  So 2113 must be prime. 

 

∎ 

https://testbook.com/question-answer/if-n-314-313-12-then-what-is-the-larg--

5c1b3b7d99958a038ab4be11 

 

 
Solution 

https://testbook.com/question-answer/if-n-314-313-12-then-what-is-the-larg--5c1b3b7d99958a038ab4be11
https://testbook.com/question-answer/if-n-314-313-12-then-what-is-the-larg--5c1b3b7d99958a038ab4be11
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∎ 
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Chapter 3. Divisibility 
 

3.1 Divisors, Factors and Multiples 
 

Pg. 17, Definition 1.1 (Divides) 

If 𝑎 and 𝑏 are integers with 𝑎 ≠ 0 and there exists an integer 𝑐 such that 𝑏 = 𝑎𝑐, then we say 

that 𝑎 divides 𝑏 and write 𝑎|𝑏. 

We also call 𝑎 a divisor or factor of 𝑏 and 𝑏 a multiple of 𝑎. 

If 𝑎 does not divide 𝑏, we write 𝑎 ∤ 𝑏. 

 

Pg. 17, Definition (Proper Divisor) 

If 1 ≤ 𝑎 < 𝑏 and 𝑎|𝑏, then 𝑎 is called a proper divisor of 𝑏.  For example, 1,2 and 3 are proper 

divisors of 6, but 6 itself is not. 

 

3.2 Divisibility and Primes 
 

Pg. 45, Corollary 2.9  (Euclid) 

If 𝑝 is a prime and 𝑝|𝑏𝑐, then 𝑝|𝑏, or 𝑝|𝑐. 

 

 
 

 
 

 

 

3.3 Divisibility Tests 
 

An integer is divisible by 10 if and only if it ends in 0. 

An integer is divisible by 5 if and only if it ends in 0 or 5. 

An integer is divisible by 2𝑖 if and only if the number formed by the last 𝑖 digits is divisible by 2𝑖. 

An integer is divisible by 3 if and only if the sum of its digits is divisible by 3. 

An integer is divisible by 9 if and only if the sum of its digits is divisible by 9. 

An integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11. 

   e.g. 918,082 is divisible by 11 because 9 − 1 + 8 − 0 + 8 − 2 = 22 and 22 is divisible by 11 
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The integer 𝑎𝑏𝑐𝑎𝑏𝑐 is divisible by 7, 11 and 13. 

Proof 

𝑎𝑏𝑐𝑎𝑏𝑐 = 𝑎𝑏𝑐(1000) + 𝑎𝑏𝑐 = 𝑎𝑏𝑐(1001) = 𝑎𝑏𝑐(7 ⋅ 11 ⋅ 13). 

∎ 

 

 

1A914 

 
 

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #2 

 
Solution 

 
∎ 

 

 

 

3.4 Divisibility Tests in Base 𝒃 
 

 

Even and Odd Numbers in Base 𝒃 

 

We define a base 10 integer 𝑛 as even if 𝑛 = 2𝑚 for some base 10 integer 𝑚.  We say a base 

10 integer 𝑛 is odd if 𝑛 is not even. 

 

It is easy to establish from this definition that a base 10 integer 𝑛 is even if the last digit of 𝑛 

(the units digit) belongs to the set {0,2,4,5,8}. 

 

Why? If we expand 𝑛 as 𝑛 = 𝑎𝑘10
𝑘 + 𝑎𝑘−110

𝑘−1 +⋯+ 𝑎110
1 + 𝑎010

0 we can immediately 

see that (𝑎𝑘10
𝑘 + 𝑎𝑘−110

𝑘−1 +⋯+ 𝑎110
1) is even because 10𝑗 = 2(5 ⋅ 10𝑗−1) for each 𝑗 =
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1,2,… , 𝑘.  So, the parity (evenness or oddness) of 𝑛 all comes down to whether 𝑎0 is even or 

odd. 

 

Evenness or Oddness of an Integer in Base 𝒃 

 

Definition: We define an integer 𝑛 in base 𝑏 to be even if its base 10 equivalent is even.   

 

By this definition, 𝑛 = 135 is even because 135 = 1 ⋅ 5
1 + 3 ⋅ 50 = 5 + 3 = 8 and 8 is even in 

base 10.  But 𝑛 = 235 is odd because 235 = 2 ⋅ 5
1 + 3 ⋅ 50 = 10 + 3 = 13 and 13 is odd in 

base 10. 

 

Thus, the obvious question, is there a “simple” way to tell if 𝑛 base 𝑏 is even or odd as we can 

for base 10 integers?  The following theorem tells us there is. 

 

Theorem 

 

If 𝑏 is even, then  

 𝑛𝑏 is even if the last digit of 𝑛𝑏 is even, and 

 𝑛𝑏 is odd if the last digit of 𝑛𝑏 is odd.  

 

If 𝑏 is odd, then  

 𝑛𝑏 is even if the sum of all the digits in 𝑛𝑏 is even, and 

 𝑛𝑏 is odd if the sum of all the digits in 𝑛𝑏 is odd∗. 

 

An 
∗  equivalently condition is that when 𝑏 is odd, 𝑛𝑏 is odd if and only if the number of odd 

digits in 𝑛𝑏 is odd because a sum is odd if and only if there are an odd number of odd terms in 

that sum. 

 

Also, remember (∗ page 8) that, by definition, the base number 𝑏 is to be understood as a 

base 10 integer in {2,3,4,5… }.  So, in this theorem when we ask “is 𝑏 even” we are asking if 

the base 10 integer 𝑏 is even. 

 

Proof 

 

The case of 𝑏 even is tantamount to the above base 10 proof.  Replacing 10 with the even 

number 𝑏 we see that (𝑎𝑘𝑏
𝑘 + 𝑎𝑘−1𝑏

𝑘−1 +⋯+ 𝑎1𝑏
1) is even because 𝑏𝑗 = 2(

𝑏
2
⋅ 𝑏𝑗−1) for 

each 𝑗 = 1,2, … , 𝑘.  So, as in the base 10 proof, the parity (evenness or oddness) of 𝑛 all comes 

down to whether 𝑎0 is even or odd. 
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The case of 𝑏 odd is also easy to establish.  Clearly, 𝑛 = 𝑎𝑘𝑏
𝑘 + 𝑎𝑘−1𝑏

𝑘−1 +⋯+ 𝑎1𝑏
1 + 𝑎0𝑏

0 

is odd if and only if an odd number of these 𝑘 + 1 terms are odd. 

 

But in the case of 𝑏 odd, 𝑏𝑗  is odd for each 𝑗 = 0,1,2,… , 𝑘.  Thus, the term 
 

𝑎𝑗𝑏
𝑗  is odd if and only if 𝑎𝑗  is odd. 

Hence,  

 

𝑛 = 𝑎𝑘𝑏
𝑘 + 𝑎𝑘−1𝑏

𝑘−1 +⋯+ 𝑎1𝑏
1 + 𝑎0𝑏

0 

 

is odd if and only there are an odd number of odd coefficients 𝑎0, 𝑎1, … , 𝑎𝑘.  And as remarked 

above, there are an odd number of odd coefficients if and only if the sum of these coefficients 

is an odd number. 

∎ 

 

 

Example  (Source: Mu Alpha Theta Log 1 Contest 2006-2007, Alpha Level, Number Theory Test, 

Problem #15) 

 

Express 𝑁 =
(23074356)8

2
 in hexadecimal. 

 

Solution 

 

The first thing to notice is that example involves a division as well as a change of base.  But we 

do not take up the general question of division in a non-base 10 system until Section 1.10. 

 

Furthermore, at this point we don’t know whether 𝑁 is an integer or not.  How would we 

convert a non-integer from base 8 to hexadecimal (base 16)?  We will not take up that general 

question until Section 12.1. 

 

So why are we taking up this example now?  If the problem had been to convert 
(23074356)8

𝟑
 

to hexadecimal we would need to wait until we have covered Section 12.1. 

 

But the problem 
(23074356)8

2
  is a special case situation we can actually solve now with just a 

pointer to a result in Section 1.8 (Even and Odd Numbers in Base 𝒃).  Namely, an integer in an 

even number base (such as base 8 in this example) is divisible by 𝟐 if the last digit of that 

integer is an even number. 
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In this example, this means the integer (23074356)8 is divisible by 2 because the last digit is 6 

which is an even number. 

 

The fastest approach to solving this problem  

 

 
∎ 

 

 

 

 

 

(see file “Divisibility and Bases Lesson”) 

 

 

 
SSM, School Science and Mathematics 

3590     75(1975)477      76(1976)84s, 442a 
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14.  One digit of a number written in base 5 has been erased. The remaining digits are 4 , 2 , 0 , 

1 , 3 , 3 , 2. If we know that the original number is even (divisible by 2), what are the possible 

values for the missing digit? Remember, the number is written in base 5. 

 

http://mathcircle.berkeley.edu/sites/default/files/archivedocs/2011_2012/lectures/1112lectur

espdf/BMC_Beg_Jan10_2012_Alien_Arithmetic.pdf 

 

https://www.johndcook.com/blog/2011/08/17/odd-numbers-in-odd-bases/ 

In an odd base, a number is odd iff it has an odd number of odd digits. 

(In case you haven’t seen “iff” before, it’s an abbreviation for “if and only if.”) 

http://mathcircle.berkeley.edu/sites/default/files/archivedocs/2011_2012/lectures/1112lecturespdf/BMC_Beg_Jan10_2012_Alien_Arithmetic.pdf
http://mathcircle.berkeley.edu/sites/default/files/archivedocs/2011_2012/lectures/1112lecturespdf/BMC_Beg_Jan10_2012_Alien_Arithmetic.pdf
https://www.johndcook.com/blog/2011/08/17/odd-numbers-in-odd-bases/
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So, for example, in base 7, the number 642341 is even because it contains two odd digits. And 

the number 744017 in base 9 is odd because it has three odd digits. 

Why does this rule work? Suppose, for example, you have a 4-digit number number pqrs in base 

b where b is odd. Then pqrs represents 

p b3 + q b2 + r b + s 

All the powers of b are odd, so a number like p times a power of b is odd iff p is odd. So every 

odd digit in the number contributes an odd number to the sum that expands what the number 

means. Even digits contribute even terms. A sum is odd iff it has an odd number of odd terms, so 

a number in an odd base is odd iff it has an odd number of odd digits. 

 

 
Page 169 

 
 

 

 

 
 

 
Page 171 

 
 

 
Page 172 
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Hall and Knight 

 
 

 

https://www.johndcook.com/blog/2011/05/12/casting-out-zs/ 

Casting out 𝑧’s 

casting out (𝑏 − 1)’s in base 𝑏 

https://www.johndcook.com/blog/2011/05/12/casting-out-zs/
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Hall and Knight 
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Note.  For any base 𝑏, these same divisibility rules work for 𝑏 − 1 (if 𝑏 > 2) and 𝑏 + 1. 
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Mu Alpha Theta National Convention 2001, Number Theory Test, Alpha Division, Problem # 

27 

If 𝑛 = 6789𝑏 and if 𝑛 is a multiple of 𝑏 − 1, what are the possible values for 𝑏 less than 20? 

Solution 

6 + 7 + 8 + 9 = 30 = 2 ⋅ 3 ⋅ 5  is divisible by 𝑏 − 1.  Therefore 𝑏 − 1 ∈ {1,2,3,5,6,10,15,30} 

and 𝑏 ∈ {2,4,6,7,11,16,31}.  Because 6789𝑏 exists we know 𝑏 ≥ 10.  And we are given that 

𝑏 < 20.  Therefore, 𝑏 ∈ {11,16}. 

∎ 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 28 

What is the second smallest positive integer that is a multiple of 4 and has no digit greater than 

1 when expressed in base 5? 

Solution 

 
 

 

∎ 
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(1A993) 

Find binary digits 𝑥 and 𝑦, so that the binary number 1𝑥0𝑦10 will be divisible by 3. 

Solution 

1𝑥0𝑦102 = 1 ⋅ 2
5 + 𝑥 ⋅ 24 + 0 ⋅ 23 + 𝑦 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20 

= 32 + 16𝑥 + 8𝑦 + 2 

= 34 + 15𝑥 + 8𝑦 

 
where 𝑥 ∈ {0,1} and 𝑦 ∈ {0,1}.  Consider all four cases. 
 

𝑥 𝑦 34 + 15𝑥 + 8𝑦 Divisible by 3 ? 

0 0 34 No 

0 1 38 No 

1 0 50 No 

1 1 54 Yes 

 
So 𝑥 = 1 and 𝑦 = 1. 

 

 

How to Tell if a Binary Number is divisible by 𝟑 
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https://web.archive.org/web/20171029092543/http://www.answermysearches.com/how-to-

tell-if-a-binary-number-is-divisible-by-three/70/ 

 

https://stackoverflow.com/questions/39385971/how-to-know-if-a-binary-number-divides-by-3 

Count the number of non-zero odd positions bits and non-zero even position bits from the 

right. If their difference is divisible by 3, then the number is divisible by 3. 

For example: 

1510 = 11112 has 2 odd and 2 even non-zero bits. The difference is 0. Thus 15 is divisible by 3. 

18510 = 101110012 which has 2 odd non-zero bits and 3 even non-zero bits. The difference is 

1. Thus 185 is not divisible by 3. 

 

For 1𝑥0𝑦102 the sum of bits in odd positions = 0+ 𝑦 + 𝑥 and the sum of bits in the even 

positions = 1+ 0 + 1 = 2. 

So by the above rule we need 𝑥 + 𝑦 − 2 ∈ {0,3,6, … } for 1𝑥0𝑦102 to be divisible by 3.  

Obviously only 0 is possible and this can only happen if 𝑥 = 𝑦 = 1. 

 

This is the same trick as for testing if a decimal number is divisible by 11. The keyword here is 

the alternating digit sum. If and only if the alternating digit sum in decimal radix is divisible by 

11, so is the original number. It can be used when the number you want to test divisibility for is 

one more than the radix of the number system. TO test for divisibility of numbers one below 

the radix (e.g. 9 for the decimal system) use the ordinary digit sum. So one can also easily test 

divisibility by 17 in hexadecimal 

 

https://math.stackexchange.com/questions/979274/determine-whether-or-not-a-binary-

number-is-divisible-by-3 

https://math.stackexchange.com/questions/2228122/general-rule-to-determine-if-a-binary-

number-is-divisible-by-a-generic-number?rq=1 

 

If the alternating sum of the binary expansion of 𝑛 is divisible by 3 then 𝑛 is. For example, let's 

check 22810 = 111001002. 

 
So 111001002 is divisible by 3. 

 

∎ 

 

 

Mu Alpha Theta National Convention 2007, Alpha Division, Number Theory Test, Problem #23 

https://web.archive.org/web/20171029092543/http:/www.answermysearches.com/how-to-tell-if-a-binary-number-is-divisible-by-three/70/
https://web.archive.org/web/20171029092543/http:/www.answermysearches.com/how-to-tell-if-a-binary-number-is-divisible-by-three/70/
https://stackoverflow.com/questions/39385971/how-to-know-if-a-binary-number-divides-by-3
https://math.stackexchange.com/questions/979274/determine-whether-or-not-a-binary-number-is-divisible-by-3
https://math.stackexchange.com/questions/979274/determine-whether-or-not-a-binary-number-is-divisible-by-3
https://math.stackexchange.com/questions/2228122/general-rule-to-determine-if-a-binary-number-is-divisible-by-a-generic-number?rq=1
https://math.stackexchange.com/questions/2228122/general-rule-to-determine-if-a-binary-number-is-divisible-by-a-generic-number?rq=1
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Solution 

 
∎ 

 

 

 

 

 

 

 

 

 

 

 

3.5 Division Algorithm 
 

Pg. 24, Theorem 1.9 (Division Algorithm) 

For any 𝑏 > 0 and 𝑎, there exist unique integers 𝑞 and 𝑟 with 0 ≤ 𝑟 < 𝑏 such that 𝑎 = 𝑏𝑞 + 𝑟. 

