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Chapter 5. Modular Arithmetic 
 

 

5.1 Definitions and Properties of Modular Arithmetic 
 

 

Congruency 

 

If 𝑛 is positive and 𝑛|(𝑎 − 𝑏), we say that 𝑎 is congruent to 𝑏 modulo 𝑛 and we write 

𝑎 ≡ 𝑏 mod(𝑛).  If 𝑎 is not congruent to 𝑏 modulo 𝑛, we write 𝑎 ≢ 𝑏 mod(𝑛). 

 

Does 𝑚 ≥ 2 here?  Why or why not. 
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If 𝑎 ≡ 𝑏 (mod𝑚) then 𝑎𝑛 ≡ 𝑏𝑛  (mod𝑚) for all positive integers 𝑛. 

 

𝑐𝑎 ≡ 𝑐𝑏 (mod𝑚) if and only if 𝑎 ≡ 𝑏 (mod𝑚/(𝑐,𝑚)) 
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𝑥 ≡ 𝑦 (mod𝑚𝑖) for 𝑖 = 1,2,… , 𝑟 if and only if 𝑥 ≡ 𝑦 (mod[𝑚1,𝑚2, … , 𝑚𝑟] ). 

 

 

 

 
Proof of (3)  [Niven, Zuckerman page 16] 



mathcloset.com  160 

 
 

 
 

 
 

 
 

 

𝑥 ≡ 𝑦 (mod𝑚𝑖) for 𝑖 = 1,2,… , 𝑟 if and only if 𝑥 ≡ 𝑦 (mod[𝑚1,𝑚2, … , 𝑚𝑟] ). 
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5.2 Theorems of Fermat, Euler, and Wilson  
 

Theorem 

Let 𝑝 be a prime. A positive integer 𝑚 is its own inverse modulo 𝑝 if and only if 𝑝 divides 𝑚 + 1 

or 𝑝 divides 𝑚 − 1. 

 

Wilson’s Theorem 

If 𝑝 is a prime number, then 𝑝 divides (𝑝 − 1)! + 1. 

 

Euler’s Phi (or Totient) Function 
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  “In order words, 𝜙(𝑛) is the number of positive integers less than or equal to 𝑛 that are 
relatively prime to 𝑛.”  (page 68, textbook) 
 
 
Section 2.6 Euler’s Theorem (pp 68-72) 
 
 
Definition 7  (Euler’s Phi Function)  Let 𝑛 ∈ ℤ with 𝑛 > 0.  The Euler phi-function, denoted 
𝜙(𝑛), is the function defined by 
 

𝜙(𝑛) = |{𝑥 ∈ ℤ: 1 ≤ 𝑥 ≤ 𝑛; (𝑥, 𝑛) = 1}| 

 
 
 

where | { set 𝐴  } | is the notation for the cardinality of set 𝐴, i.e. the number of elements in set 

𝐴. 
 
 
 
  “In order words, 𝜙(𝑛) is the number of positive integers less than or equal to 𝑛 that are 
relatively prime to 𝑛.”  (page 68, textbook) 
 
 
  “Note that 𝑛 will be relatively prime to itself if and only if 𝑛 = 1.”  (page 68, textbook) 
 
 
  Example 12(c).  “If 𝑝 is a prime number, then all positive integers less than 𝑝 are relatively 
prime to 𝑝.  Inasmuch as there are 𝑝 − 1 such numbers, we have 𝜙(𝑝) = 𝑝 − 1.”  (page 69, 
textbook) 
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Theorem 3.3: Let 𝑝 be a prime number and let 𝑎 ∈ ℤ with 𝑎 > 0.  Then 𝜙(𝑝𝑎) = 𝑝𝑎 − 𝑝𝑎−1. 
 
e.g. 𝜙(4) = 𝜙(22) = 22 − 21.   Check:  2 = 4 − 2 ?   Yes. 

 𝜙(8) = 𝜙(23) = 23 − 22.   Check:  4 = 8 − 4 ?   Yes. 

 𝜙(9) = 𝜙(32) = 32 − 31.   Check:  6 = 9 − 3 ?   Yes. 

 
 
Theorem 3.4: Let 𝑛 ∈ ℤ with 𝑛 > 0.  Then 
 

𝜙(𝑛) = 𝑛 ∙ ∏ (1 −
1

𝑝
)

𝑝|𝑛,   𝑝 prime

 

 
 

(TI159)  Determine the number of elements of 𝑆 that are in simplest form if 

 

𝑆 = {
1

144
,
2

144
,
3

144
,… ,

142

144
,
143

144
}. 

 

Solution 

 

 
∎ 

Using Euler’s Phi Function: 

𝜙(144) = 𝜙(2432) = 144(1 −
1

2
) (1 −

1

3
) = 144(

1

2
) (
2

3
) = 48. 

 

Euler’s Theorem 

If 𝑚 is a positive integer and 𝑎 is an integer such that (𝑎,𝑚) = 1, then  

𝑎𝜙(𝑚) ≡ 1  (𝑚𝑜𝑑 𝑚) 

where 𝜙 is Euler’s 𝜙-function. 
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Fermat’s Theorem 

If 𝑝 is a prime and 𝑎 is a positive integer with 𝑝 ∤ 𝑎, then 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

Order of 𝒂 mod𝒎, written ord𝒎 𝒂 

The order of 𝑎mod𝑚 (with 𝑎 and 𝑚 relatively prime) is the smallest positive integer 𝑥 such 
that 𝑎𝑥 ≡ 1 (mod𝑚). 

We know from Euler’s Theorem that 𝑎𝜙(𝑚) ≡ 1 (mod𝑚) therefore (by definition)  

ord𝑚 𝑎 ≤ 𝜙(𝑚). 

𝜙(1132) = 564 

 

 

564 = 22 ⋅ 31 ⋅ 471 

 

order1132(51)=94 

order1132(45)=6 

order1132(29)=47 

 

456mod(1132) = 1 

2947mod(1132) = 1 

 

47 = 32 + 8 + 4 + 2 + 1 

291mod(1132) = 29 

292mod(1132) = 841 
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294mod(1132) = (841 ⋅ 841)mod(1132) = 913 

298mod(1132) = (913 ⋅ 913)mod(1132) = 417 

2916mod(1132) = 693 

2932mod(1132) = 281 

2947mod(1132) = (2932 ⋅ 298 ⋅ 294 ⋅ 292 ⋅ 291)mod(1132) 

= (281 ⋅ 417 ⋅ 913 ⋅ 841 ⋅ 29)mod(1132) 

= 1 

Exercises 

1) Show that 10! + 1 is divisible by 11. 

2) What is the remainder when 5! 25! is divided by 31? 

3) What is the remainder when 5100 is divided by 7? 

4) Show that if 𝑝 is an odd prime, then 2(𝑝 − 3)! ≡ −1(𝑚𝑜𝑑 𝑝). 

5) Find a reduced residue system modulo 2𝑚, where 𝑚 is a positive integer. 

6) Show that if 𝑎1, 𝑎2, . . . , 𝑎𝜙(𝑚) is a reduced residue system modulo 𝑚, where 𝑚 is a positive 

 integer with 𝑚 ≠ 2, then 𝑎1 + 𝑎2+. . . +𝑎𝜙(𝑚) ≡ 0 (𝑚𝑜𝑑 𝑚). 

7) Show that if 𝑎 is an integer such that 𝑎 is not divisible by 3 or such that 𝑎 is divisible by 9, 
 then 𝑎7 ≡ 𝑎 (𝑚𝑜𝑑 63). 
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What is he talking about when he says using the Euclidean algorithm to find 55 mod 11? 

 

55mod11 = 𝑥 ⟺ 55 = 11𝑘 + 𝑥 ⟺ 
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Example 

 

229 is a 9-digit integer with distinct digits.  What digit (from 0 to 9) does it not contain?  

(Source: 2010 Lehigh University High School Math Contest, Problem #34) 

 

Solution 

 

Let 229 = 𝑎810
8 + 𝑎710

7 +⋯+ 𝑎110
1 + 𝑎0.   

 

Let 𝑘 be the single digit in {0,1,2,… ,9} that 229 does not include.  Then 

 

𝑎8 + 𝑎7 +⋯𝑎1 + 𝑎0 = (9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0) − 𝑘 = 45 − 𝑘. 

 

We know from the divisibility rule for 9 that 

 

229 mod(9) = (𝑎8 + 𝑎7 +⋯𝑎1 + 𝑎0)mod(9) = (45 − 𝑘)mod(9) = (0 − 𝑘)mod(9). 

 

We can see that gcd(2,9) = 1 so we can apply Euler’s Theorem to determine that 

 

2𝜙(9) ≡ 1mod(9) 

where 𝜙(9) = 9 (1 −
1
3
) = 6.  So  

 

229 ≡ (26)4 ⋅ 25 ≡ 14 ⋅ 25 ≡ 32 ≡ 5 ≡ −4 mod(9). 

 

Hence −𝑘 = −4 or 𝑘 = 4.  That is, the missing digit is 4.  Using a calculator (which was not 

allowed on this contest) we can see that in fact 229 = 536870912. 

∎ 
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Example  (Source: 2009 Lehigh University High School Math Contest, Problem #17) 

 

What is the remainder when 32009  is divided by 21? 

 

Solution 

 

We cannot directly apply Euler’s Theorem as we did in the previous example because the 

necessary condition gcd(3,21) =
?
1 for the theorem to hold is not met. 

 

We can circumvent this problem by using the result 

 

𝑥 ≡ 𝑦 (mod𝑚𝑖) for 𝑖 = 1,2,… , 𝑟 if and only if 𝑥 ≡ 𝑦 (mod[𝑚1,𝑚2, … ,𝑚𝑟] ) 

 

of the previous chapter. 

 

Notice that [7,3] = 7 ⋅ 3 = 21 because 7 and 3 are relatively prime.  So, it follows from this 

result that 

 

𝑥 ≡ 𝑦 mod(21) ⟺ 𝑥 ≡ 𝑦 mod(7) and  𝑥 ≡ 𝑦 mod(3). 

 

Note that 𝜙(7) = 6 and hence 36 ≡ 1mod(7) by Euler’s Theorem.  Thus, 

 

32009 mod(7) ≡ ((36)334 ⋅ 35) mod(7) ≡ (1 ⋅ 5)mod(7) ≡ 5mod(7). 

 

And clearly 

32009 ≡ 0mod(3). 

 

But there appears to be a problem because to apply the above result we needed 32009 mod(7) 

and 32009 mod(3) to be congruent to the same value but we found 32009 mod(7) ≡ 5 and 

32009 mod(3) ≡ 0. 

 

Fortunately, there is a simple fix.  We note that 5 ≡ 12mod(7) and 3 ≡ 12mod(3).  Hence, 

 

32009 ≡ 12 mod(7) and  32009 ≡ 12 mod(3) ⟹ 32009 ≡ 12mod(21). 

 

Therefore, we get a remainder of 12 when we divide 32009  by 21. 

∎ 
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Note: In the next chapter we will introduce the Chinese Remainder Theorem which will 

generalize the approach taken in this last example. 

 

The next example shows that Euler’s Theorem is often but not always the best tool for finding 

𝑎𝑏 mod 𝑛. 

 

Example (Source: 1999 Lehigh University High School Math Contest, Problem #34) 

 

What is the remainder when 683 + 883 is divided by 49? 

 

Solution 

 

At first glance it is tempting to see this as an application of Euler’s Theorem and to separately 

find 683 mod 49 and 883 mod 49.  But at first glance this also has the appearance of a time- 

consuming approach because 𝜙(49) = 42 which means 

 

683 mod 49 = (642 ⋅ 641)mod 49 = (6𝜙(49) ⋅ 641)mod 49 = 641 mod49 

 

and we are still facing the problem of finding 641 mod 49. 