 
 

 

Mathematics Teacher, Calendar Problem 28, January 2004 (originally AMC 1976 Problem #15) 
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If 𝑟 is the remainder when each of 1059, 1417, amd 2312 is divided by 𝑑 (where 𝑑 is greater 

than 1), compute 𝑑 − 𝑟. 

Solution 

The question states that there exists an integer divisor 𝑑 > 1, an integer remainder 𝑟 < 𝑑, and 

integer quotients 𝑞1, 𝑞2 and 𝑞3 such that 

1059 = 𝑑 ⋅ 𝑞1 + 𝑟 

1417 = 𝑑 ⋅ 𝑞2 + 𝑟 

2312 = 𝑑 ⋅ 𝑞3 + 𝑟 

and asks you to find 𝑑 and 𝑟 from this information. 

We know that the difference of any two of these numbers must be divisible by 𝑑.  In particular, 

1417 − 1059 = 358 = (𝑑𝑞2 + 𝑟) − (𝑑𝑞1 + 𝑟) = 𝑑(𝑞2 − 𝑞1) 

is divisible by 𝑑.  But 358 = 2 ⋅ 179 and 179 is prime.  Therefore 𝑑 ∈ {1,2,179,358}.   

We are given that 𝑑 > 1 so we can remove that possibility.  There are two more differences we 

can compute, namely 

2312 − 1059 = 1253 = (𝑑𝑞3 + 𝑟) − (𝑑𝑞1 + 𝑟) = 𝑑(𝑞3 − 𝑞1) 

and 

2312 − 1417 = 895 = (𝑑𝑞3 + 𝑟) − (𝑑𝑞2 + 𝑟) = 𝑑(𝑞3 − 𝑞2). 

 

We know that 𝑑 must divide both of these differences.  We can use this information to rule out 

the candidates 2 and 358 because both are even and the differences 1253 and 895 are both 

odd (and hence not divisible by any even number). 

Therefore, by the process of elimination, 𝑑 = 179.  As a check we note that 

1059 = 179 ⋅ 5 + 164 

1417 = 179 ⋅ 7 + 164 

2312 = 179 ⋅ 12 + 164. 

We can see that the remainder 𝑟 = 164 is common to all three cases as required.  Therefore, 

𝑑 − 𝑟 = 179 − 164 = 15. 

∎ 

 

 

AMC 1967 Problem #22 

For natural numbers, when 𝑃 is divided by 𝐷, the quotient is 𝑄 and the remainder is 𝑅.  When 

𝑄 is divided by 𝐷′, the quotient is 𝑄′ and the remainder is 𝑅′.  Then, when 𝑃 is divided by 𝐷𝐷′, 

the remainder is: 

(A) 𝑅 + 𝑅′𝐷 (B) 𝑅′ + 𝑅𝐷 (C) 𝑅𝑅′  (D) 𝑅 (E) 𝑅′ 

 

Solution 

 

 

∎ 

AMC 
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Solution 

𝑥

𝑦
= 𝑢 +

𝑣

𝑦
 

𝑥 + 2𝑢𝑦

𝑦
= 2𝑢 +

𝑥

𝑦
= 2𝑢 + (𝑢 +

𝑣

𝑦
) = 3𝑢 +

𝑣

𝑦
 

 

Remainder is 𝑣. 

∎ 

 

 

3.6 Reducible Fractions and Reducible Rational Functions 
 

 

Alpha Mu Theta Florida State Convention 2007, Number Theory Test, Problem #25 

 
Solution 

 

 

∎ 

 

 

 

 
Solution 
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∎ 

 

 

Mu Alpha Theta Log1 Contest, 2011-2012, Round 2, Mu Division, Number Theory Test, 

Problem #15 

What is the sum of the integer values of 𝑛 for which 
𝑛2+3𝑛+3

𝑛−1
 is an integer?  

Solution 

First note that 
(𝑛 − 1)(𝑛 + 4) = 𝑛2 + 3𝑛 − 4. 

Therefore, 

𝑛2 + 3𝑛 + 3

𝑛 − 1
=
(𝑛 − 1)(𝑛 + 4) + 7

𝑛 − 1
= (𝑛 + 4) +

7

𝑛 − 1
 

 

which is an integer if and only if (𝑛 − 1)|7.   But (𝑛 − 1)|7 if and only if (𝑛 − 1) ∈ {±1,±7}. 

 
𝑛 − 1 = 1   ⟺ 𝑛 = 2

𝑛 − 1 = −1  ⟺ 𝑛 = 0

𝑛 − 1 = 7   ⟺ 𝑛 = 8

𝑛 − 1 = −7  ⟺ 𝑛 = −6.

 

 

Therefore, the sum of the possible values of 𝑛 will be 2 + 0 + 8 − 6 = 4. 

∎ 

 

 

 
Solution 
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∎ 

 

 

Mu Alpha Theta 2019 National Convention, Number Theory Test, Open Division, Problem #22 

 
Solution 

 
∎ 

 

2014 Lehigh University High School Math Contest, Problem #11 

 

What is the number of integers 𝑛 for which 
7𝑛+15
𝑛−3

 is an integer? 

 

Solution 

 

A key step in problems of this type is to separate out the largest integer “hiding” in the 

expression.  One way to do this is to carry out the polynomial division.  In this problem it is a 

little faster to do a change of variable along with some algebra.  Let 𝑚 = 𝑛 − 3.  Then            

𝑛 = 𝑚 + 3 and on simplification we see that 

 

7𝑛 + 15

𝑛 − 3
=
7(𝑚 + 3) + 15

𝑚
=
7𝑚 + 36

𝑚
= 7+

36

𝑚
= 7 +

36

𝑛 − 3
. 

 

Now we can focus on finding the value of 𝑛 where the simpler fraction 
36
𝑛−3

 is an integer.  This 

reduced fraction will be an integer for all 𝑛 such that (𝑛 − 3)|36. 

 

We know that 36 = 2232 has 9 positive integer divisors and hence 18 integer divisors.  So 

there are 18 distinct values of 𝑛 − 3 such that (𝑛 − 3)|36 and hence there are 𝟏𝟖 distinct 

values of 𝑛 = (𝑛 − 3) + 3 such that (𝑛 − 3)|36. 

∎ 
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AMC 1985 Problem #26 

Find the least positive integer 𝑛 for which    
𝑛−13

5𝑛+6
   is a non-zero reducible fraction. 

 

(A) 45 (B) 68 (C) 155 (D) 226 (E) none of these 

 

Solution 

 

https://math.stackexchange.com/questions/1041864/when-is-fracn-135n6-reducible 

 

∎ 

 

 
 

 

https://www.gauthmath.com/solution/i248147501 

 
 

 

 
Solution 

 
∎ 

https://math.stackexchange.com/questions/1041864/when-is-fracn-135n6-reducible
https://www.gauthmath.com/solution/i248147501
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Solution 

 
∎ 

 

 

 

AMC 1990 Problem #19 

For how many integers 𝑁 between 1 and 1990 is the improper fraction 

𝑁2 + 7

𝑁 + 4
 

not in lowest terms? 

(A) 0 (B) 86 (C) 90 (D) 104 (E) 105 

 

Solution 

 

 

 

∎ 
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Mu Alpha Theta Florida State Convention 2007, Number Theory Test, Problem #25 

 
Solution 

 

 

∎ 

 

 

 

3.7 Divisibility Properties 
 

Pg. 39, Theorem 2.1 (Divisibility Properties) 

 (i) If 𝑎 ≠ 0, then 𝑎|0 and 𝑎|𝑎 

 (ii) 1|𝑏 for any 𝑏 

 (iii) If 𝑎|𝑏, then 𝑎|𝑏𝑐 for any 𝑐 

 (iv) If 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐 

 (v) If 𝑎|𝑏 and 𝑎|𝑐, then 𝑎|(𝑏𝑥 + 𝑐𝑦) for any 𝑥 and 𝑦. 

 

• Let 𝑎, 𝑏 ∈ ℤ.  If 𝑎|𝑏 then 𝑎𝑛|𝑏𝑛 for every positive integer 𝑛.  
 
• Let 𝑛 ∈ ℤ with 𝑛 > 0.  Then 𝑛|((𝑛 + 1)𝑛 − 1) for every positive integer 𝑛.  
 
• Let 𝑎,𝑚 and 𝑛 be positive integers with 𝑎 > 1.  Then,  𝑎𝑚 − 1|𝑎𝑛 − 1 if and only if 𝑚|𝑛.  

 

3.8 List of all Positive Divisors 
 

Theorem 2.23 makes it extremely easy to write down all the positive divisors of a positive 

integer once its canonical representation has been obtained.   

For example, consider 72 = 23 ⋅ 32.  From Theorem 2.23 we know that every positive divisor 𝑏 

of 72 must have a canonical representation of the form 𝑏 = 2𝑏1 ⋅ 3𝑏2 with 0 ≤ 𝑏1 ≤ 3 and  

0 ≤ 𝑏2 ≤ 2.  The list of the twelve positive divisors of 72 follows: 
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20   ⋅  30   =   1          20   ⋅  31   =    3          20   ⋅  32   =    9 

21   ⋅  30   =   2          21   ⋅  31   =    6          21   ⋅  32   =   18 

22   ⋅  30   =   4          22   ⋅  31   =   12          22   ⋅  32   =   36 

23   ⋅  30   =   8          23   ⋅  31   =   24          23   ⋅  32   =   72.

 

 

We could have determined that there would be twelve positive divisors without writing out the 

entire list by noting that for each of the four numbers 20, 21, 22, 23 there will be three numbers 

30, 31, 32 to pair them with.  This produces 4 × 3 = 12 possibilities. 

 

3.9 Number of Positive Divisors 
 

This idea generalizes to yield a convenient formula for the number of positive divisors of an 

integer 𝒂 which we represent by 𝝉(𝒂). 

 

Pg. 57, Theorem 2.24 Part(a) (Number of Positive Divisors of 𝒂) 

If 𝑎 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑟
𝑎𝑟 =∏𝑝𝑖

𝑎𝑖

𝑟

𝑖=1

 with 𝑎𝑖 > 0 for each 𝑖 is the canonical representation of 𝑎, then 

𝜏(𝑎) = (𝑎1 + 1)(𝑎2 + 1)⋯(𝑎𝑟 + 1) =∏(𝑎𝑖 + 1)

𝑟

𝑖=1

. 

 
2016 Lehigh University High School Math Contest, Problem #10 

What is the minimal number of positive divisors of 𝑥 if 𝑥 > 1 and 𝑥, 𝑥5/6, and 𝑥7/8 are all 

integers? 

Solution 

Central to understanding this problem is the result that for integral 𝑛 > 1 and 𝑘 > 1, 𝒏𝟏/𝒌 is 

an integer if and only if 𝒏 = 𝑵𝒌 for some positive integer positive.  (The proof is an 

extension of the proof that √2 is irrational.) 

 

It follows from this result that for integral 𝑥 > 1, 𝑥5/6 and 𝑥7/8 are both integers if and only if 𝑥 

is an integer of the form 𝑁𝑘 for some positive integers 𝑁 and 𝑘 such that both 𝑘(5/6) and 

𝑘(7/8) are integers. 

But this requires that 𝑘 is a multiple of lcm(6,8) = 24. 

That is, 𝑥 = 𝑁24𝑗  for some positive integers 𝑁 and 𝑗.  So the original question has come down 

to finding positive integers 𝑁 and 𝑗 such that 𝑥 = 𝑁24𝑗  has the minimum number of positive 

divisors. 

We know that the number of positive divisors of 𝑥 = 𝑁24𝑗  increases with the number of prime 

divisors of 𝑁.  That is, to minimize the number of positive divisors we must take 𝑁 to be some 

prime number 𝑝 (the number of positive divisors for all prime 𝑝). 
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But 𝑥 = 𝑝24𝑗  has (24𝑗 + 1) positive divisors for any prime 𝑝 which is clearly minimized when 

we take 𝑗 = 1. 

That is, 𝑥 = 𝑝24 for some prime 𝑝 will meet the requirement that 𝑥5/6 and 𝑥7/8 are both 

integers and have the minimum number of positive divisors. 

And in this case 𝑥 will have (24 + 1) = 25 positive divisors. 

∎ 

 
 
Pg. 58, Exercise 9 

Show that the number of positive divisors of a positive integer 𝑎 is odd if and only if 𝑎 is the 
square of an integer (i.e. a perfect square). 
 
Furthermore, 
 
𝜏(𝑎) = 2 if and only if 𝑎 is a prime number 

𝜏(𝑎) = 3 if and only if 𝑎 = 𝑝2 for some prime number 𝑝. 
 
𝜏(𝑎) = 4 if and only if 𝑎 = 𝑝3 for some prime number 𝑝  or 𝑎 = 𝑝𝑖

1 ∙ 𝑝𝑗
1 = 𝑝𝑖 ∙ 𝑝𝑗  for distinct 

(different) primes 𝑝𝑖  and 𝑝𝑗  

 
 
 
(1T881) 

 
Solution 

 
∎ 

 

Mathematics Teacher, Calendar Problems, Number 14, September 1988 

How many positive integers less than 1000 have an odd number of positive integral divisors? 

Solution 

31.  Only the number 1 and all perfect squares have an odd number of factors; 312 is the 

largest perfect square less than 1000. 
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∎ 

 

(1T156)  Let 𝑁 = 𝑝2017 − 4𝑝2016 + 4𝑝2015 , where 𝑁 is a positive number.  If 𝑝 is a prime 

number, determine the least possible number of factors of 𝑁. 

Solution 

 
∎ 

 

 

 
Solution 

 
∎ 

 
 
Mathematics Teacher, Calendar Problems, Number 28, November 1988 

 

For positive integer 𝑘, the number 1984 ⋅ 𝑘 has exactly 21 divisors.  Compute all possible 

values of 𝑘. 

Solution 

21 is an odd number, hence 1984 ⋅ 𝑘 must be a perfect square (perfect squares are the only 

numbers with an odd number of divisors).  The prime factorization of 1984 is 

1984 = 26 ⋅ 31. 

For 1984 ⋅ 𝑘 = 26 ⋅ 31 ⋅ 𝑘 to be a perfect square all primes must occur to an even power.  

Therefore 𝑘 must be divisible by 31 ⋅ 31𝑡  for some even integer 𝑡.   Furthermore all other 

primes in the prime factorization of 𝑘 must occur an even number of times. 

That is, 

𝑘 = 31 ⋅ 22𝑎32𝑏52𝑐⋯ 

for some integers 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 0, … and the number of factors of  

1984 ⋅ 𝑘 = 25 ⋅ 31 ⋅ 31 ⋅ 22𝑎32𝑏52𝑐⋯ = 25 ⋅ 312 ⋅ 22𝑎32𝑏52𝑐⋯ 

equals 

(5 + 1)(2 + 1)(2𝑎 + 1)(2𝑏 + 1)⋯ = 21 ⋅ (2𝑎 + 1)(2𝑏 + 1)(2𝑐 + 1)⋯. 

 

The only way this product equals 21 is for 0 = 𝑎 = 𝑏 = 𝑐 = ⋯ .  That is, 

𝑘 = 31 ⋅ 22(0)32(0)52(0)⋯ = 31. 
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∎ 

 
Mathematics Teacher, Calendar Problem 27, February 2007 

Find the number of odd divisors of 7!. 

Solution 

 
∎ 

 
 

AMC 1993 Problem #15 

For how many values of 𝑛 will an 𝑛-sided regular polygon have interior angles with integral 

degree measures? 

(A) 16 (B) 18 (C) 20 (D) 22 (E) 24 

 

Solution 

 
In a regular 𝑛-sided polygon, 𝛼 = 360°/𝑛.  But we also know that 𝛼 + 2𝛽 = 180° (sum of the 

angles in any triangle equals 180°). Therefore 

2𝛽 = 180° − 𝛼 = 180° (1 −
2

𝑛
) = 180° (

𝑛 − 2

𝑛
). 

But 2𝛽 is also the measure of each interior angle of the 𝑛-sided regular polygon.  That is, each 

interior angle of a regular 𝑛-sided polygon has measure 

180° (
𝑛 − 2

𝑛
). 

The question is to find the values of 𝑛 where  
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180° (
𝑛 − 2

𝑛
) = 180° −

360°

𝑛
 

is an integer.  But this angle measure is an integer if and only if  
360°

𝑛
 

Is an integer.  That is, when 𝑛 divides 360°.  The prime factorization of 360 is 

360 = 23 ⋅ 32 ⋅ 5. 

So 360 has (3 + 1)(2 + 1)(1 + 1) = 24 divisors, including 1 and 2. But the smallest 𝑛 can be is 

3.  (A polygon has a minimum of 3 sides.)  So, there are 24 − 2 = 22 values of 𝑛 such that  

2𝛽 = 180° (
𝑛 − 2

𝑛
) = 180° −

360°

𝑛
 

is an integer. 

∎ 

 

How many positive integral factors does 91091 have? 

Solution 

91091 = 91 ⋅ 1000 + 91 = 91(1001) 

= (7 ⋅ 13) ⋅ (7 ⋅ 11 ⋅ 13) 

= 72 ⋅ 112 ⋅ 132 

Therefore 91091 has 

(2 + 1)(2 + 1)(2 + 1) = 33 = 27 

positive integral factors. 

∎ 

 

 

 

 
 
 

3.10 Greatest number of factors that a positive integer less than 𝒏 can have 
 
 
(1T905) 

 
Solution 



mathcloset.com  97 

 
∎ 

 

What is the least composite number with exactly 8 factors? 
 
Answer 

24 
 
Solution 
 
There are 3 ways for (𝑎 + 1) × (𝑏 + 1) × (𝑐 + 1) × (𝑑 + 1) × (𝑒 + 1) × (𝑓 + 1) × …  to equal 

8 that we need to consider: (2 × 2 × 2  or  𝑎 = 1, 𝑏 = 1, 𝑐 = 1), (4 × 2  or 𝑎 = 3, 𝑏 = 1) and 

(8  or 𝑎 = 7). 

 

(𝑎 = 1, 𝑏 = 1, 𝑐 = 1) yields 21 × 31 × 51 = 30. 

(𝑎 = 3, 𝑏 = 1) yields 23 × 31 = 24. 

(𝑎 = 7) yields 27 = 128. 

 

The numbers 30, 24, and 128 each have 8 factors but the least of these is 24. 

 

Note:  We can construct “lots and lots” of other numbers with 8 factors by considering cases 

such as (𝑎 = 0, 𝑏 = 3, 𝑐 = 1), (𝑎 = 1, 𝑏 = 3), (𝑎 = 0, 𝑏 = 7), etc.  We didn’t even consider 

these because they clearly lead to unnecessarily large numbers.  For example, (𝑎 = 0, 𝑏 =

3, 𝑐 = 1) corresponds to 20 × 33 × 51 and clearly this is bigger than 23 × 31 × 50. 

∎ 
 
 
(see file: “Greatest number of factors that a positive integer less than 100 can have”) 
 
 
 

 
Consequently, when searching for the integer less than 𝑛 with the most factors, we don’t need to 
waste time considering any number whose prime factorization is not of the type 
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2𝑎 × 3𝑏 × 5𝑐 × 7𝑑 × 11𝑒 × 13𝑓 × … 
 
with  𝒂 ≥ 𝒃 ≥ 𝒄 ≥ 𝒅 ≥ 𝒆 ≥ 𝒇 ≥ ⋯  because there will necessarily be a smaller number with the 
same number of factors. 
 

 

Illustrative Exercises: 

 

Find a positive integer less than the given number that has the same number of factors as the 
given number. 
 
(a)  20,244,510 = 21 × 32 × 51 × 70 × 113 × 132. 
 
Answer:  23 × 32 × 52 × 71 × 111 × 130 = 138,600. 

 
Clearly 
 

138,600 < 20,244,510 
 
and they both have  
 

(3 + 1)(2 + 1)(2 + 1)(1 + 1)(1 + 1)(0 + 1) = 144 
 
factors. 

 
 
(b)  1,050 = 21 × 30 × 52 × 71. 
 
Answer:  22 × 31 × 51 × 70 = 60. 

 
Clearly 

60 < 1050 
 
and they both have  
 

(2 + 1)(1 + 1)(1 + 1)(0 + 1) = 12 
 
factors. 

 
 

Define 𝑘 to be that positive integer such that  2𝑘 ≤ 𝑛 < 2𝑘+1.   
 
For example, if 𝑛 = 575, then 𝑘 = 9 because  
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29 = 512 ≤ 575 < 1024 = 210. 
 
 
 
 
Then 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + ⋯ ≤ 𝑘  for the prime factorization 
 

2𝑎 × 3𝑏 × 5𝑐 × 7𝑑 × 11𝑒 × 13𝑓 × … 
 
of every positive integer less than for equal to 𝑛. 
 
 
Illustrative Exercises: 
 
When looking for the greatest number of factors that a positive integer less than 𝑛 can have, 
what is the maximum possible value of 𝑎 + 𝑏 + 𝑐 + 𝑑 +⋯ in a prime factorization 
 

2𝑎 × 3𝑏 × 5𝑐 × 7𝑑 × 11𝑒 × 13𝑓 × …? 
 
you need to consider? 
 
 
(a)  Let 𝑛 = 100. 
 
Answer:  6   because  26 = 64 ≤ 100 < 128 = 27. 
 
(b)  Let 𝑛 = 300. 
 
Answer:  7   because  27 = 128 ≤ 300 < 512 = 28. 
 
(c)  Let 𝑛 = 3322. 
 
Answer:  11   because  211 = 2048 ≤ 3322 < 4096 = 212. 
 
By way of example, suppose that  
 

2 × 3 × 5 × 7 × 11 ≤ 𝑛 < 2 × 3 × 5 × 7 × 11 × 13. 
 
Then when looking for number less than 𝑛 which has the greatest number of factors it is not 
necessary to consider any integer with a prime factor greater than 11. 
 
Illustrative Exercises: 
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When looking for the greatest number of factors that a positive integer less than 𝑛 can have, 
what is the maximum prime factor you need to consider? 
 
(a)  Let 𝑛 = 100. 
 
Answer:  5   because     2 ∙ 3 ∙ 5 = 60 ≤ 100 < 210 = 2 ∙ 3 ∙ 5 ∙ 7. 
 
(b)  Let 𝑛 = 300. 
 
Answer:  7  because   2 ∙ 3 ∙ 5 ∙ 7 = 210 ≤ 300 < 2310 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11. 
 
(c)  Let 𝑛 = 3322. 
 
Answer:  11   because   2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 = 2310 ≤ 3322 < 30030 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 ∙ 13. 
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Now let’s put these ideas to use. 
 
What is the greatest number of factors that a positive integer less than 𝒏 = 𝟏𝟎𝟎 can have? 
 
We are looking for a prime factorization  
 

2𝑎 × 3𝑏 × 5𝑐 × 7𝑑 × 11𝑒 × 13𝑓 × … < 100 
 
where 
 

(𝑎 + 1) × (𝑏 + 1) × (𝑐 + 1) × (𝑑 + 1) × (𝑒 + 1) × (𝑓 + 1) × … 
 
is as large as possible. 
 
 
By #1, we only need to consider the cases where 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 𝑑 ≥ ⋯ 
 
By #2, we only need to consider the cases where 𝑎 + 𝑏 + 𝑐 + 𝑑 + ⋯ ≤ 6  because 
 

26 = 64 ≤ 100 < 128 = 27. 
 
By #3, the largest prime factor we need to include is 5 because 
  

2 ∙ 3 ∙ 5 = 60 ≤ 100 < 210 = 2 ∙ 3 ∙ 5 ∙ 7 
 
 
Putting this all together, we are looking for a prime factorization  
 

2𝑎 × 3𝑏 × 5𝑐 < 100 
 
where 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 0, 𝑎 + 𝑏 + 𝑐 ≤ 6  and  
 

(𝑎 + 1) × (𝑏 + 1) × (𝑐 + 1) 
 
is as large as possible. 
 
Candidates: 
 

(𝒂, 𝒃, 𝒄) 𝟐𝒂 × 𝟑𝒃 × 𝟓𝒄 Number of Factors 

(6,0,0) 26 × 30 × 50 = 64 < 100 (6 + 1)(0 + 1)(0 + 1) = 7 

(5,1,0) 25 × 31 × 50 = 96 < 100 (5 + 1)(1 + 1)(0 + 1) = 12 

(4,1,1) 24 × 31 × 51 = 240 > 100  
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(4,2,0) 24 × 32 × 50 = 144 > 100  

(3,2,0) 23 × 32 × 50 = 72 < 100 (3 + 1)(2 + 1)(0 + 1) = 12 

(3,1,1) 23 × 31 × 51 = 120 > 100  

(2,1,1) 22 × 31 × 51 = 60 < 100 (2 + 1)(1 + 1)(1 + 1) = 12 

 
 
I don’t see any way around this “organized brute force” approach. 
 
 
 
 
Highly Composite Numbers  (sometimes called antiprimes) 
https://mathworld.wolfram.com/HighlyCompositeNumber.html 
 

 
 
 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Alpha Division, Problem # 4 

What is the smallest counting number with exactly 32 positive integer factors? 

Solution 

 
∎ 

https://mathworld.wolfram.com/HighlyCompositeNumber.html
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3.11 Sum of the Positive Divisors 
 

Pg. 57, Sum of the Positive Divisors of 𝒂 

Sometimes you are asked to find the sum of all positive divisors of a number 𝑎.  Consider again 

the example of 𝑎 = 72.  In this case we would want to calculate: 

(2030 + 2031 + 2032) + (2130 + 2131 + 2132) + (2230 + 2231 + 2232)

+ (2330 + 2331 + 2332). 

Fortunately, we can factor this expression to simplify the calculation. 

(2030 + 2031 + 2032) + (2130 + 2131 + 2132) + (2230 + 2231 + 2232) 

+(2330 + 2331 + 2332) 

 
= 20(30 + 31 + 32) + 21(30 + 31 + 32) + 22(30 + 31 + 32) + 23(30 + 31 + 32) 

= (20 + 21 + 22 + 23)(30 + 31 + 32). 

 

This idea generalizes to yield a convenient formula for the sum of all of positive divisors of an 

integer 𝒂 which we represent by 𝝈(𝒂). 

 

Pg. 57, Theorem 2.24 Part(b) (Sum of the Positive Divisors of 𝒂) 

If 𝑎 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑟
𝑎𝑟 =∏𝑝𝑖

𝑎𝑖

𝑟

𝑖=1

 with 𝑎𝑖 > 0 for each 𝑖 is the canonical representation of 𝑎, then 

𝜎(𝑎) = (𝑝1
0 + 𝑝1

1 +⋯+ 𝑝1
𝑎1)⋯(𝑝𝑟

0 + 𝑝𝑟
1 +⋯+ 𝑝𝑟

𝑎𝑟) =∏(𝑝𝑖
0 + 𝑝𝑖

1 +⋯+ 𝑝𝑖
𝑎𝑖)

𝑟

𝑖=1

. 

 

Flashback 
 
Geometric Series 
 
We can simplify the formula for 𝜎(𝑎) another step by remembering the following summation 
rule for geometric series. 

𝑏0 + 𝑏1 +⋯+ 𝑏𝑘 =
𝑏𝑘+1 − 1

𝑏 − 1
. 

 

 

So, it follows from the above formula for a geometric series that 

𝜎(𝑎) = (
𝑝1
𝑎1+1 − 1

𝑝1 − 1
)⋯(

𝑝𝑟
𝑎𝑟+1 − 1

𝑝𝑟 − 1
) =∏

𝑝𝑖
𝑎𝑖+1 − 1

𝑝𝑖 − 1

𝑟

𝑖=1

. 
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Example 

Make a list of all of the divisors of 4459 and then find 𝜏(4459), the number of positive divisors 

of 4459 and 𝜎(4459), the sum of the positive divisors of 4459, given that it’s canonical 

representation is 4459 = 73 ⋅ 13. 

Solution 

70   ⋅  130   =    1          70   ⋅  131   =    13 

71   ⋅  130   =    7          71   ⋅  131   =    91 

72   ⋅  130   =    49          72   ⋅  131   =    637 

73   ⋅  130   =   343          73   ⋅  131   =   4459.

 

 

𝜏(4459) = 𝜏(73 ⋅ 131) = (3 + 1)(1 + 1) = 4 ⋅ 2 = 8 

and 

𝜎(4459) = 𝜎(73 ⋅ 131) = (
73+1 − 1

7 − 1
)(
131+1 − 1

13 − 1
) = 400 ⋅ 14 = 5600. 

 

Just as a check we can sum the positive divisors “by hand” to verify that 

𝜎(4459) = 1 + 13 + 7 + 91 + 49 + 637 + 343 + 4459 = 5600. 

 

You might also note that the real bottleneck in making a list or counting or summing up all 

positive divisors a number the size of 4459 would have been determining the prime 

factorization of 4459 had that not been given. 

∎ 

 

 

Mu Alpha Theta National Convention, 1991, Number Theory Test, Alpha Division, Problem # 

18 

Find the sum of the positive divisors (including 1 and 360) of 360.  

Solution 

The prime factorization of 360 is 360 = 233251.  Therefore 

𝜎(360) =∏
𝑝𝑖
𝑎𝑖+1 − 1

𝑝𝑖 − 1

𝑟

𝑖=1

= (
23+1 − 1

2 − 1
)(
32+1 − 1

3 − 1
)(
51+1 − 1

5 − 1
) 

= (
15

1
)(
26

2
)(
24

4
) = 15 ⋅ 13 ⋅ 6 

= 1170. 

∎ 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Alpha Division, Problem # 2 
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Find the sum of the positive proper integral factors of 512. 

Solution 

Be careful to not overlook the term “proper” as used in the problem statement.  By definition, 

512 is not considered to be a proper factor of 512. 

The easiest way to deal with this is to first find the sum of all positive integral factors and then 

just subtract out the extra 512 at the end. 

We know 512 = 29.  Therefore, the sum of all factors (including the improper 512) equals 

𝜎(512) =∏
𝑝𝑖
𝑎𝑖+1 − 1

𝑝𝑖 − 1

𝑟

𝑖=1

=
210 − 1

2 − 1
=
1024 − 1

1
= 1023. 

 
Now we need to subtract out the extra 512 from this sum. 
 

1023 − 512 = 511. 
 