 

Are there any clues for a better approach?  If we notice the disguised 7’s we can rewrite the 

problem as 

((7 − 1)83 + (7 + 1)83)mod 72. 

 

This form suggests expanding the binomial terms and looking for cancellation.  It also suggests 

that the remaining terms will involve a factor of 7𝑗  which is convenient when working mod 72. 

 

(7 − 1)83 + (7 + 1)83 =∑(
83
𝑗
) 7𝑗(−1)83−𝑗

83

𝑗=0

+∑(
83
𝑗
)7𝑗(1)83−𝑗

83

𝑗=0

 

=∑(
83
𝑗
) 7𝑗 ((−1)83−𝑗 + (1)83−𝑗  )

83

𝑗=0

 

= ∑ (
83
𝑗
)7𝑗 ((−1)83−𝑗 + (1)83−𝑗  )

83

𝑗=0
𝑗 odd
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= ∑ (
83
𝑗
)7𝑗 ⋅ 2

83

𝑗=0
𝑗 odd

 

= 2(
83
1
)71 + 73 ∑ (

83
𝑗
)7𝑗−3

83

𝑗=3
𝑗 odd

⋅ 2. 

It follows that 

((7 − 1)83 + (7 + 1)83)mod 72 = 2(
83
1
)71 mod 72 + 73 ∑ (

83
𝑗
)7𝑗−3

83

𝑗=3
𝑗 odd

⋅ 2mod 72 

= 2(
83
1
)71 mod 72 = 1162 mod 72 

= 35. 

∎ 
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ELEMENTS OF NUMBER THEORY: LECTURE NOTES, FELIX LAZEBNIK, pg. 12 

 
 

 
Solution 

 

 
 

23654009839mod8 ≡ 839mod8 = (8(104) + 7)mod8 = 7 

 

02mod8 = 0 12mod8 = 1 22mod8 = 4 

32mod8 = 1 42mod8 = 0 52mod8 = 1 

62mod8 = 4 72mod8 = 4  

 

But there is no combination of three of {0,1,4} sampling with replacement that can equal 7. 

 

 

 
Solution 

 

 
 

Niven, Zuckermann 
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5.3 Largest Integer that Divides Integer Polynomial 𝒇(𝒏) for all 𝒏 
 

Complete Residue System 

 

A set 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} of 𝑛 integers is a complete residue system mod(𝑛) if every integer in 

ℤ is congruent mod(𝑛) to exactly one of the 𝑎𝑗's in 𝐴. 

 

Equivalently, the set 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} of 𝑛 integers is a complete residue system (mod 𝑛) if 

each element of 𝐴 mod(𝑛) is distinct.  That is, 𝑛 ∤ |𝑎𝑗 − 𝑎𝑖| for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 

 

 

Theorem.  Every set of 𝑛 consecutive integers is a complete residue system mod(𝑛). 

 

Proof 

 

Consider the set 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} = {𝑐 + 1, 𝑐 + 2, 𝑐 + 3,… , 𝑐 + 𝑛} for integers 𝑐 and 𝑛.  In 

this case for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we have 

 

|𝑎𝑗 − 𝑎𝑖| = |(𝑐 + 𝑗) − (𝑐 + 𝑖)| = |𝑗 − 𝑖| < 𝑛. 

 

Hence, 𝑛 ∤ |𝑎𝑗 − 𝑎𝑖|. 

∎ 

 

 

As a particular example of this theorem, the set of integers 𝐴 = {0,1,2,… , 𝑛 − 1} is a complete 

residue system mod(𝑛).  The set {0,1,2,… , 𝑛 − 1} is generally referred to as the set of least 

nonnegative residues mod(𝑛). 

 

 

Theorem.  For all integers 𝑐 and all integers 𝑛 > 0, exactly one of the consecutive integers 

{𝑐 + 1, 𝑐 + 2, 𝑐 + 3, … , 𝑐 + 𝑛} is divisible by 𝑛. 

 

Proof 
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By the previous theorem, the set of integers 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} = {𝑐 + 1, 𝑐 + 2, 𝑐 + 3,… , 𝑐 +

𝑛} is a complete residue system mod(𝑛).  Hence (exactly) one of these elements is congruent 

to 0 mod(𝑛).  That is 𝑛|(𝑎𝑗 − 0) for exactly one of the elements in 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}. 

 

In other words, 𝑛|(𝑐 + 𝑗) for exactly one 𝑗 ∈ {1,2, … , 𝑛}. 

∎ 

 

Theorem  (𝑛 + 1)(𝑛 + 2)⋯(𝑛 + 𝑘) is divisible by 𝑘! for all integers 𝑛 ≥ 0 and 𝑘 ≥ 1. 

 

Proof 
(𝑛 + 1)(𝑛 + 2)⋯(𝑛 + 𝑘)

𝑘!
=
𝑛! ⋅ (𝑛 + 1)(𝑛 + 2)⋯(𝑛 + 𝑘)

𝑛! ⋅ 𝑘!
 

 

=
(𝑛 + 𝑘)!

𝑛! ⋅ 𝑘!
= (

𝑛 + 𝑘
𝑘
). 

 

But we know that the binomial coefficient (
𝑛 + 𝑘
𝑘
) equals the number of ways to select 𝑘 

objects without replacement from a set of 𝑛 + 𝑘 distinct objects and is necessarily a positive 

integer.  That is 𝑘! |(𝑛 + 1)(𝑛 + 2)⋯(𝑛 + 𝑘). 

∎ 

 

If gcd(6, 𝑛) = 1, then 𝑛2 − 1 is divisible by 24. 
 
Proof 
 

gcd(6, 𝑛) = 1 ⟹ 𝑛 = 6𝑘 + 1 or 6𝑘 + 5. 
 
Case 1.  𝑛 = 6𝑘 + 1.  Then 𝑛2 − 1 = (36𝑘2 + 12𝑘 + 1) − 1 = 12𝑘(3𝑘 + 1).  If 𝑘 is even then 

𝑘 is divisible by 2.  If 𝑘 is odd, then 3𝑘 + 1 is divisible by 2.  So in general, 𝑘(3𝑘 + 1) is divisible 

by 2 and hence 𝑛2 − 1 = 12𝑘(3𝑘 + 1) is divisible by 24. 

 

Case 2.  𝑛 = 6𝑘 + 5.  Then 𝑛2 − 1 = (36𝑘2 + 60𝑘 + 25) − 1 = 12(3𝑘2 + 5𝑘 + 2) =

12(3𝑘 + 2)(𝑘 + 1).  If 𝑘 is even then 3𝑘 + 2 is divisible by 2.  If 𝑘 is odd then 𝑘 + 1 is divisible 

by 2.  So in general, (3𝑘 + 1)(𝑘 + 1) is divisible by 2 and hence 𝑛2 − 1 = 12(3𝑘 + 1)(𝑘 + 1) is 

divisible by 24. 

∎ 
 
Note that from the previous result it follows immediately that 𝑝2 − 1 is divisible by 24 for all 

prime 𝑝 > 3. 
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Furthermore, it also follows that 𝑝2 − 𝑞2 is divisible by 24 for all prime 𝑝, 𝑞 > 5. 
 

𝑝2 − 𝑞2 = (𝑝2 − 1) − (𝑞2 − 1) and because 24 divides both 𝑝2 − 1 
and 𝑞2 − 1 it must divide their difference. 

∎ 
 
Example 
 

 
 

 
∎ 

 
Example (Source: 2022 Lehigh University High School Math Contest, Problem #4) 
 
Find the prime number 𝑝 such that 𝑝2 − 1 has exactly 10 divisors (including 1 and 𝑝2 − 1)? 
 
Solution 
 

Suppose the prime factorization of 𝑝2 − 1 is 𝑝2 − 1 = 2𝑎3𝑏5𝑐7𝑑11𝑒⋯.  Then  
 
 
𝑝 ≠ 2 and 𝑝 ≠ 3 because neither 22 − 1 = 5 nor 32 − 1 = 8 have 10 factors.  Therefore, by 
the previous example, 𝑝2 − 1 is divisible by 24 = 23 ⋅ 31. 
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Therefore, the prime factorization has the form 
 

𝑝2 − 1 = 23+𝑎31+𝑏5𝑐7𝑑11𝑒⋯ 
 
where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, ⋯ are nonnegative integers. 
 
From this factorization and hence 𝑝2 − 1 has (3 + 𝑎 + 1)(1 + 𝑏 + 1)(𝑐 + 1)(𝑑 + 1)(𝑒 + 1)⋯ 
factors.  But we are told that 𝑝2 − 1 has 10 = 2 ⋅ 5 factors. 
 
Thus, 
 

2 ⋅ 5 = (4 + 𝑎)(2 + 𝑏)(𝑐 + 1)(𝑑 + 1)(𝑒 + 1)⋯ 
 
for some nonnegative integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒,⋯ . Clearly the only possibility is 𝑎 = 1, 𝑏 = 𝑐 = 𝑑 =
⋯ = 0. 
 
That is, 𝑝2 − 1 = 243 = 48.  Thus, 𝑝2 = 49 and 𝑝 = 7. 

∎ 
 
 
Example 
 
Both 2𝑛 and 2𝑛 + 2 are divisible by 2 and exactly one of 2𝑛 and 2𝑛 + 2 is divisible by 4. 

 

Proof 

 

Clearly both 2𝑛 and 2𝑛 + 2 are divisible by 2. 

 

Now consider (2𝑛)mod(4) 

 

Suppose 𝑛 is odd.  Then 2𝑛 = 2(2𝑘 + 1) = 4𝑘 + 2 and (2𝑛)mod(4) = 2.  And in this case 

(2𝑛 + 2)mod(4) = 0.  That is, (2𝑛 + 2) is divisible by 4. 

 

Suppose 𝑛 is even.  Then 2𝑛 is divisible by 4.  And in this case (2𝑛 + 2)mod(4) = 2. 

So, exactly one of 2𝑛 and 2𝑛 + 2 is divisible by 4. 

∎ 

 

Find the largest positive integer 𝑏 such that 

  

𝑓(𝑛) = 𝑛(2𝑛 + 1)(𝑛2 − 1)(4𝑛2 + 4𝑛) 
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is divisible by 𝑏 for all integers 𝑛 > 1. 

 

Solution 

We can rewrite 𝑓(𝑛) as 

𝑓(𝑛) = 4 ⋅ ((𝑛 − 1)𝑛(𝑛 + 1)) ⋅ (𝑛(𝑛 + 1)(2𝑛 + 1)) = 4 ⋅ 𝑔(𝑛) ⋅ ℎ(𝑛). 

 

First note that 𝑔(𝑛) = (𝑛 − 1)𝑛(𝑛 + 1) is the product of 3 consecutive integers and hence is 

divisible by both 2 and 3. 

Second, note that exactly one of the two factors 𝑛 and (𝑛 + 1) in ℎ(𝑛) must be divisible by 2 

because they are consecutive. 

Finally, we I claim that exactly one of the three factors 𝑛, (𝑛 + 1) and (2𝑛 + 1) in ℎ(𝑛) must be 

divisible by 3.  To see why, consider the three cases for 𝑛mod(3) separately. 

If 𝑛 ≡ 0mod(3), then 𝑛 is divisible by 3 while (𝑛 + 1) and (2𝑛 + 1) are not. 

If 𝑛 ≡ 1mod(3), then (2𝑛 + 1) is divisible by 3 while 𝑛 and (𝑛 + 1) are not. 

If 𝑛 ≡ 2mod(3), then (𝑛 + 1) is divisible by 3 while 𝑛 and (2𝑛 + 1) are not. 