∎ 
 

3.12 Sum of the Reciprocals of the Positive Divisors 
 

(see file: “Sum of reciprocals of divisors given the sum of divisors”) 

 

 

Saint Mary’s College Mathematics Contest Problems 

397.  If the sum of the divisors of a number 𝑁 including the number itself is 3 times the 

number, what is the sum of the reciprocals of the divisors? 

Solution 

 

 

∎ 

 

 

 

3.13 Product of the Positive Divisors 
 

Problem 4. 
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Find the formula 𝜋(𝑛) for the product of the divisors of the positive integer 𝑛. 
 
Answer: 
 

𝜋(𝑛) = 𝑛𝜏(𝑛) 2⁄  
 
 
 
 

If 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑘
𝑎𝑘  is the unique factorization of 𝑛 into a product of distinct primes, then  

 
We see that 30 = 21 ∙ 31 ∙ 51 = 2 ∙ 3 ∙ 5 and hence  
 
Factors of 𝑛 = 30,  
 

1 = 203050 
2 = 213050 
3 = 203150 
5 = 203051 
6 = 213150 
10 = 213051 
15 = 203151 
30 = 213151 

 
 
𝜋(𝑛), the product of the factors, is 
 

𝜋(30) =  243454. 
 
 
More generally, let’s consider how many times the prime 𝑝1 shows up in this product. 
 
 
 

(𝑝1
0)
𝜏(𝑛)
𝑎1+1  ∙  (𝑝1

1)
𝜏(𝑛)
𝑎1+1  ∙  (𝑝1

2)
𝜏(𝑛)
𝑎1+1   ⋯   ∙  (𝑝1

𝑎1)
𝜏(𝑛)
𝑎1+1 

 
 

= (𝑝1)
(
𝜏(𝑛)
𝑎1+1

)(0+1+2+⋯+𝑎1) 
 
 

= (𝑝1)
(
𝜏(𝑛)
𝑎1+1

)(
(𝑎1)(𝑎1+1)

2 )
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= (𝑝1)
(
𝜏(𝑛)
2 )(𝑎1) 

 
 

= (𝑝1
𝑎1)

(
𝜏(𝑛)
2 )

 

 
 
 

Repeating this for each prime can see that the product of all the factors of  𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑘
𝑎𝑘   

equals 
 
 

𝜋(𝑛) = (𝑝1
𝑎1)

(
𝜏(𝑛)
2 )

∙ (𝑝2
𝑎2)

(
𝜏(𝑛)
2 )
⋯(𝑝𝑘

𝑎𝑘)
(
𝜏(𝑛)
2 )

 

 
 
 

= (𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑘
𝑎𝑘)

(
𝜏(𝑛)
2 )

 

 
 

= (𝑛)
(
𝜏(𝑛)
2 )

 
 
 
Another example, 𝑛 = 4.  The factors are {1,2,4} and the product of the factors equals 8.  For 
𝑛 = 4, 𝜏(4) = 3 and 
 

𝜋(4) =  4(𝜏(4) 2⁄ ) = 43 2⁄ = 23 = 8. 
 
 
 

 

3.14 Expressing 𝒏 as the Product of Two Integers 
 

Consider the very simple example of expressing 𝑛 = 6 as the product of two integers.  To get 

the “correct” count for the number of ways this can be done you need to look carefully at the 

wording of the problem. 

 Issue 1. Should 2 × 3 = 6 be counted as distinct from 3 × 2 = 6? 

 Issue 2.  Should (−2) × (−3) = 6 be counted?  

You may have to consider the wording of the problem carefully to sort out these two issues. 
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Consider the case where we do not want to treat 𝑎 × 𝑏 = 𝑛 and 𝑏 × 𝑎 = 𝑛 as different 

products and where 𝑎 and 𝑏 must be positive integers 

 

In this case let 𝒍(𝒏) equal the number of ways to express the positive integer 𝑛 as the product 
of two positive integers (including 𝑛 × 1). 
 
Then there are two cases to consider in finding a formula for 𝑙(𝑛), the number of ways to 
express 𝑛 as the product of two distinct positive integers. 
 
Theorem 

 
Formula for 𝒍(𝒏). 
 
Case 1.  𝑛 is a perfect square (equivalently, if 𝜏(𝑛) is odd).  In this case, 
 

𝑙(𝑛) =
𝜏(𝑛) + 1

2
. 

 
 
Case 2.  𝑛 is not a perfect square.  In this case, 
 

𝑙(𝑛) =
𝜏(𝑛)

2
. 

 
In both cases we use 𝜏(𝑛) to represent the number of positive divisors of 𝑛. 

∎ 

 
 
The next two examples will help to clarify where this formula for 𝑙(𝑛) comes from. 
 
 
Example 
 
How many ways are there to write 10800 as the product of two distinct positive integers 
(including 10800 × 1)?  Assume we do not want to treat 𝑎 × 𝑏 = 10800 and 𝑏 × 𝑎 = 10800 as 
different products. 
 
Solution 

The prime factorization of 10800 is 10800 = 24 ⋅ 33 ⋅ 52.  Therefore 𝜏(10800), the number of 
divisors (factors) of 10800 equals (4 + 1)(3 + 1)(2 + 1) = 60. 
 
The set 𝒟 of all 60 divisors would look something like this: 
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𝒟 = {1,2,3,4,5,6, … ,2700,3600,5400,10800}. 
 
Clearly if 𝑎 and 𝑏 are positive integers such that  𝑎 × 𝑏 = 10800 then 𝑎 and 𝑏 are both 
elements of 𝒟. 
 
Furthermore, each divisor in this list of 60 numbers can be paired with a different divisor in this 
list to form a product of two positive integers equaling 10800. 
 
For example, the divisor 12 can be paired with the divisor 10800/12 = 900.  This gives us 
𝜏(10600) = 60 pairs of divisors whose product equals 10600. 
 
But this double counts each possible pair!  That is, this method would count both 12 × 900 as 
well as 900 × 12 – which we do not want to do. 
 
So, there are only 𝜏(10600)/2 = 60/2 = 30 ways to write 10800 as the product of two 
positive integers. 

∎ 

 
Example 
 
How many ways are there to write 36 as the product of two positive integers (including 
36 × 1)?  Assume we do not want to treat 𝑎 × 𝑏 = 10800 and 𝑏 × 𝑎 = 10800 as different 
products. 
 
Solution 

 
The prime factorization of 36 is 36 = 22 ⋅ 32.  Therefore 𝜏(36), the number of divisors (factors) 
of 36 equals (2 + 1)(2 + 1) = 9. 
 
The complete set 𝒟 of all 9 divisors would be: 
 

𝒟 = {1,2,3,4,6,9,12,18,36}. 
 
Looking back at the first example of this section, we saw that each divisor in the list of 60 could 
be paired with a different divisor to form a product of 10800 to form 60/2 = 30 distinct pairs. 
 
Is that true in this example?  No.  We can (1,36), (2,18), (3,12), (4,9) but that leaves us trying 
to pair 6 with itself – which we don’t want to do.   
 
So, in this example where are (𝜏(36) − 1)/2 = (9 − 1)/2 = 4 ways to express 36 as the 
product of two distinct positive integers. 

∎ 
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What was the critical difference between the previous two examples?   
 
Whenever 𝜏(𝑛) is even, such as the case 𝜏(10600) = 60, then every number in the list of 
divisors can be paired with a distinct divisor from that list to form a product equaling 𝑛. 
 
But when 𝜏(𝑛) is odd, such as the case 𝜏(36) = 9, then the median number in the list of 
divisors cannot be paired with a distinct divisor from that list to form a product equaling 𝑛. 
  
So, the critical point in finding a formula for 𝑙(𝑛), the number of ways to express 𝑛 as the 
product of two distinct positive integers, was whether 𝜏(𝑛) is even or odd.  But we know that 
𝜏(𝑛) is odd if and only if 𝑛 is a perfect square. 
 

Example 
 
How many ways can 𝑛 = 30 be written as a product of two positive integers, including 30 and 
1?   
 
Solution 

 
We see that 30 = 21 ∙ 31 ∙ 51 = 2 ∙ 3 ∙ 5 and hence  
 

𝜏(30) = (1 + 1)(1 + 1)(1 + 1) = 8. 
 
Furthermore, 30 is not a perfect square, so 
 

𝑙(30) =
𝜏(30)

2
=
8

2
= 4. 

 
 
So there are exactly 4 ways to write 30 as the product of two positive integers.  They are 
 

30 = 1 × 30,   30 = 2 × 15,   30 = 3 × 10,  and  30 = 5 × 6. 
∎ 

 
 
 

AMC 2019 10B Problem #19 

Let 𝑆 be the set of all positive integer divisors of 100,000.  How many numbers are the product 

of two distinct elements of 𝑆 ? 

(A) 98 (B) 100 (C) 117 (D) 119 (E) 121 

 

Solution 
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∎ 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Alpha Division, Problem # 1 

For how many ordered pairs of integers (𝑚, 𝑛) does 𝑚 multiplied by 𝑛 equal 120? 

Solution 

Ordered pairs translates to counting (𝑎, 𝑏) as distinct from (𝑏, 𝑎) whenever 𝑎 ≠ 𝑏.  Also notice 

that the problem does not specify that 𝑎 and 𝑏 must be positive.  In mathematics, the custom is 

to assume the most general case unless it has been specifically ruled out. 

By this custom, we should count (𝑎, 𝑏) as well as (−𝑎, −𝑏). 

Because 120 is not a perfect square, the count for unordered pairs with positive factors is 

𝑙(𝑛) =
𝜏(𝑛)

2
. 

To allow for ordered pairs we need to double this number.  To allow for both positive and 

negative factors we need to double this number a second time. 

 

So, the correct count becomes  

(
𝜏(120)

2
) ⋅ 2 ⋅ 2 = 2 ⋅ 𝜏(23 ⋅ 3 ⋅ 5) = 2(3 + 1)(1 + 1)(1 + 1) = 32. 

∎ 

 

3.15 The Sum of the Squares of the Positive Divisors 
 
Pg. 58, Exercise 7 

If 𝑎 =∏𝑝𝑖
𝑎𝑖

𝑟

𝑖=1

with 𝑎𝑖 > 0 for each 𝑖 is the canonical representation of 𝑎, deduce a formula    

for the sum of the squares of the positive divisors of 𝑎. 
 
 
Pg. 58, Exercise 8 

Let 𝑎 =∏𝑝𝑖
𝑎𝑖

𝑟

𝑖=1

with 𝑎𝑖 > 0 for each 𝑖 be the canonical representation of 𝑎.  Prove that 𝑎 

is the square of an integer if and only if 𝑎𝑖  is even for each 𝑖. 

 
 

3.16 Extra Divisibility Problems 
  

Math Wrangle Problems, American Mathematics Competitions, December 3, 2020, Problem 

#1 
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Find the sum of all positive two-digit integers that are divisible by each of their digits. 

Solution 

Let 𝑎𝑏 = 10𝑎 + 𝑏 with 𝑎 ∈ {1,2,… ,9} and 𝑏 ∈ {0,1,2,… ,9}.  We are given the information that 

𝑎|(10𝑎 + 𝑏) and 𝑏|(10𝑎 + 𝑏). 

This tells us that 𝑎|𝑏 and 𝑏|10𝑎. 

But 𝑎|𝑏 ⟺ 𝑏 = 𝑎𝑘 for some positive integer 𝑘.  By substitution, this means 𝑎𝑘|10𝑎. 

But for general 𝑐 ≠ 0, 𝑎|𝑏 ⟺ 𝑎𝑐|𝑏𝑐.  Therefore, 𝑎𝑘|10𝑎 ⟺ 𝑘|10 ⟺ 𝑘 = 1,2 or 5. 

Now enumerate all possible cases. 

𝑘 = 1, 𝑎 = 𝑏 ⟺ 𝑎𝑏 ∈ {11,22,… ,99} 

𝑘 = 2, 2𝑎 = 𝑏 ⟺ 𝑎𝑏 ∈ {12, 24,36,48} 

𝑘 = 5, 5𝑎 = 𝑏 ⟺ 𝑎𝑏 ∈ {15}. 

Hence the sum is 

11(1 + 2 + ⋯+ 9) + 12(1 + 2 + 3 + 4) + 15 = 630. 

∎ 

 

Find all integers 𝑛 such that (𝑛 − 3)│(𝑛3 − 3). 

Solution 

Let 𝑘 = 𝑛 − 3 and note that the set of all integers 𝑛 such that (𝑛 − 3)│(𝑛3 − 3) is the same as 

the set of all 𝑘 + 3 such that 𝑘│((𝑘 + 3)3 − 3).  We see that 

𝑘│((𝑘 + 3)3 − 3) ⟺ 𝑘│(𝑘3 + 9𝑘2 + 27𝑘 + 24) ⟺ 𝑘│24 

so 

𝑘│((𝑘 + 3)3 − 3) ⟺ 𝑘 ∈ {±1,±2, ±3,±4,±6, ±8,±12,±24} 

⟺ 𝑛 = 𝑘 + 3 ∈ {3 ± 1,3 ± 2,3 ± 3,3 ± 4,3 ± 6,3 ± 8,3 ± 12,3 ± 24} 

⟺ 𝑛 ∈ {−21,−9,−3,−5,−3, −1,0,1,2,4,5,6,7,9,11,15,27}. 

∎ 

 

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #3 

Determine the value of 𝑎 for any nonnegative integer 𝑛 such that (10𝑛) ≡ 𝑎mod(9). 

Solution 

(999⋯999
𝑛 9′s

)mod(9) = 0 for all nonnegative integer 𝑛.  Therefore, 

(10𝑛)mod(9) = (999⋯999
𝑛 9′s

+ 1)mod(9) 

= (999⋯999
𝑛 9′s

)mod(9) + (1)mod(9) 

= 0 + 1 = 1 
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for all nonnegative integer 𝑛.  

∎ 

 

Mu Alpha Theta 1995 National Convention, Number Theory Topic Test, Problem #5 

 

What is the sum of all the odd three-digit numbers that are divisible by 5? 

Solution 

The problem is asking for the sum 

𝑠 = 105 + 115 + 125 + ⋯+ 985 + 995. 

 

We recognize that 105,115, 125,… ,985,995 is an arithmetic sequence with common 

difference 𝑑 = 10.   

Recall that the sum of the arithmetic sequence 𝑎1, 𝑎2, … , 𝑎𝑛 equals 

∑𝑎𝑖

𝑛

𝑖=1

=
𝑛(𝑎1 + 𝑎𝑛)

2
 

where 𝑛, the number of terms in the sequence, equals 

𝑛 =
Last term− First term

𝑑
+ 1. 

Applied to this problem 

𝑠 =
𝑛(105 + 995)

2
 

with 

𝑛 =
995 − 105

10
+ 1 = 90. 

Thus, 

𝑠 =
90(105+ 995)

2
= 45(1100) = 49500. 

∎ 
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Chapter 4. GCD’s and LCM’s 
 

4.1 Common Divisor 
 

Pg. 41, Definition (Common Divisor) 

If 𝑑|𝑎 and 𝑑|𝑏, then 𝑑 is said to be a common divisor of 𝑎 and 𝑏. 

 

Pg. 41, Definition 2.1 (Greatest Common Divisor) 

If 𝑑 is the largest common divisor of 𝑎 and 𝑏, it is called the greatest common divisor of 𝑎 and 𝑏 

and is denoted by (𝑎, 𝑏). 

Note: (𝑎, 𝑏) is necessarily positive because if for some 𝑐 > 0, −𝑐 divides both 𝑎 and 𝑏, then 𝑐 

also must divide both 𝑎 and 𝑏.  And clearly 𝑐 > −𝑐 for 𝑐 > 0. 