Therefore, in all cases exactly on of the factors 𝑛, (𝑛 + 1) and (2𝑛 + 1) is divisible by 3. 

We have now shown that 

𝑓(𝑛) = 4 ⋅ ((𝑛 − 1)𝑛(𝑛 + 1))⏟            
divisible by 2 and 3

⋅ ((𝑛 − 1)𝑛(𝑛 + 1))⏟            
divisible by 2 and 3

. 

Thus, 𝑓(𝑛) is always divisible by 𝑏 = 4 ⋅ (2 ⋅ 3) ⋅ (2 ⋅ 3) = 144. 

∎ 

 

 

 

Mu Alpha Theta National Convention 2004, Number Theory Test, Alpha Division, Problem #18 

Find the largest integer that evenly divides 𝑛5 − 5𝑛3 + 4𝑛 for all integers 𝑛. 

Solution 

 
∎ 

 

 

 
Solution 
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∎ 

 

 

 

 

 
Solution 

 
∎ 

 

 

 

 

What is the largest integer that divides 𝑛6 − 𝑛2, for all integers 𝑛. 

Solution 

𝑛6 − 𝑛2 = 𝑛2(𝑛4 − 1) = 𝑛2(𝑛2 − 1)(𝑛2 + 1) = 𝑛2(𝑛 − 1)(𝑛 + 1)(𝑛2 + 1). 

We first notice that 2 is a divisor of 𝑛6 − 𝑛2 for all 𝑛 because the two successive numbers (𝑛 −

1) and 𝑛 both divide 𝑛6 − 𝑛2. 

Then we notice that 3 is a divisor for all 𝑛 because the three successive numbers (𝑛 − 1), 𝑛 and 

(𝑛 + 1) each divide 𝑛6 − 𝑛2. 

Also 4 is a divisor for all 𝑛 because 2 divides 𝑛(𝑛 − 1) and 2 divides 𝑛(𝑛 + 1).  Therefore, 4 

divides 𝑛(𝑛 − 1) ⋅ 𝑛(𝑛 + 1) = 𝑛2(𝑛 − 1)(𝑛 + 1). 

From Fermat’s Theorem we know that for all prime 𝑝 ∤ 𝑛, 𝑛𝑝−1 ≡ 1 (mod𝑝).  This means that 
𝑝|(𝑛𝑝−1 − 1) for all prime 𝑝 ∤ 𝑛. 

Therefore 5|(𝑛4 − 1) for all 𝑛 such that 5 ∤ 𝑛.  But 𝑛6 − 𝑛2 = 𝑛2(𝑛4 − 1) and hence it follows 
that 5|(𝑛6 − 𝑛2) for all 𝑛 such that 5 ∤ 𝑛. 

But what is 5|𝑛 ?  That is, 𝑛 = 5𝑘 for some integer 𝑘.  In this case 

𝑛6 − 𝑛2 = 𝑛2(𝑛4 − 1) = (5𝑘)2 ((5𝑘)4 − 1) 

which is divisible by 5.  So 5|(𝑛6 − 𝑛2) for all 𝑛. 
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We have shown that 3, 4 and 5 all divide 𝑛6 − 𝑛2 for all 𝑛.  Therefore 3 × 4 × 5 = 60 divides 
𝑛6 − 𝑛2 for all 𝑛. 

∎ 

 

What is the largest integer which must evenly divide all integers of the form 𝑛5 − 𝑛? 
https://math.stackexchange.com/questions/1622741/what-is-the-largest-integer-which-must-

evenly-divide-all-integers-of-the-form-n 

 
Find the largest natural number 𝑚 such that 𝑛3 − 𝑛 is divisible by 𝑚 for all 𝑛. 
https://math.stackexchange.com/questions/948511/find-the-largest-natural-number-m-such-

that-n3-n-is-divisible-by-m-for-all-n 

 
Find the largest number that 𝑛(𝑛2 − 1)(5𝑛 + 2) is always divisible by. 
https://math.stackexchange.com/questions/4185314/find-the-largest-number-that-nn2-15n2-
is-always-divisible-by 
 

Prove that 2730 divides 𝑛13 − 𝑛 for all integers 𝑛. 
https://math.stackexchange.com/questions/1387239/prove-that-2730-divides-n13-n-for-all-
integers-n 
 

 

 

 
 

Exactly one of 𝑥, 𝑦 is divisible by 3. 

Exactly one of 𝑥, 𝑦 is divisible by 4. 

Exactly one of 𝑥, 𝑦, 𝑧 is divisible by 5. 

The largest number that always divides 𝑥𝑦𝑧 is 60. 

 

 

Saint Mary’s College Mathematics Contest Problems 

48.  Take any number in base 5.  Rearrange the digits and find the difference between the 

original number and the rearranged number.  What is the largest integer that ALWAYS divides 

the difference? 

Solution 

 

 

https://math.stackexchange.com/questions/1622741/what-is-the-largest-integer-which-must-evenly-divide-all-integers-of-the-form-n
https://math.stackexchange.com/questions/1622741/what-is-the-largest-integer-which-must-evenly-divide-all-integers-of-the-form-n
https://math.stackexchange.com/questions/948511/find-the-largest-natural-number-m-such-that-n3-n-is-divisible-by-m-for-all-n
https://math.stackexchange.com/questions/948511/find-the-largest-natural-number-m-such-that-n3-n-is-divisible-by-m-for-all-n
https://math.stackexchange.com/questions/4185314/find-the-largest-number-that-nn2-15n2-is-always-divisible-by
https://math.stackexchange.com/questions/4185314/find-the-largest-number-that-nn2-15n2-is-always-divisible-by
https://math.stackexchange.com/questions/1387239/prove-that-2730-divides-n13-n-for-all-integers-n
https://math.stackexchange.com/questions/1387239/prove-that-2730-divides-n13-n-for-all-integers-n
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∎ 
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Five Hundred Mathematical Challenges, Barbeau, Klamkin, Moser, Problem #333 

Prove that, for all natural numbers 𝑛, 22𝑛 + 24𝑛 − 10 is divisible by 18. 

Solution 

 
 

(3 − 1)2𝑛 =∑(
2𝑛
𝑖
)3𝑖(−1)2𝑛−𝑖

2𝑛

𝑖=0

 

 

= (
2𝑛
0
)30(−1)2𝑛 + (

2𝑛
1
)31(−1)2𝑛−1 +∑(

2𝑛
𝑖
)3𝑖(−1)2𝑛−𝑖

2𝑛

𝑖=2

 

 

= (
2𝑛
0
)30(−1)2𝑛 + (

2𝑛
1
)31(−1)2𝑛−1 + 9∑(

2𝑛
𝑖
)3𝑖−2(−1)2𝑛−𝑖

2𝑛

𝑖=2

 

 

= 1 + (−3(2𝑛)) + 9∑(
2𝑛
𝑖
)3𝑖−2(−1)2𝑛−𝑖

2𝑛

𝑖=2
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= 1 − 6𝑛 + 9∑(
2𝑛
𝑖
)3𝑖−2(−1)2𝑛−𝑖

2𝑛

𝑖=2

 

∎ 

 

 

 

 

 
Solution 

 
 

Fermat’s Theorem 

If 𝑝 is a prime and 𝑎 is a positive integer with 𝑝 ∤ 𝑎, then 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

Because 5 is prime, it follows from Fermat’s Theorem that 𝑥4 ≡ 1 (mod 5) for all 𝑥 ∤ 5.  
Therefore, 𝑥5 ≡ 𝑥 (mod5) for 𝑥 ∤ 5  But we can also see that 𝑥5 ≡ 𝑥 (mod 5) when 𝑥|5 
because they both sides equal 0 (mod 5). 

So, it is immediate from Fermat’s Theorem that 𝑎𝑝 ≡ 𝑎 (mod 𝑝) for all positive integer 𝑎 and all 
𝑝 prime. 

 Consequently, 𝑝|(𝑎𝑝 − 𝑎) for all positive integer 𝑎 and all 𝑝 prime. 

∎ 

 

 

 

5.4 Last Digits Problems 
 

The last 3 digits of (456789)5432 are the same as the last 3 digits of (789)5432  because 
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(456789)5432 mod(1000) = (456000 + 789)5432 mod(1000) 

= (∑ (
5432
𝑗
) (456 ⋅ 103)𝑗(789)5432−𝑗

5432

𝑗=0

)mod(1000) 

= ∑ ((
5432
𝑗
) (456 ⋅ 103)𝑗(789)5432−𝑗 mod(1000))

5432

𝑗=0

 

= (
5432
0
) (456 ⋅ 103)0(789)5432−0 mod(1000) 

+ ∑ ((
5432
𝑗
) (456 ⋅ 103)𝑗(789)5432−𝑗 mod(1000))

5432

𝑗=1

 

= (789)5432 mod(1000) 

+ ∑ ((
5432
𝑗
) (456)𝑗(103)𝑗−1(789)5432−𝑗 ⋅ 1000 ⋅mod(1000))

5432

𝑗=1

 

= (789)5432 mod(1000) + ∑(0)

5432

𝑗=1

= (789)5432 mod(1000). 

∎ 

 

(TT012) 

 
Solution 
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∎ 

 

 

 

Example 

 

Find the ten’s digit 𝑡 and the unit’s digit 𝑢 for the number 755 when written in standard 

notation. (Source: MSHSML 1t024) 

 

Solution 

 
The problem of finding the last digit(s) of a number of the form 𝑎𝑟  comes up regularly.  A 
general approach is to look for a pattern in the final digits in the initial cases 𝑎1, 𝑎2, 𝑎3, 𝑎4, … . 
 
In this problem notice that 71 = 7, 72 = 49, 73 = 343, 74 = 2301,… . 
 
We could continue but the result 74 = 2301 looks “special” because it ends in the last two 
digits “01”.  Why is this special?  Because (⋯01) × (⋯01) ends with (⋯01) again.  Why? 
Consider ⋯𝑑𝑐𝑏𝑎01 ×⋯𝑑𝑐𝑏𝑎01. 
 

⋯𝑑𝑐𝑏𝑎01 ×⋯𝑑𝑐𝑏𝑎01 = (⋯𝑑𝑐𝑏𝑎00 + 1) × (⋯𝑑𝑐𝑏𝑎00 + 1) 

= (⋯𝑑𝑐𝑏𝑎)2 ⋅ 104 + 2(⋯𝑑𝑐𝑏𝑎) ⋅ 102 + 1 
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= ((⋯𝑑𝑐𝑏𝑎)2 ⋅ 104 + 2(⋯𝑑𝑐𝑏𝑎)) ⋅ 102 + 1 

 

It follows that the last two digits of (74)𝑘 are “01” for every 𝑘 = 1,2,3,… . 
 
Furthermore, by the same sort of argument the last two digits of (⋯01) × (⋯𝑎𝑏) are “𝑎𝑏”.  
 
Therefore, 
 

755 = (74)13 ⋅ 73 = (⋯01) × (⋯43) = (⋯43). 
 
Therefore, the last two digits of 755 are “43”.  That is 𝑡 = 4 and 𝑢 = 3. 

∎ 
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∎ 

 

(1T844) 

Find the last two integers of 19831984. 

Solution 

 
∎ 

 

 

(1T855) 

 
Solution 



mathcloset.com  190 

 
∎ 

 

(TI854) 

 
Solution 

 
∎ 

 

(5D084) 

 
Solution 

 
∎ 
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5.5 Modular Exponentiation 
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∎ 

 

Saint Mary’s College Mathematics Contest Problems 

284.  What powers of 2 give a remainder of 15 when divided by 17 ? 

Solution 

 

 

∎ 

 

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem # 

24 

For how many positive integers 𝑚 less than 1000 is 𝑚310−39 − 1 by 310 ? 