 

Pg. 41, Theorem 2.4 (Strayer) 

If 𝑎 and 𝑏 are not both zero and if 𝑑 = (𝑎, 𝑏), then 𝑑 is the least element in the set of all 

positive integers of the form 𝑎𝑥 + 𝑏𝑦. 

Proof 

https://math.stackexchange.com/questions/219941/is-greatest-common-divisor-of-two-

numbers-really-their-smallest-linear-combinati 

 
Let 𝑒 be the smallest positive linear combination 𝑎𝑠 + 𝑏𝑡 of 𝑎 and 𝑏, where 𝑠 and 𝑡 are 
integers.  Suppose in particular that 𝑒 = 𝑎𝑥 + 𝑏𝑦. 
 
Let 𝑑 = gcd(𝑎, 𝑏).  Then 𝑑 divides 𝑎 and 𝑏, so it divides 𝑎𝑥 + 𝑏𝑦.  Thus 𝑑 divides 𝑒, and 
therefore in particular 𝑑 ≤ 𝑒. 
 
We show that in fact 𝑒 is a common divisor of 𝑎 and 𝑏, which will imply that 𝑒 ≤ 𝑑. That, 
together with our earlier 𝑑 ≤ 𝑒, will imply that 𝑑 = 𝑒. 
 
So, it remains to show that 𝑒 divides 𝑎 and 𝑒 divides 𝑏. We show that 𝑒 divides 𝑎. The proof 
that 𝑒 divides 𝑏 is essentially the same. 
 
Suppose to the contrary that 𝑒 does not divide 𝑎. Then when we try to divide 𝑎 by 𝑒, we get a 
positive remainder. More precisely, 
 

𝑎 = 𝑞𝑒 + 𝑟, 
where 0 < 𝑟 < 𝑒.  Then 
 

𝑟 = 𝑎 − 𝑞𝑒 = 𝑎 − 𝑞(𝑎𝑥 + 𝑏𝑦) = 𝑎(1 − 𝑞𝑥) + 𝑏(−𝑞𝑦). 
 
 

https://math.stackexchange.com/questions/219941/is-greatest-common-divisor-of-two-numbers-really-their-smallest-linear-combinati
https://math.stackexchange.com/questions/219941/is-greatest-common-divisor-of-two-numbers-really-their-smallest-linear-combinati


mathcloset.com  115 

This means that 𝑟 is a linear combination of 𝑎 and 𝑏, and is positive and less than 𝑒.  This 
contradicts the fact that 𝑒 is the smallest positive linear combination of 𝑎 and 𝑏. 

∎ 
 
 

What is the smallest positive integer that can be written as a linear combination of 2191 and 

1351 ? 

Solution 

By what we just proved the answer equals gcd(2191, 1351) = gcd(7 ⋅ 313,7 ⋅ 193) = 7. 

∎ 

 

2. What is the smallest positive rational number that can be expressed in the form 𝑥 30⁄ +
𝑦 36⁄   with 𝑥 and 𝑦 integers? 
 
Solution 
 
Let 𝑥 30⁄ + 𝑦 36⁄ = 𝑟.  Then 36𝑥 + 30𝑦 = (30 ∙ 36)𝑟.   To make 𝑟 positive and as small as 
possible, we need to make 36𝑥 + 30𝑦 positive and as small as possible.  But we know from 
Proposition 1.11 that the gcd(36,30) = 6  is the minimum positive value of 36𝑥 + 30𝑦. 
 
So we can find the minimum positive value of 𝑟 by solving the equation 
 

6 = (30 ∙ 36)𝑟. 
 
Therefore, the minimum positive value of 𝑟 = 6 (30 ∙ 36)⁄ = 1 180⁄ . 
 
Note:  You can use the same approach to show that the smallest positive value of 
 

𝑥

𝑎
+
𝑦

𝑏
 

 
is (1 𝑁⁄ ) where 𝑁 = lcm(𝑎, 𝑏). 

∎ 
 

 

 

4.1.1 Euclidean Algorithm 

 

Pg. 42, Euclidean Algorithm (Note: It’s actually a theorem)  

Let 𝑎 ≥ 𝑏 be positive integers and let 𝑟1 be the remainder when 𝑎 is divided by 𝑏 where  

0 ≤ 𝑟1 < 𝑏.  Then (𝑎, 𝑏) = (𝑏, 𝑟1).  

 
If 𝑟1 > 0, continue in the same way and let 𝑟2 be the remainder when 𝑏 is divided 𝑟1 where  
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0 ≤ 𝑟2 < 𝑟1.  Then (𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2). 
 
If 𝑟2 > 0, continue in the same way and let 𝑟3 be the remainder when 𝑟1 is divided by 𝑟2 where 

0 ≤ 𝑟3 < 𝑟2.  Then (𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = (𝑟2, 𝑟3). 
 
Continue in this same way until some remainder 𝑟𝑘 = 0 is reached.  Then  

(𝑎, 𝑏) = (𝑏, 𝑟1) = ⋯ = (𝑟𝑘−1, 𝑟𝑘) = (𝑟𝑘−1, 0) = 𝑟𝑘−1. 
 
 
Example 
 
Find (120,28). 
 
Solution 

120 = 4 ⋅ 28 + 8 ⟹ (120,28) = (28,8) 

28 = 3 ⋅ 8 + 4 ⟹ (28,8) = (8,4) 

8 = 2 ⋅ 4 + 0 ⟹ (8,4) = (4,0) = 4 

Therefore, 
(120,28) = (28,8) = (8,4) = (4,0) = 4. 

∎ 
 
Find (288,51). 
 
Solution 

288 = 51 ⋅ 5 + 33 

51 = 33 ⋅ 1 + 18 

33 = 18 ⋅ 1 + 15 

18 = 15 ⋅ 1 + 3 

15 = 3 ⋅ 5 + 0 

Therefore, 

(288,51) = 3. 

∎ 

 

Find (223,163). 

Solution 

223 = 163 ⋅ 1 + 60 

163 = 60 ⋅ 2 + 43 

60 = 43 ⋅ 1 + 17 

43 = 17 ⋅ 2 + 9 

17 = 9 ⋅ 1 + 8 

9 = 8 ⋅ 1 + 1 

8 = 1 ⋅ 8 + 0 

Therefore, 
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(233,163) = 1. 

∎ 

Find the gcd(3248,214). 
 
Solution 
 
There are two main approaches for determining gcd(𝑎, 𝑏). 
 
   Method 1.  Use the prime factorizations of 𝑎 and 𝑏. 
   Method 2.  Use the Euclidean Algorithm. 
 
Method 1 is quicker if you are provided or can easily find the prime factorizations of 𝑎 and 𝑏. 
 
Method 2 is quicker if 𝑎 and 𝑏 are “large” and their prime factorization are not obvious to you. 
 
I will illustrate both approaches in these notes but if this problem was on a timed test I would 
have opted for the Euclidean Algorithm approach.  Finding the prime factorization can be very 
time consuming.  It all depends on how the numbers work out. 
 
Method 1: Prime Factorization Approach 
 

3248 = 2(1624) 
1624 = 2(812) 
812 = 2(406) 
406 = 2(203) 
203 = 7(29) and 29 is prime 

Therefore, 
3248 = 24 ⋅ 71 ⋅ 291. 

 
214 = 2(107) and 107 is prime 

Therefore, 
214 = 21 ⋅ 1071. 

 

gcd(3248,214) = 2min(4,1) ⋅ 7min(1,0) ⋅ 29min(1,0) ⋅ 107min(0,1) 
 

= 21 ⋅ 70 ⋅ 290 ⋅ 1070 = 2 ⋅ 1 ⋅ 1 ⋅ 1 = 2. 
 
Method 2: Euclidean Algorithm Approach 

 
3248 = 214(15) + 38 
214 = 38(5) + 24 
38 = 24(1) + 14 
24 = 14(1) + 10 
14 = 10(1) + 4 
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10 = 4(2) + 𝟐 
4 = 2(2) + 0 

 
Therefore, gcd(3248,214) = 𝟐, the last non-zero remainder. 

∎ 
 

4.2 Properties of GCD 
 

Pg. 45, Definition 2.2 (Relatively Prime) 

If (𝑎, 𝑏) = 1, then 𝑎 and 𝑏 are said to be relatively prime.  More generally, if (𝑎𝑖, 𝑎𝑗) = 1 for 
𝑖 ≠ 𝑗, 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑟, the integers 𝑎1, 𝑎2, … , 𝑎𝑟 are said to be pairwise relatively prime. 
 

Pg. 45, Theorem 2.8  
If 𝑎|𝑏𝑐 and (𝑎, 𝑏) = 1, then 𝑎|𝑐. 
 
 
Pg. 46, Theorem 2.13  
If 𝑎|𝑐, 𝑏|𝑐, and (𝑎, 𝑏) = 1, then 𝑎𝑏|𝑐. 
 
 

Pg. 48, Ex. 9 

If 𝑐 > 0, prove that (𝑎𝑐, 𝑏𝑐) = 𝑐(𝑎, 𝑏). 

 

Pg. 49, Ex. 22 

If (𝑎, 𝑏) = 1, and 𝑎 > 𝑏 > 0, prove that  

(𝑎𝑚 − 𝑏𝑚 , 𝑎𝑛 − 𝑏𝑛) = 𝑎(𝑚,𝑛) − 𝑏(𝑚,𝑛) 

for any positive integers 𝑚 and 𝑛. 

 

• (0,0) is undefined. 
 
• (𝑎, 𝑏) = 𝑑 ⟹ (−𝑎, 𝑏) = (𝑎, −𝑏) = (−𝑎, −𝑏) = 𝑑. 
 
• (𝑎, 𝑏) = 𝑑 ⟹ 𝑑|𝑎  and  𝑑|𝑏. 
  
 
Proposition 1.10:  
 
Let 𝑎, 𝑏 ∈ ℤ with (𝑎, 𝑏) = 𝑑.  Then (𝑎 𝑑⁄ , 𝑏 𝑑⁄ ) = 1. 
 
 

Noted results from Exercise Set 1.3 
 

• (𝑎, 0) = |𝑎|  provided 𝑎 ≠ 0. 
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• Let 𝑎, 𝑏 ∈ ℤ with 𝑎 and 𝑏 not both zero and let 𝑐 be a nonzero integer.  Then 
 

(𝑐𝑎, 𝑐𝑏) = |𝑐| ∙ (𝑎, 𝑏). 
 
 
• Let 𝑎, 𝑏, 𝑐 ∈ ℤ with (𝑎, 𝑏) = 1 and 𝑐|𝑎 + 𝑏.  Then 
 

(𝑎, 𝑐) = 1 and (𝑏, 𝑐) = 1. 
 
 

 

• Let 𝑎, 𝑏, 𝑐 ∈ ℤ with (𝑎, 𝑏) = 1.  Then 
 

𝑎|𝑐 and 𝑏|𝑐 ⟹ 𝑎𝑏|𝑐. 
 

 
• Let 𝑎, 𝑏, 𝑐 ∈ ℤ with (𝑎, 𝑏) = 1.  Then 
 

𝑎|𝑏𝑐 ⟹ 𝑎|𝑐. 
 
 

• Let 𝑎, 𝑏 ∈ ℤ and let 𝑚 and 𝑛 be positive integers.  Then 
 

(𝑎, 𝑏) = 1 ⟺ (𝑎𝑚 , 𝑏𝑛) = 1. 
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Theorem 
 
gcd(𝑎, 𝑎 + 1) = 1 
 
 
Solution   
 
Let gcd(𝑎, 𝑎 + 1) = 𝑑.  Then 𝑑|𝑎 and 𝑑|𝑎 + 1.  So 𝑑 divides all linear combinations of 𝑎 and 

𝑎 + 1 (Prop. 1.2) including (−1)𝑎 + (1)(𝑎 + 1) = 1.  So 𝑑|1 which means that 1 = 𝑑 ∙ 𝑘 for 

some 𝑘 ∈ ℤ.  But remember that 𝑑 ∈ ℤ and 𝑑 is (by definition) positive.  From which it follows 

that 𝑘 must also be positive (if 𝑘 negative then  𝑑 ∙ 𝑘 would be negative but we know 𝑑 ∙ 𝑘 = 1).  

Therefore, 𝑑 = 1 (and also 𝑘 = 1).  So 𝑑 = gcd(𝑎, 𝑎 + 1) = 1. 

 
(Strayer) 
 
(33d)  Find gcd (3𝑎 + 5,7𝑎 + 12).  
 
Solution   
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Let gcd(3𝑎 + 5,7𝑎 + 12) = 𝑑.  Then 𝑑|3𝑎 + 5 and 𝑑|7𝑎 + 12.  So 𝑑|(3(7𝑎 + 12) −

7(3𝑎 + 5)).  That is, 𝑑|1.  By the argument of part (b) above, 𝑑 = 1.  

 
 
 

4.3 Least Common Multiple 
 
Pg. 49, Definition 2.3 (Least Common Multiple)  

If 𝑚 is the smallest positive common multiple of 𝑎 and 𝑏, it is called the least common multiple 

of 𝑎 and 𝑏 and is denoted by [𝑎, 𝑏]. 

 

Pg. 50, Theorem 2.19  

If 𝑎𝑏 ≠ 0, then  

[𝑎, 𝑏] = |
𝑎𝑏

(𝑎, 𝑏)
|. 

 

Example 

Find the following Least Common Multiples using our previous examples on Greatest Common 

Divisors.  

[120,28] = |
120 ⋅ 28

(120,28)
| = |

120 ⋅ 28

4
| = 840 

[288,51] = |
288 ⋅ 51

(288,51)
| = |

288 ⋅ 51

3
| = 4896 

[233,163] = |
233 ⋅ 163

(233,163)
| = |

233 ⋅ 163

1
| = 37,979. 

 

 
Corollary 1.20: Let 𝑎, 𝑏 ∈ ℤ  with 𝑎, 𝑏 > 0.  Then [𝑎, 𝑏] = 𝑎𝑏 if and only if (𝑎, 𝑏) = 1. 
 
 
 
• Let 𝑎, 𝑏 be positive integers.  Then 

 
(𝑎, 𝑏)|[𝑎, 𝑏]. 

 
 
1A973 
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71.  Find 𝑎 ∈ ℤ, 𝑎 > 0 such that lcm(𝑎, 𝑎 + 1) = 240. 
 
Solution 
 

gcd(𝑎, 𝑎 + 1) = 1 ⟹ lcm(𝑎, 𝑎 + 1) = 𝑎(𝑎 + 1). 
 
Therefore, 𝑎(𝑎 + 1) = 240 and 𝑎 = 15 because 15 ∙ 16 = 240. 
 
 
 

4.4 Properties of LCM’s 
 

Let 𝑎, 𝑏, 𝑐 be positive integers.  Then 
 

[𝑐𝑎, 𝑐𝑏] = 𝑐 ∙ [𝑎, 𝑏] 
 
If 𝑐|𝑎 and 𝑐|𝑏, then  

[
𝑎

𝑐
,
𝑏

𝑐
] =

[𝑎, 𝑏]

𝑐
 

 
 

max{𝑎, 𝑏} ≤ [𝑎, 𝑏] ≤ 𝑎𝑏 
 

 
 

4.5 GCD and LCM for More Than Two Integers 
 

The calculation of the greatest common divisor and least common multiple of more than two 

integers can be accomplished in successive steps in accordance with the following theorems. 

 

Pg. 51, Theorem 2.20 

If none of 𝑎1, 𝑎2, … , 𝑎𝑟 is zero, then 
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(𝑎1, 𝑎2, … , 𝑎𝑟) = ((𝑎1, 𝑎2, … , 𝑎𝑟−1), 𝑎𝑟). 

 

Pg. 51, Theorem 2.21 

If none of 𝑎1, 𝑎2, … , 𝑎𝑟 is zero, then 

[𝑎1, 𝑎2, … , 𝑎𝑟] = [[𝑎1, 𝑎2, … , 𝑎𝑟−1], 𝑎𝑟]. 

 

Example 
Find (120,28,6). 
 
Solution 
 
We showed in the previous example that (120,28) = 4.  Therefore, 

(120,28,6) = ((120,28), 6) = (4,6) = (6,4). 

By inspection we can see that (6,4) = 2.  Therefore, (120,28,6) = 2. 

∎ 
 
Find [120,28,6]. 
 

Solution 

We showed in the previous example that [120,28] = 840.  Therefore, 

[120,28,6] = [[120,28], 6] = [840,6]. 

Now that we have this reduced to just the two integers we can apply Theorem 2.19 to 

determine that 

[120,28,6] = [840,6] = |
840 ⋅ 6

(840,6)
| = |

5040

(840,6)
|. 

At this point we have to use the Euclidean Algorithm to find (840,6) which is easy in this case 

because 6|840. 

840 = 6 ⋅ 140 + 0 

Therefore, 

(840,6) = 6. 

This establishes 

[120,28,6] = |
5040

(840,6)
| = |

5040

6
| = 840. 

∎ 
Find [540,75,70]. 
 

Solution 

[540,75,70] = [[540,75], 70]. 

Now to find [540,75]. 

[540,75] = |
540 ⋅ 75

(540,75)
| = |

40,500

(540,75)
| 

and 
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540 = 75 ⋅ 7 + 15 

75 = 15 ⋅ 5 + 0 

Therefore, 
(540,75) = 15 

and 

[540,75] = |
40,500

(540,75)
| = |

40,500

15
| = 2700 

and 

[540,75,70] = [[540,75], 70] = [2700,70]. 

Now we need to use Theorem 2.19 again to determine that 

[540,75,70] = [2700,70] = |
2700 ⋅ 70

(2700,70)
| = |

189,000

(2700,70)
|. 

We see that 

 

2700 = 70 ⋅ 38 + 40 

70 = 40 ⋅ 1 + 30 

40 = 30 ⋅ 1 + 10 

30 = 10 ⋅ 3 + 0 

therefore, 

(2700,70) = 10 

and 

[540,75,70] = |
189,000

(2700,70)
| = |

189,000

10
| = 18,900. 

∎ 

 

 

Pg. 50, Definition (Extending the Term “Relatively Prime” to Cases of More than Two Integers) 
If (𝑎1, 𝑎2, … , 𝑎𝑟) = 1, then we say that 𝑎1, 𝑎2, … , 𝑎𝑟 are relatively prime.   
 
 
 

Non-Theorem 2.19  

We cannot extend Theorem 2.19 to cases with more than two integers.  That is, 

[𝑎, 𝑏, 𝑐] ≠ |
𝑎𝑏𝑐

(𝑎, 𝑏, 𝑐)
| 

and 

[𝑎, 𝑏, … , 𝑘] ≠ |
𝑎𝑏⋯𝑘

(𝑎, 𝑏,… , 𝑘)
| 

in general. 

 

Pg. 52, Ex. 13 
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Give an example to show that the equation of Exercise 12 is sometimes true.  Can you discover 

under what conditions the equation is generally true? 

 

 

4.6 (𝒂, 𝒃) and [𝒂, 𝒃] in terms of the canonical representations of 𝒂 and 𝒃 
 

Pg. 57, Theorem 2.25 

If 𝑎 =∏𝑝𝑖
𝑎𝑖

𝑟

𝑖=1

and 𝑏 =∏𝑝𝑖
𝑏𝑖

𝑟

𝑖=1

 with 𝑎𝑖 ≥ 0 and 𝑏𝑖 ≥ 0 for each 𝑖 are the canonical  

representations of 𝑎 and 𝑏, then 

 

(𝑎, 𝑏) =∏𝑝𝑖
min(𝑎𝑖,𝑏𝑖)

𝑟

𝑖=1

   and   [𝑎, 𝑏] =∏𝑝𝑖
max(𝑎𝑖,𝑏𝑖)

𝑟

𝑖=1

. 

 
[Note: In this theorem we need to compare the prime factorizations of 𝑎 and 𝑏.  Therefore, we 

include “place holders primes” (primes to the zeroth power) for those primes that are factors of 

𝑎 but not 𝑏 and vice versa.  This is why we only assume 𝑎𝑖 ≥ 0 and 𝑏𝑖 ≥ 0.  Compare that with 

the statement of Theorems 2.24 Part(a) and Part(b) where we assume 𝑎𝑖 > 0.] 

Example 
 
Use Theorem 2.25 to find (354200, 84942) and [354200,84942] given that their canonical 
prime factorizations are 

354200 = 23 ⋅ 52 ⋅ 71 ⋅ 111 ⋅ 231 

84942 = 21 ⋅ 33 ⋅ 112 ⋅ 131. 

Solution 
 
Our first step is to fill in the place holder primes (primes to the zeroth power). 
 

354200 = 23 ⋅ 30 ⋅ 52 ⋅ 71 ⋅ 111 ⋅ 130 ⋅ 231 

84942 = 21 ⋅ 33 ⋅ 50 ⋅ 70 ⋅ 112 ⋅ 131 ⋅ 230. 

 

It now follows from Theorem 2.25 that 

 

(354200,84942) 

= 2min(3,1) ⋅ 3min(0,3) ⋅ 5min(2,0) ⋅ 7min(1,0) ⋅ 11min(1,2) ⋅ 13min(0,1) ⋅ 23min(1,0) 

= 21 ⋅ 30 ⋅ 50 ⋅ 70 ⋅ 111 ⋅ 130 ⋅ 230 

= 2 ⋅ 11 

= 22. 
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[354200,84942] 

= 2max(3,1) ⋅ 3max(0,3) ⋅ 5max(2,0) ⋅ 7max(1,0) ⋅ 11max(1,2) ⋅ 13max(0,1) ⋅ 23max(1,0) 

= 23 ⋅ 33 ⋅ 52 ⋅ 71 ⋅ 112 ⋅ 131 ⋅ 231 

= 1367566200. 

 

Here too the real bottleneck would have been determining the prime factorizations of 354200 

and 84942 had they not been given.  But if you are given or can easily determine the prime 

factorizations of 𝑎 and 𝑏, then the approach of Theorem 2.25 for finding (𝑎, 𝑏) and [𝑎, 𝑏] is 

much faster than using the Euclidean Algorithm followed by an application of Theorem 2.19. 

 
(1A163)  If 48 and 𝑥 have a lowest common multiple of 2640 and a greatest common factor of 

12, determine the minimum possible value of 𝑥. 

Solution 

 
∎ 

 
(1T161)  The roots of 𝑥2 + 𝑏𝑥 + 𝑐 are integers 𝑟 and 𝑠 where 𝑟 < 𝑠 < 0.  The greatest common 

factor of |𝑟|, |𝑠|, and 𝑐 is 6 and the lowest common multiple of |𝑠| and 𝑏 is 84.  Find 𝑟 and 𝑠. 

Solution 

 
∎ 

 
 

4.6.1 (𝒂, 𝒃, 𝒄) and [𝒂, 𝒃, 𝒄] in terms of the canonical representations of 𝒂, 𝒃 and 𝒄 

 
Pg. 58, Exercise 11 

If 𝑎 =∏𝑝𝑖
𝑎𝑖

𝑟

𝑖=1

,  𝑏 =∏𝑝𝑖
𝑏𝑖

𝑟

𝑖=1

,  𝑐 =∏𝑝𝑖
𝑐𝑖

𝑟

𝑖=1

 with 𝑎𝑖 ≥ 0, 𝑏𝑖 ≥ 0, 𝑐𝑖 ≥ 0 for each 𝑖 are the   

canonical representations of 𝑎, 𝑏 and 𝑐 (with the necessary place holder primes inserted) then 
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(𝑎, 𝑏, 𝑐) =∏𝑝𝑖
min(𝑎𝑖,𝑏𝑖,𝑐𝑖)

𝑟

𝑖=1

   and   [𝑎, 𝑏, 𝑐] =∏𝑝𝑖
max(𝑎𝑖,𝑏𝑖,𝑐𝑖)

𝑟

𝑖=1

. 

 
This result could be extended in the same way to more than three integers. 
 
 
Example 
 
Find [2,4,5,6,12].   
 
Solution 

 
First, we find the prime factorization of 2, 4, 5, 6 and 12 and input the necessary place holder 
primes. 
 

2    =    21    =   213050

4   =    22    =   223050

5   =    51    =   203051

6   =   2131    =   213150

12   =   2231    =   223150

 

 
So, 
 
[2,4,5,6,12] 

= [213050, 223050, 203051, 213150, 223150] 

= 2max{1,2,0,1,2} × 3max{0,0,0,1,1} × 5max{0,0,1,0,0} 

= 22 × 31 × 51 = 60. 

∎ 

 

(1A172)  Compute  
lcm(20,18)

gcd(20,18)
. 

Solution 

 
∎ 
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(1A174)  What is the sum of all positive integers 𝑛 for which lcm(10,18,𝑛) = 630 and 

gcd(10,18, 𝑛) = 2?  

Solution 

 
∎ 

 

 

 

4.7 Solving 𝒂𝒙 + 𝒃𝒚 = 𝒌 in integers 
 

 

Pg. 42, Extended Euclidean Algorithm: Solving 𝒂𝒙 + 𝒃𝒚 = (𝒂, 𝒃) 

Bezout’s Theorem 

There exist integers 𝑥0 and 𝑦0 such that (𝑎, 𝑏) = 𝑎𝑥0 + 𝑏𝑦0.   

 

The basic idea for finding 𝑥0 and 𝑦0 is to take the steps of the Euclidean Algorithm for finding 

(𝑎, 𝑏) and work backwards.  

To illustrate how this is done, consider the steps of the Euclidean Algorithm for showing 

(120,28) = 4 we went through previously and notice how you can run the algorithm from the 

bottom up. 

4 = 28 − 3 ⋅ 8 

= 28 − 3 ⋅ (120 − 4 ⋅ 28) 

= 120(−3) + 28(1 + 12) 

= 120(−3) + 28(13) 

This shows that  

120𝑥0 + 28𝑦0 = 120(−3) + 28(13) = (120,28) = 4. 

∎ 

 

Now take the above steps of the Euclidean Algorithm for showing (288,51) = 3 and work 

backwards to find integers 𝑥0 and 𝑦0 such that 288𝑥0 + 51𝑦0 = (288,51) = 3. 

 

3 = 18 − 15 ⋅ 1 

= 18 − (33 − 18 ⋅ 1) ⋅ 1 

= 33(−1) + 18(2) 

= 33(−1) + (51 − 33 ⋅ 1)(2) 

= 51(2) + 33(−1 − 2) 

= 51(2) + 33(−3) 

= 51(2) + (288 − 51 ⋅ 5)(−3) 



mathcloset.com  129 

= 288(−3) + 51(2 + 15) 

= 288(−3) + 51(17). 

This shows that  

288𝑥0 + 51𝑦0 = 288(−3) + 51(17) = (288,51) = 3. 

∎ 

 

As another example, take the above steps of the Euclidean Algorithm for showing that 

(223,163) = 1 and work backwards to find integers 𝑥0 and 𝑦0 such that 223𝑥0 + 163𝑦0 =

(223,163) = 1. 

1 = 9 − 8 ⋅ 1 

= 9 − (17 − 9 ⋅ 1) 

= 17(−1) + 9(2) 

= 17(−1) + (43 − 17 ⋅ 2)(2) 

= 43(2) + 17(−1 − 4) 

= 43(2) + 17(−5) 

= 43(2) + (60 − 43 ⋅ 1)(−5) 

= 60(−5) + 43(2 + 5) 

= 60(−5) + 43(7) 

= 60(−5) + (163 − 60 ⋅ 2)(7) 

= 163(7) + 60(−5 − 14) 

= 163(7) + 60(−19) 

= 163(7) + (223 − 163 ⋅ 1)(−19) 

= 223(−19) + 163(7 + 19) 

= 223(−19) + 163(26). 

This shows that  

223𝑥0 + 163𝑦0 = 223(−19) + 163(26) = (223,163) = 1. 

∎ 

 

Example  (MSHSML 2006-2007, Test 1A, Problem 4) 
 
If 𝑑 is the greatest common divisor of 399 and 959, then it is possible to find integers 𝑟 and 𝑠 so 

that 𝑑 = 399𝑟 + 959𝑠.  Find 𝑑, 𝑟, and 𝑠. 

 

Solution 
 

By the Euclidean Algorithm 
959 = 2(399) + 161 
399 = 2(161) + 77 
161 = 2(77) + 7 
77 = 11(7) + 0 

 
Hence gcd(959,399) = 7.   By working the Euclidean Algorithm backwards we find 
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7 = 161 − 2(77) 
= 161 − 2(399 − 2(161)) 

= (5)(161) − 2(399) 

= (5)(959 − 2(399)) − 2(399) 

= 5(959) − 12(399) 
 
So 399(−12) + 959(5) = 7 is a solution to 399𝑟 + 959𝑠 = gcd(399,959).  That is, the 
solution to this problem is 𝑑 = 7, 𝑟 = −12, 𝑠 = 5. 

∎ 

 

Pg. 44, Definition (Linear Combination) 

An expression of the form 𝑎𝑥 + 𝑏𝑦 is called a linear combination of 𝑎 and 𝑏. 

 

Pg. 44, Theorem 

If 𝑑 = 𝑎𝑥 + 𝑏𝑦 for some integers 𝑎, 𝑏, 𝑑, 𝑥 and 𝑦, then 𝑑|(𝑎, 𝑏).  That is, the only possible 

values for 𝑎𝑥 + 𝑏𝑦 in integers are multiples of (𝑎, 𝑏). 

 

Theorem 

If 𝑎 and 𝑏 are positive integers and if 𝑎𝑥0 + 𝑏𝑦0 = (𝑎, 𝑏), then 𝑥0𝑦0 ≤ 0. 

 

Finding a solution of 𝒂𝒙 + 𝒃𝒚 = 𝒌 ⋅ gcd(𝒂,𝒃) 

In the previous section we learned how to reverse the steps of the Euclidean Algorithm when 
finding gcd(𝑎, 𝑏). 
 
Suppose 𝑥 = 𝑥0, 𝑦 = 𝑦0 is a solution to 𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏).  Then by multiplying both sides of 
this equation by the constant 𝑘 we get 
 

𝑎(𝑘𝑥0) + 𝑏(𝑘𝑦0) = 𝑘 ⋅ gcd(𝑎, 𝑏). 
 
That is, if (𝑥, 𝑦) = (𝑥0, 𝑦0) is a solution to 𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏), then (𝑥, 𝑦) = (𝑘𝑥0, 𝑘𝑦0) is a 
solution to 𝑎𝑥 + 𝑏𝑦 = 𝑘 ⋅ gcd(𝑎, 𝑏). 

∎ 

 
Theorem  Finding all solutions of 𝒂𝒙 + 𝒃𝒚 = 𝒌 ⋅ gcd(𝒂,𝒃) 
 
If (𝑥, 𝑦) = (𝑥0, 𝑦0) is any particular solution to 𝑎𝑥 + 𝑏𝑦 = 𝑘 ⋅ gcd(𝑎, 𝑏) then 
 

(𝑥, 𝑦) = ( 𝑥0 + (
𝑏

gcd(𝑎, 𝑏)
) 𝑛,   𝑦0 − (

𝑎

gcd(𝑎, 𝑏)
) 𝑛) ,     𝑛 = 0,±1, ±2,… 

 
gives the set of all possible solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑘 ⋅ gcd(𝑎, 𝑏). 