Solution 

 
∎ 

 

 

5.6 Towers of Powers Modulo m 
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Towers of Powers Modulo m (see article in The College Mathematics Journal) 

 

 

 

 
 

Frozen Digits 
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5.7 Digital Sum 
 

2009 AMC 10A Problem # 5 

What is the sum of the digits of the square of 111111111 ? 

Solution 
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∎ 

 

 

AMC 1975 Problem #10 

The sum of the digits in base ten of (104𝑛
2+8 + 1)

2
, where 𝑛 is a positive integer, is 

(A) 4 (B) 4𝑛 (C) 2 + 2𝑛 (D) 4𝑛2 (E) 𝑛2 + 𝑛 + 2 

 

Solution 

For any nonnegative integer 𝑎 we have 

(10𝑎 + 1)2 = 102𝑎 + 2 ⋅ 10𝑎 + 1 

and the sum of the digits in all cases equals 4. 

∎ 

 

 
 

 

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem # 

25 

 
Solution 
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∎ 

 

5.7.1 Digital Sum in Base 𝒃 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Theta Division, Problem # 

13 

What is the sum of the digits of the base 9 representation of 2001? 

Solution 

 
 

 

(see file: Sum of the Digits in Base b notation) 

 
What is the sum of the digits of the base 9 representation of 2001? 

 

𝑎0 = ⌊
2001

90
⌋ − 9 ⌊

2001

91
⌋ 

= 2001 − 9(222) 

= 2001 − 1998 

= 3 
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2001 − (8)(⌊
2001

9
⌋ + ⌊

2001

92
⌋ + ⌊

2001

93
⌋ + ⌊

2001

94
⌋ + ⋯) 

 

= 2001 − 8(⌊
2001

9
⌋ + ⌊

⌊
2001
91

⌋

9
⌋ + ⌊

⌊
2001
92

⌋

9
⌋ + ⌊

⌊
2001
92

⌋

9
⌋ 

= 2001 − 8(222 + 24 + 2) = 17 

∎ 

 

 

 

5.8 Digital Roots 
 

Let 𝑛 be a positive integer and let 𝑠(𝑛) be the sum of the digits of 𝑛.  Then 𝑠(𝑠(𝑛)) equals the 

sum of the digits of the sum of the digits of 𝑛. 

 

For example, let 𝑛 = 529.  Then 𝑠(529) = 5 + 2 + 9 = 16 and 𝑠(𝑠(529)) = 𝑠(16) = 7. 

 

We can continue to iterate on this process, 𝑠 (𝑠(𝑠(⋯ ))).  Every starting positive integer 𝑛 will 

terminate in a finite number of steps to an integer between 1 and 9.  This process will always 

converge because 𝑠(𝑛) < 𝑛 for all 𝑛 ≥ 10 and 𝑠(𝑛) = 𝑛 for all 𝑛 ∈ {1,2,… ,9}. 

 

Let 𝕊(𝑛) = 𝑠 (𝑠(𝑠(⋯ ))) where the iteration continues until 𝑠 (𝑠(𝑠(⋯ ))) ∈ {1,2,… ,9}. 

 

𝕊(𝑛) is called the digital root of the positive integer 𝑛. 

 

Digital roots have many interesting properties.  The following are the mostly commonly cited.  
 
For all positive integers 𝑎 and 𝑏 
 
 (1) 𝕊(𝑎) = 𝑎 − 9𝑛 for that unique nonnegative integer 𝑛 such that 𝑎 − 9𝑛 ∈ {1,2,… ,9} 

 (2) 𝕊(9𝑎) = 9 
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 (3) 𝕊(𝑎) = {
𝑎mod(9) 9 ∤ 𝑎

9 9  |  𝑎
  

 
 (4) 𝕊(𝑎 + 𝑏) = 𝕊(𝕊(𝑎) + 𝕊(𝑏)) 

 (5) 𝕊(𝑎 ⋅ 𝑏) = 𝕊(𝕊(𝑎) ⋅ 𝕊(𝑏)) 

 (6) 𝕊(𝑎𝑏) = 𝕊 ((𝕊(𝑎))
𝑏
). 

 

http://applet-magic.com/DigitSum.htm 

 

(They use the term “digit sum” to refer to “digital root”.) 

 

 

 
 

We will prove property (1) below.  We simply note that property (2) follows from (1) with 𝑛 =

𝑎 − 1.  Property (3) is a consequence of properties (1) and (2) and the definition of the modulus 

function.  Properties (4), (5) and (6) are consequences of modular addition and modular 

multiplication and property (3). 

 

 

Proof of Property (1) 

 

Suppose 𝑎 = 𝑎𝑟10
𝑟 + 𝑎𝑟−110

𝑟−1 +⋯+ 𝑎110
1 + 𝑎0 where 𝑎𝑗 ∈ {0,1, … ,9} for all 𝑗 and 𝑎𝑟 ≠ 0 

and recall that for all positive integers 𝑛 

 

10𝑛 − 1 = (10 − 1)(10𝑛−1 + 10𝑛−2 +⋯+ 101 + 100) 

= 9 ⋅ (10𝑛−1 + 10𝑛−2 +⋯+ 101 + 100). 

 

It then follows that 

 

𝑎 = 𝑎𝑟10
𝑟 + 𝑎𝑟−110

𝑟−1 +⋯+ 𝑎110
1 + 𝑎0 

= (𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0) + 𝑎𝑟(10
𝑟 − 1) + 𝑎𝑟−1(10

𝑟−1 − 1) + ⋯+ 𝑎1(10
1 − 1) 

http://applet-magic.com/DigitSum.htm
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= (𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0) + 9𝑘1,  where 𝑘1 is some nonnegative integer 

= 𝑏 + 9𝑘1,  where 𝑏 = 𝑠(𝑎). 

If 𝑏 = 𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0 ∈ {1,2,… ,9} then the iterations stop and 𝕊(𝑎) = 𝑠(𝑎).  In this case 
we see that 𝕊(𝑎) has the form 

𝕊(𝑎) = 𝑠(𝑎) = 𝑏 = 𝑎 − 9𝑘1 ∈ {1,2,… ,9} 
as we were required to show. 
 
If 𝑏 = 𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0 ∉ {1,2, … ,9} then we repeat the process starting with the integer 

𝑏 = 𝑠(𝑎) instead of 𝑎.  In this case suppose that  

𝑏 = 𝑏𝑡10
𝑡 + 𝑏𝑡−110

𝑡−1 +⋯+ 𝑏110
1 + 𝑏0 

where 𝑏𝑗 ∈ {0,1,… ,9} for all 𝑗 and 𝑏𝑡 ≠ 0.  Following the same line of reasoning as in the 

previous iteration we then have 

𝑏 = 𝑏𝑡10
𝑡 + 𝑏𝑡−110

𝑡−1 +⋯+ 𝑏110
1 + 𝑏0 

= (𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0) + 9𝑘2,  where 𝑘2 is some nonnegative integer 

= 𝑐 + 9𝑘2,  where 𝑐 = 𝑠(𝑏) = 𝑠(𝑠(𝑎)). 

If 𝑠(𝑠(𝑎)) = 𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0 ∈ {1,2,… ,9} then the iterations stop and 𝕊(𝑎) = 𝑠(𝑏) =

𝑠(𝑠(𝑎)).  In this case we see that 𝕊(𝑎) has the form 

𝕊(𝑎) = 𝑠(𝑠(𝑎)) = 𝑐 = 𝑏 − 9𝑘2 = (𝑎 − 9𝑘1) − 9𝑘2 = 𝑎 − 9(𝑘1 + 𝑘2) ∈ {1,2, … ,9} 

as we were required to show. 
 

If 𝑠(𝑠(𝑎)) = 𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0 ∉ {1,2,… ,9} then we repeat the process starting integer 𝑐 =

𝑠(𝑏) = 𝑠(𝑠(𝑎)).  In this case suppose that 

𝑐 = 𝑐𝑣10
𝑣 + 𝑐𝑣−110

𝑣−1 +⋯+ 𝑐110
1 + 𝑐0 

where 𝑐𝑗 ∈ {0,1,… ,9} for all 𝑗 and 𝑐𝑣 ≠ 0.  As before we find 

𝑐 = 𝑐𝑣10
𝑣 + 𝑐𝑣−110

𝑣−1 +⋯+ 𝑐110
1 + 𝑐0 

= (𝑐𝑣 + 𝑐𝑣−1 +⋯+ 𝑐0) + 9𝑘3,  where 𝑘3 is some nonnegative integer 

= 𝑑 + 9𝑘3,  where 𝑑 = 𝑠(𝑐) = 𝑠(𝑠(𝑏)) = 𝑠 (𝑠(𝑠(𝑎))). 

If 𝑠 (𝑠(𝑠(𝑎))) = 𝑐𝑣 + 𝑐𝑣−1 +⋯+ 𝑐0 ∈ {1,2,… ,9} then the iterations stop and 𝕊(𝑎) = 𝑑 =

𝑠(𝑐) = 𝑠(𝑠(𝑏)) = 𝑠 (𝑠(𝑠(𝑎))).  In this case we see that 𝕊(𝑎) has the form 

𝕊(𝑎) = 𝑠 (𝑠(𝑠(𝑎))) = 𝑐 − 9𝑘3 = 𝑎 − 9(𝑘1 + 𝑘2 + 𝑘3) ∈ {1,2,… ,9} 

as we were required to show. 

If 𝑠 (𝑠(𝑠(𝑎))) = 𝑐𝑣 + 𝑐𝑣−1 +⋯+ 𝑐0 ∉ {1,2,… ,9} then the process continues.  How do we 

know that this process will eventually end? 
Notice that 𝑎 > 𝑠(𝑎), that is  

𝑎𝑟10
𝑟 + 𝑎𝑟−110

𝑟−1 +⋯+ 𝑎110
1 + 𝑎0 > 𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎1 + 𝑎0  

unless 𝑎 = 𝑠(𝑎) = 𝑎0 ∈ {1,2,… ,9}.  But 𝑠(𝑎) ∈ {1,2,… ,9} means the process ends. 
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Similarly, 𝑠(𝑎) > 𝑠(𝑠(𝑎)).  That is, 

𝑠(𝑎) = 𝑏 = 𝑏𝑡10
𝑡 + 𝑏𝑡−110

𝑡−1 +⋯+ 𝑏110
1 + 𝑏0 

> 𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0 = 𝑠(𝑏) = 𝑠(𝑠(𝑎)) 

unless 𝑏 = 𝑠(𝑏) = 𝑏0 ∈ {1,2, … ,9}.  But 𝑠(𝑏) ∈ {1,2, … ,9} means the process ends.   
In general, 

𝑎 > 𝑠(𝑎) > 𝑠(𝑠(𝑎)) > 𝑠 (𝑠(𝑠(𝑎))) > ⋯ 

as long as the process continues.  But 𝑎 is finite, hence 𝑠 (⋯𝑠 (𝑠(𝑠(𝑎)))) must eventually 

belong to {1,2,… ,9} which means the process cannot go on forever. 
∎ 

 

 

 

 
 

 

National Mu Alpha Theta 2002, Number Theory Test, Alpha Division, Problem # 13 

 
Solution 
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𝕊(𝑎) = {
𝑎mod(9) 9 ∤ 𝑎

9 9  |  𝑎
 

 

 

 

61 mod(9) = 6 

62 mod(9) = 0 

Therefore  

6𝑘 mod(9) = 0 for all 𝑘 ≥ 2. 

 

Therefore 9|66 which by definition means 𝕊(66) = 9. 