∎ 
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Pay close attention to the form of the answer in the theorem above.  There are two things 
about this formula that you need to be careful to notice.  First is that the location of 𝑎 and 𝑏 in 
 

 
 
might seem backwards, but this is correct.  Secondly, notice that we add the extra term to 𝑥0 
but we subtract the extra term from 𝑦0. 
 

 
 
Example 
 
Find an expression for 𝑥 and 𝑦 that shows all possible integer solutions 𝑥 and 𝑦 such that 
288𝑥 + 51𝑦 = gcd(288,51). 
 
Solution 
 
We found in a previous example that gcd(288,51) = 3 and that 𝑥0 = −3 and 𝑦0 = 17 is a 

solution to 288𝑥0 + 51𝑦0 = gcd(288,51) = 3. 

 

It follows from this previous example and the above theorem that  

 

𝑥 = 𝑥0 + (
51

gcd(288,51)
)𝑛 

and 

𝑦 = 𝑦0 − (
288

gcd(288,51)
)𝑛 

 
with 𝑛 = 0,±1,±2, ±3,… will be the set of all possible solutions to 288𝑥 + 51𝑦 =

gcd(288,51) = 3. 

 
 
Therefore, 
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𝑥 = −3 + (
51

3
)𝑛 = −3 + 17𝑛 

and 

𝑦 = 17 − (
288

3
)𝑛 = 17 − 96𝑛 

 
 
with 𝑛 = 0,±1,±2, … is the set of all possible solutions to 288𝑥 + 51𝑦 = gcd(288,51) = 3. 

∎ 

 

 
Exercise  (MSHSML 2001-2002, Test 1A, Problem 4) 
 
(a) Find an integer solution to 13𝑥 + 29𝑦 = 48. 
 
(b) Find an expression for all solutions to 13𝑥 + 29𝑦 = 48. 
 
(c) Find the three lattice points (points with integer coordinates) closest to the origin that 

satisfy 13𝑥 + 29𝑦 = 48. 
 
Solution 
 
(a)  

29 = 2(13) + 3 

13 = 4(3) + 1 

3 = 3(1) + 0 

Therefore, gcd(29,13) = 1.  We can reverse the above steps to find a solution to 13𝑥 + 29𝑦 =

gcd(29,13) = 1. 

1 = 13 − 4(3) 

= 13 − 4(29− 2(13)) 

= 13(9) − 29(4). 

That is, 𝑥 = 9 and 𝑦 = −4 is an integer solution to 13𝑥 + 29𝑦 = gcd(29,13) = 1.   Therefore, 
 

13(9 ⋅ 48) − 29(4 ⋅ 48) = 1 ⋅ 48. 
 
 
That is, 𝑥 = 9(48) = 432  and  𝑦 = −4(48) = −192  is an integer solution to 13𝑥 + 29𝑦 =
48. 
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(b)  Recall that if (𝑥0, 𝑦0) is a solution to 13𝑥 + 29𝑦 = 48 then 

(𝑥, 𝑦) = ( 𝑥0 + (
𝑏

gcd(𝑎, 𝑏)
) 𝑛,   𝑦0 − (

𝑎

gcd(𝑎, 𝑏)
) 𝑛) ,     𝑛 = 0,±1,±2, … 

 
is the set of all possible solutions to 13𝑥 + 29𝑦 = 48.  Therefore, 

(𝑥, 𝑦) = (432 + (
29

1
)𝑛, −192 − (

13

1
)𝑛) = (432 + 29𝑛,−192 − 13𝑛) 

with 𝑛 = 0,±1,±2, …  gives us the set of all possible solutions to 13𝑥 + 29𝑦 = 48.  

 

(c)  Part (c) is asking for are lattice points (both coordinates are integers) that are close to the 

origin.  That is, we want to find integer values of 𝑛 (positive or negative) such that 

(432 + 29𝑛, −192 − 13𝑛) ≈ (0,0). 

To get a sense of where to start let’s see what non-integer value of 𝑛 makes the 𝑥-coordinate 

exactly zero. 

432 + 29𝑛 = 0⟺ 𝑛 = −
432

29
≈ −14.9. 

 

Plugging the nearest integer (namely, 𝑛 = −15) into (432 + 29𝑛,−192 − 13𝑛) we generate 

the lattice point (432 + 29(−15),−192 − 13(−15)) = (−3,3). 

What happens to 𝑥 and 𝑦 if we increase 𝑛 by one unit? 

(432 + 29(𝑛 + 1),−192 − 13(𝑛 + 1)) = (432 + 29𝑛, −192 − 13𝑛) + (29,−13)  

Increasing 𝑛 by one unit will increase 𝑥 by 29 units and will increase 𝑦 by −13 units.  Similarly, 

decreasing 𝑛 by one unit will decrease 𝑥 by 29 units and will decrease 𝑦 by −13 units. 

That is, some of the lattice points closest to (−3,3) are 

(−3 + 29,3 + (−13)) = (26,−10) 

(−3 + 2(29), 3 + 2(−13)) = (55,−23) 

(−3 − 29,3 − (−13)) = (−32,16) 

(−3 − 2(29),3 − 2(−13)) = (−61,29) 

From here we can identify by inspection the three lattice points closest to (0,0).  They are 

(−3,3), (26,−10) and (−32,16). 

But to be precise and leave no room for error we can apply the distance formula to each and 

see which of these lattice points minimize the distance to the origin. 

 

Lattice Point (𝒙, 𝒚) Distance to the origin = √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟎)𝟐 = √𝒙𝟐 + 𝒚𝟐 

(55,−23) 59.6 

(26,−10) 27.9 
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(−3,3) 4.2 

(−32,16) 35.8 

(−61,29) 67.6 

 

 

So this confirms that the three lattice points on the line 13𝑥 + 29𝑦 = 48 that are closest to the 

origin are (−3,3), (26,−10) and (−32,16). 

∎ 

 

(3T001) 

 
Solution 

 
∎ 

 

4.8 Blankenship’s Algorithm 
 
Blankenship’s Algorithm for finding integers 𝑚 and 𝑛 such that  
 

𝑚𝑎 + 𝑛𝑏 = (𝑎, 𝑏) 
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for the case 𝑎 > 𝑏 > 0  starts with the matrix 
 

[
𝑎 1 0
𝑏 0 1

] 

 
and then proceeds as illustrated in the following three examples. 
 
 
Example 1. 
 

[
42 1 0
15 0 1

] 

 
15 goes into 42 two times.  Multiply Row 2 by −2 and add the result to Row 1. 
 

[
12 1 −2
15 0 1

] 

 
12 goes into 15 one time.  Multiply Row 1 by −1 and add the result to Row 2. 
 

[
12 1 −2
3 −1 3

] 

 
 
3 goes into 12 four times.  Multiply Row 2 by −4 and add the result to Row 1. 
 

[
0 5 −14
3 −1 3

] 

 
So gcd(42,15) = 3  and 3 = (−1)42 + (3)15. 
 
 
Example 2. 
 

[35 1 0
15 0 1

] 

 
15 goes into 35 two times.  Multiply Row 2 by −2 and add the result to Row 1. 
 

[ 5 1 −2
15 0 1

] 

 
5 goes into 15 three times.  Multiply Row 1 by −3 and add the result to Row 2. 
 

[
5 1 −2
0 −3 7

] 
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So gcd(35,15) = 5  and 5 = (1)35+ (−2)15 
 
 
Example 3. 
 

[
1876 1 0
365 0 1

] 

 
365 goes into 1876 five times.  Multiply Row 2 by −5 and add the result to Row 1. 
 

[ 51 1 −5
365 0 1

] 

 
51 goes into 365 seven times.  Multiply Row 1 by −7 and add the result to Row 2. 
 

[51 1 −5
8 −7 36

] 

 
8 goes into 51 six times.  Multiply Row 2 by −6 and add the result to Row 1. 
 

[
3 43 −221
8 −7 36

] 

 
3 goes into 8 two times.  Multiply Row 1 by −2 and add the result to Row 2. 
 

[
3 43 −221
2 −93 478

] 

 
2 goes into 3 one time.  Multiply Row 2 by −1 and add the result to Row 1. 
 

[
1 136 −699
2 −93 478

] 

 
1 goes into 2 two times.  Multiply Row 1 by −2 and add the result to Row 2. 
 

[
1 136 −699
0 −365 1876

] 

 
 
So gcd(1876,365) = 1  and 1 = (136) ∙ (1876) + (−699) ∙ (365) 
 
 
Reference: W.A. Blankinship, A New Version of the Euclidean Algorithm, The American 
Mathematical Monthly, Vol. 70, No. 7, August-September 1965, pages 742-745. 
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4.9 Solving 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝒌 in integers 
 

Theorem (Extended Euclidean Algorithm for More Than Two Integers) 

There exist integers 𝑥0, 𝑦0 and 𝑧0 such that (𝑎, 𝑏, 𝑐) = 𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0.  You can use the 

results of the Extended Euclidean Algorithm for solving 

𝑎𝑤0 + 𝑏𝑤1 = (𝑎, 𝑏) 

and 

(𝑎, 𝑏)𝑤2 + 𝑐𝑤3 = ((𝑎, 𝑏), 𝑐) 

to see that 

(𝑎, 𝑏, 𝑐) = ((𝑎, 𝑏), 𝑐) 

= (𝑎, 𝑏)𝑤2 + 𝑐𝑤3 

= (𝑎𝑤0 + 𝑏𝑤1) ⋅ 𝑤2 + 𝑐𝑤3 

= 𝑎(𝑤0 ⋅ 𝑤2) + 𝑏(𝑤1 ⋅ 𝑤2) + 𝑐(𝑤3) 

= 𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0. 

 

Example 

Find integers 𝑥0, 𝑦0, 𝑧0 such that  

(288,51,8) = 288𝑥0 + 51𝑦0 + 8𝑧0. 

Solution 

We previously showed that (288,51) = 3 and that 288(−3) + 51(17) = (288,51) = 3.  Also, 

by Theorem 2.20 we know that (288,51,8) = ((288,51), 8) = (3,8). 

Even though it is obvious that (3,8) = (8,3) = 1 let’s go through the Euclidean Algorithm to 

verify this and go through the Extended Euclidean Algorithm to find integers 𝑥0 and 𝑦0 such 

that 8𝑥0 + 3𝑦0 = (8,3). 

  

8 = 3 ⋅ 2 + 2 

3 = 2 ⋅ 1 + 1 

2 = 1 ⋅ 2 + 0. 

Therefore, 

(8,3) = 1 

and 

(288,51,8) = ((288,51), 8) = (3,8) = (8,3) = 1. 

 

Now we can work backwards to find integers 𝑥0 and 𝑦0 such that 8𝑥0 + 3𝑦0 = (8,3) = 1. 

1 = 3 − 2 ⋅ 1 

= 3 − (8 − 3 ⋅ 2) ⋅ 1 

= 8(−1) + 3(1 + 2) 

= 8(−1) + 3(3). 
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This shows that  

8𝑥0 + 3𝑦0 = 8(−1) + 3(3) = (8,3) = 1. 

 

Now we can immediately combine the two results 

288(−3) + 51(17) = (288,51) = 3 

and 

8(−1) + 3(3) = (8,3) = 1 

to find integers 𝑥0, 𝑦0, 𝑧0 such that  

1 = (288,51,8) = 288𝑥0 + 51𝑦0 + 8𝑧0. 

We have 

1 = 8(−1) + 3(3) 

= 8(−1) + (288(−3) + 51(17)) ⋅ 3 

= 288(−3 ⋅ 3) + 51(17 ⋅ 3) + 8(−1) 

= 288(−9)+ 51(51) + 8(−1). 

This shows that  

288𝑥0 + 51𝑦0 + 8𝑧0 = 288(−9) + 51(51) + 8(−1) = (288,51,8) = 1. 

∎ 

 

Example 

Find integers 𝑥0, 𝑦0, 𝑧0 such that  

(36,30,15) = 36𝑥0 + 30𝑦0 + 15𝑧0. 

Solution 

Applying the Euclidean Algorithm twice we find: 

36 = 30 ⋅ 1 + 6 

30 = 6 ⋅ 5 + 0. 

Therefore, 

(36,30) = 6 

and 

15 = 6 ⋅ 2 + 3 

6 = 3 ⋅ 2 + 0. 

Therefore, 

(15,6) = 3. 

Hence, 

(36,30,15) = ((36,30), 15) = (6,15) = (15,6) = 3. 

Applying the Extended Euclidean Algorithm twice we find: 

6 = 36(1) + 30(−1) 

3 = 15(1) + 6(−2). 

Combining these we see that 

3 = 15(1) + 6(−2) = 15(1) + (36(1) + 30(−1))(−2) = 36(−2) + 30(2) + 15(1). 

This shows that  

36𝑥0 + 30𝑦0 + 15𝑧0 = 36(−2) + 30(2) + 15(1) = (36,30,15) = 3. 
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∎ 

 

4.10 Nonnegative Solutions to 𝒂𝒙 + 𝒃𝒚 = 𝒄 
 

Uspensky, pg. 59 
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(5T996) 

 
Solution 
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∎ 

 

AMC 1967 Problem #24 

The number of solution-pairs in positive integers of the equation 3𝑥 + 5𝑦 = 501 is: 

(A) 33 (B) 34 (C) 35 (D) 100 (E) none of these. 

 

Solution 

 

 

∎ 

 

 

#25 

Find all (𝑥, 𝑦) pairs which are solutions to the Diophantine equation 21𝑥 + 41𝑦 = 1867 and 

where both 𝑥 and 𝑦 are positive. 

Solution 

21𝑥 + 41𝑦 = 1867 

−𝑦 ≡ −2 (mod21) 

𝑦 ≡ 2 (mod21) 

𝑦 = 2 + 21𝑘 

21𝑥 + 41(2 + 21𝑘) = 1867 

21(𝑥 + 41𝑘) = 1785 

𝑥 = 85 − 41𝑘 
(𝑥, 𝑦) = (85 − 41𝑘, 2 + 21𝑘) 
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𝑥 and 𝑦 both positive 

𝑘 = 0: (85,2) 

𝑘 = 1: (44,23) 

𝑘 = 2: (3,44). 

∎ 

 

 

 

4.11 Lattice Point Problems 
 

(2D143) 

 
Solution 

 

 
∎ 

 

 

(TI119)  What lattice point, lying on the line 142𝑥 + 103𝑦 = 259, is closest to the origin? 

Solution 
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∎ 

(5D053) 

 
Solution 

 
∎ 

 

(TA954) 

 
Solution 
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∎ 

 

Mu Alpha Theta, Florida State Convention, 1992-1993, Number Theory Topic Test, Number 3 

(adapted) 

The point (1,7) is a lattice point of the rotated hyperbola 𝑥2 − 𝑥𝑦 + 𝑥 + 2𝑦 − 9 = 0.  Find all 

lattice points of this hyperbola. 

Solution 

Solving for 𝑦 in this equation we find 

𝑥2 − 𝑥𝑦 + 𝑥 + 2𝑦 − 9 = 0 

2𝑦 − 𝑥𝑦 = −𝑥2 − 𝑥 + 9 

𝑦(2 − 𝑥) = −𝑥2 − 𝑥 + 9 

𝑦 =
𝑥2 + 𝑥 − 9

𝑥 − 2
= (𝑥 + 3) −

3

𝑥 − 2
 

 

So, 𝑦 will be an integer whenever 𝑥 − 2 divides 3.  That is, for 𝑥 − 2 ∈ {−3, −1,1,3} or 𝑥 ∈

{−1,1,3,5}. 

Therefore, the set of all lattice points (𝑥, 𝑦) is {(−1,3), (1,7), (3,3), (5,7)}. 

∎ 

 

4.12 Frobenius Numbers 
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(see file: “WSU notes and homework on problem of Frobenius”) 
 

Theorem.  Problem of Frobenius 
 
Let 𝑎 and 𝑏 be relatively prime positive integers. Then the equation 
 

𝑎𝑥 + 𝑏𝑦 =  𝑛 
 
 (𝑖) is not solvable in nonnegative integers 𝑥 and 𝑦 for 𝑛 = 𝑎𝑏 − 𝑎 − 𝑏 
 
 (𝑖𝑖) is solvable in nonnegative integers 𝑥 and 𝑦 for all  𝑛 > 𝑎𝑏 − 𝑎 − 𝑏. 
 
 
If gcd(𝑎, 𝑏) = 𝑑 > 1 then the equation 
 

𝑎𝑥 + 𝑏𝑦 =  𝑛 
 

 (𝑖𝑖𝑖) is not solvable in nonnegative integers 𝑥 and 𝑦 for 𝑛 = 𝑑 ((𝑎 𝑑⁄ )(𝑏 𝑑⁄ ) − (𝑎 𝑑⁄ ) −

(𝑏 𝑑⁄ )) 

 
 (𝑖𝑣) is solvable in nonnegative integers 𝑥 and 𝑦 for 𝑛 provided 𝑑|𝑛 and 
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𝑛 > 𝑑 ((𝑎 𝑑⁄ )(𝑏 𝑑⁄ ) − (𝑎 𝑑⁄ ) − (𝑏 𝑑⁄ )) 

 
Sylvester, J. J. "Question 7382." Mathematical Questions from the Educational Times 41, 21, 
1884. 
 
 
1)  What is the greatest integer not representable in the form 5𝑥 + 9𝑦 for nonnegative 𝑥 and 𝑦? 
 
Solution 
 
We proved in class that if 𝑎 and 𝑏 are relatively prime positive integers then the equation 
 

𝑎𝑥 + 𝑏𝑦 =  𝑛 
 
is not solvable in nonnegative integers 𝑥 and 𝑦 for 𝑛 = 𝑎𝑏 − 𝑎 − 𝑏 but is solvable for all 𝑛 >
𝑎𝑏 − 𝑎 − 𝑏. 
 
So by direct application of this theorem, 𝑛 = (5 ∙ 9) − 5 − 9 = 31 is the greatest integer not 
representable in the form 5𝑥 + 9𝑦 with nonnegative 𝑥 and 𝑦. 

∎ 
 
 
Frobenius number 
 
Imagine a country prints stamps in only two denominations. You can stick as many stamps on an 
envelope as you want, but the question is what is the largest total denomination it is impossible 
to make? 
 
For example, imagine the two denominations are 5 (pence) and 7 (pence). It turns out the 
largest number you cannot make in this case is 23 (pence). There is no combination of these 
stamps which adds up to 23. Sure, you can make some denominations less than this e.g. 12 =
5 + 7, but you can make ANY number larger than this  e.g. 24 = 2 ⋅ 5 + 2 ⋅ 7. 
 

∎ 
 
 
Frobenius with Three Numbers 
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Mathematics Teacher, Calendar Problems, Number 6, March 1992 

 
 
Solution 
 

 
 

 
 

3(2), 3(3), 20 ⟹ 𝑘 = 3,𝑚 = 2, 𝑛 = 3, 𝑝 = 20 
 

3(2 − 1)(3 − 1) + 3(20) − 3 − 20 + 1 = 6 + 60 − 22 = 44. 
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So the largest number you cannot buy is 43. 
 

∎ 
 
 

 
 

 
Solution 

 
∎ 

 

 
 
 

Related Results 

 
•  Let 𝑎 and 𝑏 be relatively prime positive integers. Then there are  
 

(𝑎 − 1)(𝑏 − 1) 2⁄  
 
positive integers 𝑛 which cannot be represented in the form 
 

𝑎𝑥 + 𝑏𝑦 =  𝑛 
 
for nonnegative integers 𝑥 and 𝑦. 
 
(This result is also due to Sylvester.) 
 
 
e.g. 
 
Consider the form 3𝑥 + 5𝑦 = 𝑛.  We know from (𝑖) that 𝑛 = 3(5) − 3 − 5 = 7 is the largest 
integer that cannot be represented in this form with nonnegative integers 𝑥 and 𝑦.  The other 
nonnegative integers not representable in this form are 𝑛 = 1,2 and 4. 
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This makes for a total of 4 positive integers not representable in this form. 
 
We note that  
 

(𝑎 − 1)(𝑏 − 1) 2⁄ = (3 − 1)(5 − 1) 2⁄ = (2 ∙ 4) 2⁄ = 4 
 
as it should be. 
 
 
 
 
2)  How many positive integers are not representable in the form 5𝑥 + 9𝑦 for nonnegative 𝑥 
and 𝑦? 
 
Solution 
 
We stated (but did not prove) in class that if 𝑎 and 𝑏 are relatively prime positive integers then 
there are  
 

(𝑎 − 1)(𝑏 − 1) 2⁄  
 
positive integers 𝑛 which cannot be represented in the form 
 

𝑎𝑥 + 𝑏𝑦 =  𝑛 
 
for nonnegative integers 𝑥 and 𝑦. 
 
So by direct application of this theorem, there are (5 − 1)(9 − 1) 2⁄ = 32 2⁄ = 16 positive 
integers which cannot be represented in the form 5𝑥 + 9𝑦 with nonnegative 𝑥 and 𝑦. 

∎ 
 
 

3) In the game of table football you get 3 points for a field goal and 6 points for a 
touchdown.   There are no other ways to score points (e.g. safeties or extra points).  
What is the largest score  which is a multiple of gcd(3,6) that cannot be achieved in table 
football?  How many scores  which are multiples of gcd(3,6) are not achieveable?  
Careful.  Remember that gcd(3,6) ≠ 1. 

 
Solution 
 
We proved in class that if 𝑎 and 𝑏 are positive integers with gcd(𝑎, 𝑏) = 𝑑 then the equation 
 

𝑎𝑥 + 𝑏𝑦 =  𝑛 
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is not solvable in nonnegative integers 𝑥 and 𝑦 for 𝑛 = 𝑑 ((𝑎 𝑑⁄ )(𝑏 𝑑⁄ ) − (𝑎 𝑑⁄ ) − (𝑏 𝑑⁄ )) but 

is solvable for all 𝑛 if 𝑑|𝑛 and 𝑛 > 𝑑 ((𝑎 𝑑⁄ )(𝑏 𝑑⁄ ) − (𝑎 𝑑⁄ ) − (𝑏 𝑑⁄ )). 

 
We see that gcd(3,6) = 3 and hence by direct application of this theorem the greatest multiple 
of 3 which is not representable in the form 
 

3𝑥 + 6𝑦 
 

is 𝑛 = 3((3 3⁄ )(6 3⁄ ) − (3 3⁄ ) − (6 3⁄ )) = 3(2 − 1 − 2) = −3.   

 
This means that all positive multiples of 3 are representable in the form 3𝑥 + 6𝑦 and hence the 
number of multiples of gcd(3,6) = 3 which are not representable in the form 3𝑥 + 6𝑦 is 0. 

∎ 
 
 

4) In the online article, “What is a combinatorial game?” it is claimed that 116 is the largest 
 number that cannot be expressed in the form 10𝑥 + 14𝑦 with nonnegative integers 𝑥 
and 𝑦.   Prove that this is wrong by actually finding nonnegative 𝑥 and 𝑦 such that 10𝑥 +
14𝑦 = 116 and  then find the correct answer.  That is, what is the largest multiple of the 
gcd(10,14) which  cannot be expressed in the form 10𝑥 + 14𝑦? 

 
 Online Article: 
 
 http://www.ams.org/featurecolumn/archive/games2.html 
 
 
(5A124)  The chicken nuggets at DonMickey’s restaurants come in packages of 6, 9, or 20.  

What is the largest total number of nuggets that cannot be purchased using some combination 

of these packages? 

[Adapted from Mathematics Teacher, March 17, 2006.] 

Solution 

 
∎ 

 

http://www.ams.org/featurecolumn/archive/games2.html
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Mu Alpha Theta National Convention 2001, Number Theory Test, Alpha Division, Problem # 6 

Find the largest integer 𝑑 for which there are no nonnegative integer solutions (𝑎, 𝑏, 𝑐) which 

satisfy the equation 5𝑎 + 7𝑏 + 11𝑐 = 𝑑. 

Solution 

 
 

∎ 

 
 

4.13 Extra GCD and LCM Problems 
 

Mathematics Teacher, Calendar Problem 6, February 2007 

A ray revolves clockwise in jumps of 100-degree increments.  The ray first regains its original 

position in how many jumps? 

Solution 

After 𝑛 jumps the ray will have revolved 100𝑛 degrees.  We are looking for the smallest 𝑛 such 

that 100𝑛 is a multiple of 360.  Visually, we are looking for the first number that is both of the 

sets {100, 2(100), 3(100), 4(100),… } and {360, 2(360), 3(360), 4(360),… }.  But this is 

exactly what is meant by the lcm (least common multiple) of 100 and 360. 

lcm(100,360) = lcm(2252, 233251) = 233252 = 1800 = 100(18). 

Therefore, 18 jumps of the ray are required to bring the ray back to its original position. 

∎ 

 

(1T923) 

 
Solution 

 
∎ 

 

(1T941) 

Let 𝑎, 𝑏, and 𝑐 be integers.  To add in rational form 
𝑎
42 +

𝑏
117 +

𝑐
728, we make use of the lowest 

common denominator.  What is it? 
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Solution 

lcd(42,117,728) = lcm(42,117,728) 

= lcm(213171, 32131, 2371131) 

= 2max(1,0,3)3max(1,2,0)7max(1,0,1)13max(0,1,1)  

= 233271131 = 6552. 

∎ 

 

(1T131)  Find the sum of all positive integers 𝑛 for which LCM(2, 𝑛) = GCD(𝑛, 210). 

Solution 

 
∎ 

 

(1A153)  Let 𝑎 and 𝑏 be positive integers.  If the greatest common factor of 𝑎 and 𝑏 is 10 and 

the least common multiple of 𝑎 and 𝑏 is 60, determine the minimum possible value of 𝑎 + 𝑏. 

Solution 

 
∎ 

 
 

(1A144)  Let 𝑎, 𝑏, and 𝑐 be three positive integers.  The greatest common divisor of 𝑎 and 𝑏 is 2; 

the greatest common divisor of 𝑏 and 𝑐 is 6, and the least common multiple of 𝑎 and 𝑐 is 72.  

Determine the maximum possible value of 𝑎 + 𝑐. 

Solution 

 
∎ 

 

(TT142)  Three positive integers have a least common multiple of 360 and a greatest common 

divisor of 2.  What are the smallest and largest possible values for the product of the three 

integers? 
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Solution 

 
∎ 

 

(1A973) 

Three good friends dine in the same restaurant.  All are eating three today.  However, they do 

not eat there every day.  The first eats there every twelfth day, the second every fourteenth 

day, and the third every twenty-first day.  How many days from today will they next all meet in 

the restaurant? 

Solution 

The least common multiple of 12,14, and 21 is 84. 

∎ 

 
(1A894) 

 
Solution 

 
∎ 

 
Source: Number Theory Through Exercises, Sedrakyan and Sedrakyan 
Problem 2.17, page 21 
 

Find  gcd( 1⋯1
100 digits

, 1⋯1
120 digits

). 

 
Solution 
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We begin by stating and proving the following lemma which we will need to apply repeatedly. 
 

Lemma 

gcd(1⋯1
𝑎 digits

, 1⋯ 1
𝑎 + 𝑏 digits

) = gcd(1⋯1
𝑎 digits

, 1⋯ 1
 𝑏 digits

). 

 
Proof of Lemma 
 
We will use the following two properties of gcd’s in this lemma: 
 
 (i) gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎) 
 
 (ii) If gcd(𝑎, 𝑐) = 1, then gcd(𝑎, 𝑏 ⋅ 𝑐) = gcd(𝑎, 𝑏). 
 

gcd(1⋯1
𝑎 digits

, 1⋯1
    𝑎 + 𝑏 digits

) = gcd(1⋯1
𝑎 digits

, 1⋯1
    𝑎 + 𝑏 digits

−   1⋯1
𝑎 digits

)  
from property 
(i) above

  

= gcd (1⋯1
𝑎
,   1⋯1

𝑏
0⋯0
𝑎
) 

= gcd (1⋯1
𝑎
,   (1⋯1

𝑏
) ⋅ 2𝑎5𝑎) 

= gcd (1⋯1
𝑎
,   1⋯1

𝑏
)   from property (ii) above. 

∎ 
 
 
Now we can apply this lemma repeatedly to establish the required result. 
 

gcd (1⋯1
100

,   1⋯1
120

) = gcd (1⋯1
100

,   1⋯1
20

) 

= gcd (1⋯1
80

,   1⋯1
20

) 

= gcd (1⋯1
60

,   1⋯1
20

) 

                                                         ⋮ 

= gcd (1⋯1
20

,   1⋯1
20

) 

= 1⋯1
20

. 
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∎ 

 

Source: Number Theory Through Exercises, Sedrakyan and Sedrakyan 
Problem 2.15, page 21 
 
 

Find gcd(2100 − 1, 2120 − 1). 

 

Solution 

We begin by stating and proving the following lemma which we will need to apply repeatedly. 
 
 

Lemma 

gcd(2𝑎 − 1, 2𝑎+𝑏 − 1) = gcd(2𝑎 − 1, 2𝑏 − 1). 

 
Proof of Lemma 
 
We will use the following two properties of gcd’s in this lemma: 
 
 (i) gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎) 
 
 (ii) If gcd(𝑎, 𝑐) = 1, then gcd(𝑎, 𝑏 ⋅ 𝑐) = gcd(𝑎, 𝑏). 
 

gcd(2𝑎 − 1, 2𝑎+𝑏 − 1) = gcd(2𝑎 − 1, (2𝑎+𝑏 − 1) − (2𝑎 − 1))  
from property 
(i) above

  

= gcd(2𝑎 − 1, 2𝑎+𝑏 − 2𝑎) 

= gcd(2𝑎 − 1, 2𝑎( 2𝑏 − 1)) 

= gcd(2𝑎 − 1, 2𝑏 − 1)   from property (ii) above. 

∎ 
 

Now we can apply this lemma repeatedly to establish the required result. 
 

gcd(2100 − 1, 2120 − 1) = gcd(2100 − 1, 220 − 1) 

= gcd(280 − 1, 220 − 1) 

= gcd(280 − 1, 220 − 1) 

                                                                     ⋮ 
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= gcd(220 − 1, 220 − 1) 

= 220 − 1. 

∎ 

 

 

https://testbook.com/objective-questions/mcq-on-number-system--

5eea6a1039140f30f369e843 

 

 
Solution 

 

 
∎ 

  

  

https://testbook.com/objective-questions/mcq-on-number-system--5eea6a1039140f30f369e843
https://testbook.com/objective-questions/mcq-on-number-system--5eea6a1039140f30f369e843