 

∎ 
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see file “Digital Roots, Rings and Clock Arithmetic” 
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Mu Alpha Theta Florida State Convention 2005, Number Theory Test, Problem #24 

A perfect number is a positive integer whose positive integral factors (not including itself) add 

up to that number.  For example, 6 is the smallest perfect number because 6 = 1 + 2 + 3.  

What is the digital root of the 2nd smallest perfect number? 

Solution 

Theorem – the digital root of all perfect numbers larger than 6 is 1. 

Verfication for this particular case.  The 2nd smallest perfect number is 28 and 

𝑑𝑟(28) = 𝑑𝑟(2 + 8) = 𝑑𝑟(10) = 𝑑𝑟(1 + 0) = 1. 

∎ 

 

 

Mu Alpha Theta Florida State Convention 2005, Number Theory Test, Problem #25 

If 𝑝 is a prime greater than 2005, which of the following cannot be its digital root? 

Solution 

 

 

 
 

 

 
∎ 

 

 

 

 

5.8.1 Digital Roots in Base 𝒃 
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Let 𝑠7(𝑛) equal the sum of the digits of the base 7 equivalent of the base 10 number 𝑛.  For 

example if 𝑛 = 𝑛𝑟7
𝑟 + 𝑛𝑟−17

𝑟−1 +⋯+ 𝑛17
1 + 𝑛0 where 𝑛𝑗 ∈ {0,1, … ,6} for all 𝑗 and 𝑛𝑟 ≠ 0, 

then 𝑠7(𝑛) = 𝑛7 + 𝑛𝑟−1 +⋯+ 𝑛1 + 𝑛0.   

 

Note we are adding 𝑛0, 𝑛1, … , 𝑛7 in base 10. 

 

  

𝑎 = 𝑎𝑟7
𝑟 + 𝑎𝑟−17

𝑟−1 +⋯+ 𝑎17
1 + 𝑎0 

= 𝑎𝑟(7
𝑟 − 1) + 𝑎𝑟−1(7

𝑟−1 − 1) +⋯+ 𝑎1(7
1 − 1) + (𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0) 

= 6𝑘1 + (𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0) 

= 6𝑘1 + 𝑏,  where 𝑏 = 𝑠7(𝑎) 

 

Now suppose that  

𝑏 = 𝑏𝑡7
𝑡 + 𝑏𝑡−17

𝑡−1 +⋯+ 𝑏17
1 + 𝑏0. 

Then 

𝑏 = 𝑏𝑡7
𝑡 + 𝑏𝑡−17

𝑡−1 +⋯+ 𝑏17
1 + 𝑏0  

= 6𝑘2 + (𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0) 

= 6𝑘2 + 𝑐,  where 𝑐 = 𝑠7(𝑏) = 𝑠7(𝑠7(𝑎))  

 

Now suppose that  

𝑐 = 𝑐𝑣7
𝑣 + 𝑐𝑣−17

𝑣−1 +⋯+ 𝑐17
1 + 𝑐0. 

Then 

𝑐 = 𝑐𝑣7
𝑣 + 𝑐𝑣−17

𝑣−1 +⋯+ 𝑐17
1 + 𝑐0 

= 6𝑘3 + (𝑐𝑣 + 𝑐𝑣−1 +⋯+ 𝑐0) 

= 6𝑘3 + 𝑑,  where 𝑑 = 𝑠7(𝑐) = 𝑠7(𝑠7(𝑏)) = 𝑠7 (𝑠7(𝑠7(𝑎))).  

 

𝑎 = 6𝑘1 + 𝑏 = 6𝑘1 + 6𝑘2 + 𝑐 = 6𝑘1 + 6𝑘2 + 6𝑘3 + 𝑑. 

That is 

𝑎 = 6𝑘1 + 6𝑘2 + 6𝑘3 + 𝑠7 (𝑠7(𝑠7(𝑎))) 

= 6(𝑘1 + 𝑘2 + 𝑘3) + 𝑠7 (𝑠7(𝑠7(𝑎))) 

= 6𝑚 + 𝑠7 (𝑠7(𝑠7(𝑎))) 

 

= 6𝑘1 + (𝑏𝑡7
𝑡 + 𝑏𝑡−17

𝑡−1 +⋯+ 𝑏17
1 + 𝑏0) 
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= 6𝑘1 + (6𝑘2 + (𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0)) 

= 6𝑘1 + 6𝑘2 + (𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0) 

 

6𝑘2 + (𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0) 

 

 

𝑏 = 𝑏𝑡7
𝑡 + 𝑏𝑡−17

𝑡−1 +⋯+ 𝑏17
1 + 𝑏0 = 6𝑘2 + (𝑏𝑡 + 𝑏𝑡−1 +⋯+ 𝑏0) 

 

 

= 9𝑘1 + 9𝑘2 + 𝑐, with 𝑐 = 𝑠(𝑏) = 𝑠(𝑠(𝑎)) 

= 9𝑘1 + 9𝑘2 + 9𝑘3 + 𝑑, with 𝑑 = 𝑠(𝑐) = 𝑠(𝑠(𝑏)) = 𝑠 (𝑠(𝑠(𝑎))) 

= ⋯ = 9𝑘1 + 9𝑘2 +⋯+ 9𝑘𝑚 + 𝑠 (𝑠 (⋯𝑠(𝑠(𝑎)))) 

= 9𝑛 + 𝕊(𝑎) 

Therefore, 

𝕊(𝑎) = 𝑎 − 9𝑛. 

 

 

𝑎mod(9) = 𝑏mod(9) 

 

𝑠(𝑎) = 𝑎𝑟 + 𝑎𝑟−1 +⋯+ 𝑎0 

 

7𝑏 − 1 = (7 − 1)(7𝑏−1 + 7𝑏−2 +⋯+ 71 + 70) 

 

 

 

3241157 = 3 ∗ 7
5 + 2 ∗ 74 + 4 ∗ 73 + 1 ∗ 72 + 1 ∗ 71 + 5 ∗ 70 = 5665610 

 

56656 𝑚𝑜𝑑(6) = 4 

 

 

dr(3241157) 

 

3 + 2 + 4 + 1 + 1 + 5 = 1610 

 

3 + 2 + 4 + 1 + 1 + 5 = 227 

 

1610 = 2 ⋅ 7
1 + 2 ⋅ 70 = 227 

227 

2 + 2 = 4 

410 = 47 
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324115mod(6) = 1 

 

 

436127 

4 + 3 + 6 + 1 + 2 = 1610 

1610 = 227 

2 + 2 = 410 

410 = 47 

43612mod(6) = 4 

 

2138 

2 + 1 + 3 = 610 

 

 

 

 
 

324115 − (7 − 1) ⌊
324115 − 1

7 − 1
⌋ = 324115 − (7 − 1)(54019) 

 

 

54019 

 

 

 

 

5.9 Missing Digit Puzzle Problems 
 

 
 

1287𝑥𝑦6 is a multiple of 8 and 9 

1287𝑥𝑦6 ≡ 0 (mod9)  AND  1287𝑥𝑦6 ≡ 0 (mod8) 

 

Now recall that a number is divisible by 9 if and only if the sum of the digits is a multiple of 9. 
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That is (1 + 2 + 8 + 7) + (𝑥 + 𝑦 + 6) = 2(9) + (𝑥 + 𝑦 + 6) ≡ 0 (mod9) 

⟺ 2(9) (mod9) + (𝑥 + 𝑦 + 6) (mod9) ≡ 0 (mod9) 

⟺ 𝑥 + 𝑦 + 6 ≡ 0 (mod9) 

 

If 1287𝑥𝑦6 is divisible by 8 then it is also divisible by 4.  And it is divisible by 4 if and only if the 

number formed by the last two digits is divisible by 4.  That is, if 10𝑦 + 6 ≡ 0 (mod4).  

10𝑦 + 6 ≡ 0 (mod4) ⟺ 10 (mod4) ⋅ 𝑦 + 6 (mod4) ≡ 0 (mod4) 

⟺ 2𝑦 + 2 ≡ 0 (mod4). 

But recall that 𝑐𝑎 ≡ 𝑐𝑏 (mod𝑚) if and only if 𝑎 ≡ 𝑏 (mod𝑚/(𝑐,𝑚)).  So 

 

2𝑦 + 2 ≡ 0 (mod4) ⟺ 𝑦 + 1 ≡ 0  (mod4/(2,4)) 

⟺ 𝑦+ 1 ≡ 0  (mod4/2) 

⟺ 𝑦+ 1 ≡ 0  (mod2). 

But this is equivalent to saying that 𝑦 is odd. 

 

We also know that 1287𝑥𝑦6 is divisible by 8 if and only if the number formed by the last three 

digits is divisible by 8.  That is, 100𝑥 + 10𝑦 + 6 ≡ 0 (mod8).  But 

100𝑥 + 10𝑦 + 6 ≡ 0 (mod8) 

⟺ 4𝑥 + 2𝑦 + 6 ≡ 0 (mod8) 

⟺ 2𝑥 + 𝑦 + 3 ≡ 0 (mod8 /(8,2)) 

⟺ 2𝑥 + 𝑦 + 3 ≡ 0 (mod8 /2) 

⟺ 2𝑥 + 𝑦 + 3 ≡ 0 (mod4). 

∎ 

Koshy 
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∎ 

 

 

 
 

(5A081) 

 
Solution 

 
∎ 

 

(TA044) 

 
Solution 

50 + 𝑁 must be divisible by 4 ⟺ 48 + 2 + 𝑁 is divisible by 4 ⟺ 𝑁 ∈ {2,6} 

𝑀 +𝑀 + 5+ 𝑁 must be divisible by 3 

Case 𝑁 = 2 

2𝑀 + 7 = 3𝑘,𝑀 ∈ {1,4,7} 

Case 𝑁 = 6 

2𝑀 + 11 = 3𝑘,𝑀 ∈ {2,5,8} 

So we have the cases 

(𝑀, 𝑁) ∈ {(1,2), (4,2), (7,2), (2,6), (5,6), (8,6)} 

∎ 
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(TC884)  The number 𝑁10 is a multiple of 7.  Its base two representation is 

  

𝑁2 = 11101000111011𝑎𝑏𝑐101 

 

where each of the missing digits 𝑎, 𝑏, and 𝑐 must be either 0 or 1.  Find the ordered triple 

(𝑎, 𝑏, 𝑐) of integers. 

 

Solution 

 

Rewrite 𝑁10 as an integer in base eight. 

 

𝑁8 = 16473 ? 5. 

 

In base eight, 𝑁8 is divisible by 7 if and only if the sum of its digits equals 7𝑘 for some 

nonnegative integer 𝑘. (This theorem is an analog of “casting out nines”.) 

 

1 + 6 + 4 + 7 + 3 +  ? + 5 = 26 +  ? = 7𝑘 

 

where 0 ≤  ? < 8.  It follows that  ? = 28 = 0102.  That is, (𝑎, 𝑏, 𝑐) = (0,1,0). 

 

[Note: Need to elaborate on how and why 

11101000111011𝑎𝑏𝑐1012 = 16473 ? 58. ] 

∎ 

 

Example 

 

Find the missing digit 𝒂 in the base 5 number 𝑛 = (420𝒂1332)5 if 𝑛 is even and divisible by 3. 

 

Solution  

 

For 𝑛 to be divisible by 2 in an odd numbered base (𝑏 = 5) means that the number of odd 

digits in 𝑛 must be an even number.   

 

Not considering 𝒂 there are three odd digits in 𝑛 (1, 3 and 3).  Therefore 𝒂 must be odd if 𝑛 is 

even (has an even number of odd digits).  But the only odd digits in base 5 are 1 and 3.  So 𝒂 

must be 1 or 3. 

 

For 𝑛 to be divisible by 3, 𝑛mod(3) = 0. 

 

𝑛mod(3) 
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= (4 ⋅ 57 + 2 ⋅ 56 + 0 ⋅ 55 + (𝑎) ⋅ 54 + 1 ⋅ 53 + 3 ⋅ 52 + 3 ⋅ 51 + 2 ⋅ 50)mod(3) 

= (4 ⋅ (−1)7 + 2 ⋅ (−1)6 + 0 ⋅ (−1)5 + (𝑎) ⋅ (−1)4 + 1 ⋅ (−1)3 + 3 ⋅ (−1)2 + 3 ⋅ (−1)1 + 2

⋅ (−1)0)mod(3) 

= (−4 + 2 + (𝑎) − 1 + 3 − 3 + 2)mod(3) 

= (𝑎 − 1)mod(3) 

 

This implies that 𝑎 must be 1 or 4. 

 

Hence for 𝑛 to be divisible by both 2 and 3, 𝒂 = 1. 

∎ 

 

Mu Alpha Theta, Florida State Convention, 1992-1993, Number Theory Topic Test, Number 1 

The mathematics department bought a pack of 72 pencils.  The ink on the receipt got smudged 

and all that could be made out was  $  ⋆ 9.4 ⋆  (before any sales tax).  How much did the 

department pay per pencil? 

 

Solution 

 

Representing $  ⋆ 9.4 ⋆ as the four digit integer 𝑎94𝑏, we can apply the divisibility rule for 8 to 

see that 940 + 𝑎 must be divisible by 8.  940 = 117(8) + 4.  So 𝑎 = 4. 

 

By the divisibility rule for 9, we know 𝑏 + 9 + 4 + 4 = 17 + 𝑏 must be divisible by 9.  So 𝑏 = 1. 

 

Therefore, 
$19.44

72
= 27¢ 

∎ 

 

AMC 2019 10B Problem #14 

The base-ten representation for 19! Is 121,6𝑇5,100,40𝑀, 832,𝐻00, where 𝑇,𝑀, and 𝐻 denote 

digits that are not given.  What is 𝑇 +𝑀 +𝐻 ? 

(A) 3 (B) 8 (C) 12 (D) 14 (E) 17 

 

Solution 

 

∎ 

 

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Tie Breaker 

#2 

If 792 divides the integer 13𝑥𝑦45𝑧, find the digits 𝑥, 𝑦, and 𝑧. 
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Solution 

First note that 792 = 23 ⋅ 32 ⋅ 11 so we can apply the divisibility tests for 8, 9 and 11. 

 (i) The divisibility test for 8 tells us that the last three digits must be divisible by 8. 

450 mod 8 = 2 ⟹ 456 mod 8 = 0 ⟹ 𝑧 = 6. 

 (ii) The divisibility test for 9 tells us that the sum of the digits must be divisible by 9. 

(1 + 3 + 𝑥 + 𝑦 + 4 + 5 + 6) mod 9 = 0 ⟹ 𝑥 + 𝑦 ∈ {8,17} 

 (iii) The divisibility test for 11 tells us that the alternating sum of the digits must be divisible 

  by 11. 

(1 − 3 + 𝑥 − 𝑦 + 4 − 5 + 6) mod 11 = 0 ⟹ (𝑥 − 𝑦) mod 11 = 8 

⟹ 𝑥 − 𝑦 ∈ {−3,8} 

Solving the generic simultaneous equations 𝑥 + 𝑦 = 𝑚 and 𝑥 − 𝑦 = 𝑛 gives us 

𝑥 = (𝑚 + 𝑛)/2  and  𝑦 = (𝑚 − 𝑛)/2. 

This tells us that 𝑚 and 𝑛 have to both be even or both be odd.  This just leaves two 

possibilities: (𝑚, 𝑛) = (8,8) or (𝑚, 𝑛) = (17,−3). 

We can see that (𝑚, 𝑛) = (17,−3) ⟹ (𝑥, 𝑦) = (7,10) which is impossible because 𝑦 ≤ 9. 

Finally, (𝑚, 𝑛) = (8,8) ⟹ (𝑥, 𝑦) = (8,0), which is the only possible pair. 

 

Therefore, (𝑥, 𝑦, 𝑧) = (8,0,6) and as a check we note that 1380456 = 792 ⋅ 1743 which 

confirms our answer. 

∎ 

 

British Mathematical Olympiad Round 1, 2002-2003, Problem 1. 

Given that  

34! = 295 232 799 𝑐𝑑9 604 140 847 618 609 643 5𝑎𝑏 000 000, 

determine the digits 𝑎, 𝑏, 𝑐 and 𝑑. 

Solution 

Finding 𝒃. 

The prime factorization of 34! is easily found to be 

34! = 232 ⋅ 315 ⋅ 57 ⋅ 74 ⋅ 113 ⋅ 132 ⋅ 172 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31. 

The 232 and 57 prime factors tell us that 34! ends with seven 0’s.  Therefore 𝑏 = 0. 

Finding 𝒂. 

Likewise, the prime factorization of 
34!

107
= 29 523 279 9𝑐𝑑 960 414 084 761 860 964 35𝑎, 

is 
34!

107
= 225 ⋅ 315 ⋅ 74 ⋅ 113 ⋅ 132 ⋅ 172 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 

and hence is divisible by 8.  Therefore, the three digit number 35𝑎 must be divisible by 8. 

We note that 350 (mod8) = 6, hence 352 (mod8) = 0 and 𝑎 = 2. 

Finding 𝒄 and 𝒅. 

We also know that 34! is divisible by both 9 and 11.  Hence 
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 (
2 + 9 + 5 + 2 + 3 + 2 + 7 + 9 + 9 + 𝑐 + 𝑑 + 9 + 6 + 0 + 4

+1 + 4 + 0 + 8 + 4 + 7 + 6 + 1 + 8 + 6 + 0 + 9 + 6 + 4 + 3
+5 + 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0

) (mod 9) 

 = (𝑐 + 𝑑 + 141) (mod9) = (𝑐 + 𝑑 + 6) (mod 9) = 0 

and 

 (
2 − 9 + 5 − 2 + 3 − 2 + 7 − 9 + 9 − 𝑐 + 𝑑 − 9 + 6 − 0 + 4

−1 + 4 − 0 + 8 − 4 + 7 − 6 + 1 − 8 + 6 − 0 + 9 − 6 + 4 − 3
+5 − 2 + 0 − 0 + 0 − 0 + 0 − 0 + 0

) (mod 11) 

 = (𝑑 − 𝑐 + 19) (mod11) = (𝑑 − 𝑐 + 8) (mod 11) = 0. 

 

Therefore, (𝑐 + 𝑑) ∈ {3,12} and (𝑑 − 𝑐) ∈ {−8,3}.  So, we have four cases to consider. 

 

Solving 𝑐 + 𝑑 = 𝑚 and 𝑑 − 𝑐 = 𝑛 simultaneously, we have 

𝑐 =
𝑚 − 𝑛

2
  and  𝑑 =

𝑚 + 𝑛

2
. 

Consider the value of  (𝑐, 𝑑) at each of the four cases  

(𝑚, 𝑛) ∈ {(3,−8), (3,3), (12,−8), (12,3)}. 

We can eliminate (3,−8) and (12,3) because they return nonintegral values for 𝑐 and 𝑑.  We 

can eliminate (12,−8) because it returns a value for 𝑐 > 9.  So (𝑚, 𝑛) = (3,3) is the only 

possible solutions.  This returns 

(𝑐, 𝑑) = (
3 − 3

2
,
3 + 3

2
) = (0,3). 

That is, 𝑐 = 0 and 𝑑 = 3.  Therefore, (𝑎, 𝑏, 𝑐, 𝑑) = (2,0,0,3).   

Note the answer 2,0,0,3 is a partial clue that you have the correct answer because it is often 

the case in math contest problems that the solution is related to the year the test was given (in 

this case, the year was 2003). 

∎ 

 

5.10 Extra Modular Arithmetic Problems 
 

AMC 1970 Problem #34 

 

The greatest integer that will divide 13,511,  13,903 and 14,589 and leave the same remainder 

is 

 

(A) 28 (B) 49 (C) 98   

(D)  an odd multiple of 7 greater than 49 

(E)  an even multiple of 7 greater than 98 

 

Solution 
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∎ 

 

 

AMC 1971 Problem #12 

For each integer 𝑁 > 1, there is a mathematical system in which two or more integers are 

defined to be congruent if they leave the same non-negative remainder when divided by 𝑁.  If 

69,  90, and 125 are congruent in one such system, then in that same system, 81 is congruent 

to 

(A) 3 (B) 4 (C) 5 (D) 7 (E) 8 

 

Solution 

 

 

∎ 

 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 16 

If 𝑏 is a positive integer and 𝑏 ≡ 2 (mod 3) and 𝑏 ≡ 7 (mod 3), what is the remainder when 𝑏 

is divided by 12? 

Solution 

 
 

 

∎ 

 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 19 

If 40𝑎 ≡ 1   (mod7), what is 162𝑎 congruent to (mod 7)?  

Solution 

 
 

 

∎ 

 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 24 
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How many whole numbers are there less than 10,000 which have units and tens digits of 1 

when expressed in bases 4, 5, and 6? 

Solution 

 
 

 

∎ 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 27 

What is the second smallest positive integer 𝑥 such that 𝑥 ≡ 2 (mod 4), 𝑥 ≡ 3 (mod9), and 

𝑥 ≡ 5 (mod 25)? 

Solution 

 
 

 

∎ 

 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 37 

𝑁 is a positive integer less than one hundred.  If 3𝑁 ≡ 𝑁 (mod 100), what is 𝑁 ? 

Solution 
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∎ 

 

Mu Alpha Theta National Convention 2001, Number Theory Test, Theta Division, Problem # 

22 

If 3𝑥 ≡ 4 (mod5) and 5𝑥 ≡ 6 (mod 7), which of the following could be 𝑥 ? 

 
Solution 

 
∎ 

 

Mu Alpha Theta National Convention 2001, Number Theory Test, Theta Division, Problem # 

40 

What is the remainder when 337,500,000 is divided by 128 ? 

Solution 
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∎ 

 

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #9 

When 𝑀 is divided by 9 the remainder is 6.  When 𝑁 is divided by 27 the remainder is 9.  What 

is the remainder when the product 𝑀𝑁 is divided by 27 ? 

Solution 

𝑀 = 9𝑘 + 6 = 3(3𝑘 + 2) 

𝑁 = 27𝑘 + 9 = 9(3𝑘 + 1) 

𝑀𝑁 = 27(3𝑘 + 2)(3𝑘 + 1) 

Therefore,  

𝑀𝑁 ≡ 0mod(27). 

∎ 

 

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #29 

𝑀 and 𝑁 are positive integers such that 3𝑀 + 8𝑁 ≡ 5 (mod17).  Find the remainder when 

9𝑀 + 7𝑁 is divided by 17. 

Solution 

In general, if 𝑎 ≡ 𝑏 (mod𝑚) then 𝑎𝑐 ≡ 𝑏𝑐 (mod𝑚).  Applying this result we know that 

3(3𝑀 + 8𝑁) ≡ 3(5) (mod17) ⟹ 9𝑀 + 24𝑁 ≡ 15 (mod17). 

But we also know that 

(9𝑀 + 24𝑁)(mod17) ≡ (9𝑀 + 7𝑁 + 17𝑁)(mod17) 

≡ (9𝑀 + 7𝑁)(mod17). 

Therefore 

9𝑀 + 7𝑁 ≡ 15 (mod17). 
 
That is, 15 is the remainder when 9𝑀 + 7𝑁 is divided by 17. 

∎ 

 

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #28 

The remainder when 𝑁 is divided by 18 is 16.  Given that 𝑁 is a multiple of 28, what integers 

between 0 and 18 could be the remainder when 𝑁/4 is divided by 18 ? 

Solution 

We are given that 𝑁 = 28𝑚 for some integer 𝑚 and that 𝑁 ≡ 16 (mod 18).  This tells us that 
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𝑁 ≡ 16 (mod 18)  and  𝑁 = 28𝑚⟹ 28𝑚 ≡ 16 (mod18) 

⟹ 7𝑚 ≡ 4 (mod (
18

gcd(4,18)
) ) 

⟹ 7𝑚 ≡ 4 (mod9). 

 

The question is to find the remainder 𝑟 when 𝑁/4 is divided by 18.  That is find 𝑁/4 (mod18). 
𝑁

4
=
28𝑚

4
= 7𝑚 

So, the question is to find 7𝑚 (mod 18) given that 7𝑚 ≡ 4 (mod9). 

 

But we know that if 7𝑚 ≡ 𝑐 (mod 18) then 7𝑚 ≡ 𝑐 (mod 9).  That is, 

7𝑚 − 𝑐 = 18𝑘 = 9(2𝑘) ⟹ 7𝑚 ≡ 𝑐 (mod 9). 

However, we know that 7𝑚 ≡ 4 (mod9).  So the only possible values for 𝑐 are 4 and any 

number congruent to 4 (mod9), such as 13. 

It follows that the only integers between 0 and 18 could be the remainder when 𝑁/4 is divided 

by 18 are the integers 4 and 13. 

∎ 

 

Mu Alpha Theta Florida State Convention 2005, Number Theory Test, Problem #3 

Given that 𝑥 ≡ 7 (mod 360), what are the possible nonnegative integer values less than 420 

for 𝑥 ≡ 7 (mod420) ? 

Solution 

In general, if 𝑎 ≡ 𝑏 (mod𝑚) and 𝑑|𝑚, 𝑑 > 0, then 𝑎 ≡ 𝑏 (mod 𝑑).  From this property we can 

see that  

𝑥 ≡ 7 (mod 360)⟹ 𝑥 ≡ 7 (mod 60). 

Now suppose 𝑥 ≡ 𝑐 (mod 420).  Then from this same property we have 

𝑥 ≡ 𝑐 (mod 420)⟹ 𝑥 ≡ 𝑐 (mod 60). 

So, the only possible nonnegative integer values for 𝑐 less than 420 are values consistent with 

the fact that 𝑥 ≡ 7 (mod60). 

That is, 𝑐 ∈ {7,67,127,187,247,307,367}. 

∎ 

 

2016 Lehigh University High School Math Contest, Problem #16 

How many 3 element subsets of {1,2,3,4,5,6,7,8,9,10,11} are there for which the sum of the 

elements in the subset is a multiple of 3? 

Solution 

To start you need to remember that by definition of a set (or subset) the order of the elements 

in the set (or subset) is irrelevant (i.e. {4,7,10} and {7,10,4} are not distinct solutions) and by 

definition all elements of the set (or subset) must be distinct (i.e. {5,5,8} is not a solution even 

though the sum is a multiple of 3). 
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Let {𝑎1, 𝑎2, 𝑎3} be a subset of {1,2,3,4,5,6,7,8,9,10,11}.  Saying that the sum is a multiple of 3 is 

the same as requiring that (𝑎1 + 𝑎2 + 𝑎3)mod(3) ≡ 0mod(3). 

We can restate the problem as  

𝑎1 mod(3) + 𝑎2 mod(3) + 𝑎3 mod(3) ≡ 0mod(3). 

Now let 𝑏𝑗 = 𝑎𝑗 mod(3), 𝑏𝑗 ∈ {0,1,2}.  Then we can partition the problem into just three cases: 

{𝑏1, 𝑏2, 𝑏3}|𝑏1 + 𝑏2 + 𝑏3 = 0 

{𝑏1, 𝑏2, 𝑏3}|𝑏1 + 𝑏2 + 𝑏3 = 3 

{𝑏1, 𝑏2, 𝑏3}|𝑏1 + 𝑏2 + 𝑏3 = 6. 

There is only one subset in the first case, namely {0,0,0}mod(3).  There are two subsets in the 

second case, {1,1,1}mod(3) and {0,1,2}mod(3). And there is just one subset in the third case, 

namely, {2,2,2}mod(3). 

Now we need to separate the numbers {1,2,3,4,5,6,7,8,9,10,11} according to their mod(3) 

value. 

{3,6,9}   mod(3) = 0 

{1,4,7,10}   mod(3) = 1 

{2,5,8,11}   mod(3) = 2. 

 

In the case {0,0,0}mod(3) we need to select 3 of the 3 elements in {3,6,9} without 

replacement and where the order of selection is not important to us.  This is the definition of 

combinations and equals (
3
3
) = 1. 

In the case {1,1,1}mod(3) we need to select 3 of the 4 elements in {1,4,7,10} without 

replacement and where the order of selection is not important to us.  This is the definition of 

combinations and equals (
4
3
) = 4. 

In the case {0,1,2}mod(3) we need to select 1 of the 3 elements in {3,6,9}, select 1 of the four 

elements in {1,4,7,10} and 1 of the four elements in {2,5,8,11}.  There are (
3
1
)(
4
1
)(
4
1
) = 48 

ways we can do this. 

Finally in the case {2,2,2}mod(3) we need to select 3 of the 4 elements in {2,5,8,11} without 

replacement and where the order of selection is not important to us.  This is the definition of 

combinations and equals (
4
3
) = 4. 

In total there are 1 + 4 + 48 + 4 = 57 ways to select the three numbers from 

{1,2,3,4,5,6,7,8,9,10,11}, without replacement and order not important, such that the sum of 

the three numbers selected is a multiple of 3. 

∎ 

 

2007 Lehigh University High School Math Contest, Problem #17 

For how many primes 𝑝 is ℎ(𝑝) = 𝑝2 + 3𝑝 − 1 also prime? 

Solution 
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We begin by considering the special cases of 𝑝 = 2 and 𝑝 = 3. 
 

ℎ(2)  =  9.   Composite.

ℎ(3) = 17.  Prime.
 

 
 
We have previous established that for all prime 𝑝 > 3, 𝑝2 − 1 is divisible by 24 and hence is a 

multiple of 3.  Therefore, 

 
ℎ(𝑝) = 𝑝2 + 3𝑝 − 1 = (𝑝2 − 1) + 3𝑝 

 
is a multiple of 3 for all 𝑝 > 3 and hence cannot be prime. 
 
Therefore ℎ(𝑝) = 𝑝2 + 3𝑝 − 1 is only prime in the single case of the prime 𝑝 = 3. 

∎ 
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Chapter 6. Factorials 
 

 

6.1 Sum of Factorials mod 𝒌 
 

The general approach is revealed in the following example. 

 

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Problem # 6 

If 𝐴 = ∑𝑘!

45

𝑘=3

, then what is the remainder when 𝐴 is divided by 240? 

Solution 

First note that  

240 = 24 ⋅ 3 ⋅ 5  and  6! = 24 ⋅ 32 ⋅ 5 = 240 ⋅ 3. 

It follows that  

𝑘! = 6! ⋅ 𝑚𝑘  for some integer 𝑚𝑘 for all 𝑘 ≥ 6 

= 240 ⋅ 3 ⋅ 𝑚𝑘. 

For example, 9! = 6! ⋅ (9 ⋅ 8 ⋅ 7).  Therefore, 

𝐴 =∑𝑘!

45

𝑘=3

= 3! + 4! + 5! +∑𝑘!

45

𝑘=6

 

= 3! + 4! + 5! + 240(3∑𝑚𝑘

45

𝑘=6

) 

= 150 + 240(3∑𝑚𝑘

45

𝑘=6

) 

= 150 + 240𝑛   for some integer 𝑛. 

Hence, 

𝐴mod(240) = (∑𝑘!

45

𝑘=3

)mod(240) = (150 + 240𝑛)mod(240) = 150. 

∎ 
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Solution 

 

 
 

∎ 

 

 

 

6.2 Factorial Base Representation of Positive Integers 
 

6.2.1 Definition and Properties 

 

The factorial base representation of the nonnegative integer 𝑛 (also called the factoradic of 𝑛) 

is an expression for 𝑛 of the form 

𝑛 = 𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+ 𝑎2 ⋅ 2! + 𝑎1 ⋅ 1! 

for some positive integer 𝑚 with 𝑎𝑗 ∈ {0,1,… , 𝑗} for each coefficient 𝑎𝑗 and 𝑎𝑚 ≠ 0.  In this 

situation, the notation adopted is  

𝑛 = (𝑎𝑚 , 𝑎𝑚−1, … , 𝑎1)!. 

That is, the coefficient vector (𝑎𝑚 , 𝑎𝑚−1, … , 𝑎1) followed by the factorial symbol ! as a 

subscript. 

For example, we could have 
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5 = 𝟐 ⋅ 2! + 𝟏 ⋅ 1!   = (𝟐, 𝟏)!

11=𝟏 ⋅ 3! + 𝟐 ⋅ 2! + 𝟏 ⋅ 1!   = (𝟏, 𝟐, 𝟏)!

28=𝟏 ⋅ 4! + 𝟎 ⋅ 3! + 𝟐 ⋅ 2! + 𝟎 ⋅ 1!   = (𝟏, 𝟎, 𝟐, 𝟎)!

and     

4700=𝟔 ⋅ 6! + 𝟑 ⋅ 5! + 𝟎 ⋅ 4! + 𝟑 ⋅ 3! + 𝟏 ⋅ 2! + 𝟎 ⋅ 1!  = (𝟔, 𝟑, 𝟎, 𝟑, 𝟏, 𝟎)!.

 

 

Theorem  (Existence and Uniqueness) 

 There exists a unique factorial base representation (i.e. factoradic) for every nonnegative 

 integer 𝑛. 

 

A proof by induction of this theorem is straightforward once you establish the following identity 

as a Lemma. 

Lemma 

(1 ⋅ 1! + 2 ⋅ 2! + ⋯+ (𝑛 − 1) ⋅ (𝑛 − 1)! ) + 1 = 𝑛!. 

 

To understand why this lemma is critical to the theorem, think about the largest number you 

can generate with the form 

𝑎𝑛−1 ⋅ (𝑛 − 1)! + 𝑎𝑛−2 ⋅ (𝑛 − 2)! +⋯+ 𝑎2 ⋅ 2! + 𝑎1 ⋅ 1!. 

The largest number occurs when each coefficient 𝑎𝑘 is maximized.  That is, by taking 𝑎𝑘 = 𝑘.  In 

this case we get 

(𝑛 − 1) ⋅ (𝑛 − 1)! + (𝑛 − 2) ⋅ (𝑛 − 2)! + ⋯+ 2 ⋅ 2! + 1 ⋅ 1!. 

 

This lemma states that the next integer above the largest possible number of the form 

𝑎𝑛−1 ⋅ (𝑛 − 1)! + 𝑎𝑛−2 ⋅ (𝑛 − 2)! + ⋯+ 𝑎2 ⋅ 2! + 𝑎1 ⋅ 1! 

is the integer 

𝑛! = 1 ⋅ 𝑛! + 0 ⋅ (𝑛 − 1)! + 0 ⋅ (𝑛 − 2)! + ⋯+ 0 ⋅ 2! + 0 ⋅ 1! 

which is the smallest possible number of the form 

𝑎𝑛 ⋅ 𝑛! + 𝑎𝑛−1 ⋅ (𝑛 − 1)! +⋯+ 𝑎2 ⋅ 2! + 𝑎1 ⋅ 1! 

subject to the constraint the leading coefficient 𝑎𝑛 ≠ 0. 

 

You should note that this lemma is the factorial base analogy to how in base 10 the next 

integer after largest possible integer of the form  

𝑎𝑛−1 ⋅ 10
𝑛−1 + 𝑎𝑛−2 ⋅ 10

𝑛−2 +⋯+ 𝑎1 ⋅ 10
1 + 𝑎010

0 

is the smallest possible integer of the form 

𝑎𝑛 ⋅ 10
𝑛 + 𝑎𝑛−1 ⋅ 10

𝑛−1 +⋯+ 𝑎1 ⋅ 10
1 + 𝑎010

0 

subject to the constraint the leading coefficient 𝑎𝑛 ≠ 0.   

For example, the next integer after 
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999 = 9 ⋅ 102 + 9 ⋅ 101 + 9 ⋅ 100 

is 

1000 = 1 ⋅ 103 + 0 ⋅ 102 + 0 ⋅ 101 + 0 ⋅ 100. 

 

This lemma can be used repeatedly in an induction argument to show that the factorial base 

number system does not repeat or skip any of the positive integers.  We will not reproduce all 

the steps of that argument here but will simply note that the necessary steps can be matched 

one by one with the steps necessary to show that the base 10 numeration system does not 

repeat or skip any of the positive integers. 

But we will verify that this lemma is true as it can be a useful result in a variety of other 

situations. 

Proof (of Lemma) 

 (1 ⋅ 1! + 2 ⋅ 2! + ⋯+ (𝑛 − 1) ⋅ (𝑛 − 1)! ) 

  = (1 ⋅ 1! + 2 ⋅ 2! +⋯+ (𝑛 − 1) ⋅ (𝑛 − 1)! ) + (1! + 2! +⋯+ (𝑛 − 1)! ) 

   −(1! + 2! +⋯+ (𝑛 − 1)! ) 

  = ((1 ⋅ 1! + 1! ) + (2 ⋅ 2! + 2! ) +⋯+ ((𝑛 − 1) ⋅ (𝑛 − 1)! + (𝑛 − 1)! ) ) 

   −(1! + 2! +⋯+ (𝑛 − 1)! ) 

  = ((2 ⋅ 1! ) + (3 ⋅ 2! ) + ⋯+ (𝑛 ⋅ (𝑛 − 1)! )) 

   −(1! + 2! +⋯+ (𝑛 − 1)! ) 

  = (2! + 3! +⋯+ 𝑛! ) − (1! + 2! + ⋯+ (𝑛 − 1)! ) 

  = 𝑛! − 1. 

Therefore, 

(1 ⋅ 1! + 2 ⋅ 2! + ⋯+ (𝑛 − 1) ⋅ (𝑛 − 1)! ) + 1 = 𝑛!. 

∎ 

 

6.2.2 Converting from a Factorial Base to Base 10 

 

Example 

 

Find the base 10 representation of (3,2,0,6)! . 

Solution 

(3,2,0,6)! = 3(4!) + 2(3!) + 0(2!) + 1(1!) 

= 3(24) + 2(6) + 0(2) + 1(1) 
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= 72 + 12 + 0 + 1 

= 85. 

That is, (3,2,0,6)! = 8510 = 85. 

∎ 

 

6.2.3 Converting from Base 10 to a Factorial Base: Standard Method 

 

Example 

 

Find the factorial base representation of 1073. 

Answer 

1073 = 𝟏(6!) + 𝟐(5!) + 𝟒(4!) + 𝟐(3!) + 𝟐(2!) + 𝟏(1!) = (𝟏, 𝟐, 𝟒, 𝟐, 𝟐, 𝟏)!. 

Solution 

Start by finding the largest integer 𝑛 for which 𝑛! ≤ 1073.  We note that 6! = 720 but 7! =

5040.  So 𝑛 = 6. 

Divide 1073 by 6! with remainder. 

1073 = 𝟏 ⋅ 6! + 353. 

Divide the remainder 353 by 5! with remainder. 

353 = 𝟐 ⋅ 5! + 113. 

Divide the remainder 113 by 4! with remainder. 

113 = 𝟒 ⋅ 4! + 17 

Divide the remainder 17 by 3! with remainder. 

17 = 𝟐 ⋅ 3! + 5 

Divide the remainder 5 by 2! with remainder. 

5 = 𝟐 ⋅ 2! + 1 
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Divide the remainder 1 by 1! with remainder. 

1 = 𝟏 ⋅ 1!. 

This shows that 

1073 = 𝟏 ⋅ 6! + 353 

= 𝟏 ⋅ 6! + 𝟐 ⋅ 5! + 113 

= 𝟏 ⋅ 6! + 𝟐 ⋅ 5! + 𝟒 ⋅ 4! + 17 

= 𝟏 ⋅ 6! + 𝟐 ⋅ 5! + 𝟒 ⋅ 4! + 𝟐 ⋅ 3! + 5 

= 𝟏 ⋅ 6! + 𝟐 ⋅ 5! + 𝟒 ⋅ 4! + 𝟐 ⋅ 3! + 𝟐 ⋅ 2! + 1 

= 𝟏 ⋅ 6! + 𝟐 ⋅ 5! + 𝟒 ⋅ 4! + 𝟐 ⋅ 3! + 𝟐 ⋅ 2! + 𝟏 ⋅ 1! 

= (𝟏, 𝟐, 𝟒, 𝟐, 𝟐, 𝟏)!. 

 

 

6.2.4 Converting from Base 10 to a Factorial Base: Bottom Up “Short Cut” Method 

 

The bottom up method for converting from base 10 to a factorial base has some similarities to 

the bottom up method for converting from base 10 to base 𝑏. 

Step 1: Solve for 𝒂𝟏 

The first step is to divide 𝑛 by 2 with remainder.  That is, express 𝑛 in the form 𝑛 = 2 ⋅ 𝑑1 + 𝑟1 

where 𝑟1 ∈ {0,1}.   

I claim that  

𝑑1 =
𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+ 𝑎2 ⋅ 2!

2
. 

To see this, note that each of the terms in the numerator 𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+

𝑎2 ⋅ 2! are divisible by 2.  Therefore 𝑑1 is an integer and we can see that 

𝑛 = 2 ⋅ 𝑑1 + 𝑎1 

where 𝑎1 ∈ {0,1}.  That is, 𝑎1 equals the remainder when we divide 𝑛 by 2 with remainder. 

Step 2: Solve for 𝒂𝟐 
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Now divide 𝑑1 by 3 with remainder.  That is, express 𝑑1 in the form 𝑑1 = 3 ⋅ 𝑑2 + 𝑟2 where 𝑟2 ∈

{0,1,2}.  

I claim that 

𝑑2 =
𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+ 𝑎3 ⋅ 3!

2 ⋅ 3
. 

 

To see this, note that each of the terms in the numerator 𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+

𝑎3 ⋅ 3! are divisible by 2 and 3.  Therefore 𝑑2 is an integer and we can see that 

𝑑1 = 3 ⋅ 𝑑2 +
𝑎2 ⋅ 2!

2
= 3 ⋅ 𝑑2 + 𝑎2 

where 𝑎2 ∈ {0,1,2}.  That is, 𝑎2 equals the remainder when we divide 𝑑1 by 3 with remainder. 

 

Step 3: Solve for 𝒂𝟑 

Now divide 𝑑2 by 4 with remainder.  That is, express 𝑑2 in the form 𝑑2 = 4 ⋅ 𝑑3 + 𝑟3 where 𝑟3 ∈

{0,1,2,3}. 

I claim that 

𝑑3 =
𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+ 𝑎4 ⋅ 4!

2 ⋅ 3 ⋅ 4
. 

 

To see this, note that each of the terms in the numerator 𝑎𝑚 ⋅ 𝑚! + 𝑎𝑚−1 ⋅ (𝑚 − 1)! + ⋯+

𝑎4 ⋅ 4! are divisible by 2, 3 and 4.  Therefore 𝑑3 is an integer and we can see that 

𝑑2 = 4 ⋅ 𝑑3 +
𝑎3 ⋅ 3!

2 ⋅ 3
= 4 ⋅ 𝑑3 + 𝑎3 

where 𝑎3 ∈ {0,1,2,3}.  That is, 𝑎3 equals the remainder when we divide 𝑑2 by 4 with 

remainder. 

Steps 4,5,…  (continue) 
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We can continue in this same way to find each of the remaining coefficients 𝑎4, 𝑎5, …. 

 

Example 

We will now illustrate this “bottom up” method for 𝑛 = 1073 and we will note that we get the 

same set of coefficients 𝑎1, 𝑎2, … as we found using the “standard” approach. 

 

We start by dividing 𝑛 = 1073 by 2 with remainder. 

𝑛 = 2 ⋅ 𝑑1 + 𝑟1 = 2(536) + 1 ⟹ 𝑎1 = 𝑟1 = 1. 

Now divide 𝑑1 = 536 by 3 with remainder. 

𝑑1 = 3 ⋅ 𝑑2 + 𝑟2 = 3(178) + 2 ⟹ 𝑎2 = 𝑟2 = 2. 

Now divide 𝑑2 = 178 by 4 with remainder. 

𝑑2 = 4 ⋅ 𝑑3 + 𝑟3 = 4(44) + 2 ⟹ 𝑎3 = 𝑟3 = 2. 

Now divide 𝑑3 = 44 by 5 with remainder. 

𝑑3 = 5 ⋅ 𝑑4 + 𝑟4 = 5(8) + 4 ⟹ 𝑎4 = 𝑟4 = 4. 

Now divide 𝑑4 = 8 by 6 with remainder. 

𝑑4 = 6 ⋅ 𝑑5 + 𝑟5 = 6(1) + 2 ⟹ 𝑎5 = 𝑟5 = 2. 

Now divide 𝑑5 = 1 by 7 with remainder. 

𝑑5 = 7 ⋅ 𝑑6 + 𝑟6 = 7(0) + 1 ⟹ 𝑎6 = 𝑟6 = 1. 

The process stops now because continuing will just verify that 𝑎7 = 𝑎8 = ⋯ = 0. 

 

So, using the bottom up method we have determined that 

1073 = (𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1)! = (1,2,4,2,2,1)! 

which is the same answer we found using the standard method in the previous section. 
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∎ 

 

AMC 1961 Problem #35 

The number 695 is to be written with a factorial base of numeration, that is,  

695 = 𝑎1 + 𝑎2 ⋅ 2! + 𝑎3 ⋅ 3! + ⋯+ 𝑎𝑛 ⋅ 𝑛! 

where 𝑎1, 𝑎2, … , 𝑎𝑛 are integers such that 0 ≤ 𝑎𝑘 ≤ 𝑘, and 𝑛! means 𝑛(𝑛 − 1)(𝑛 − 2)⋯2 ⋅ 1.  

Find 𝑎4. 

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4 

 

Solution 

Factorial Base of Numeration 

 

 

∎ 

 

 

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #24 

 
Solution 

 
∎ 

 

 

6.3 Factorial Base Representation of Rational Numbers 
 

6.3.1 Definitions and Properties 

 

Let 
𝑎

𝑏
 be a rational number in reduced form with 0 <  

𝑎
𝑏
< 1, (i.e. in the open unit interval). 

The factorial base representation of the rational number 
𝑎

𝑏
 is an expression of the form 

𝑎

𝑏
=
𝑑2
2!
+
𝑑3
3!
+⋯+

𝑑𝑚
𝑚!

 

for some positive integer 𝑚 with 𝑑𝑗 ∈ {0,1,… , 𝑗 − 1} for each coefficient 𝑑𝑗. 

 

Terminating and Nonterminating Factorial Base Representations of a Rational Number 
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Lemma 

For all 𝑚 ∈ {1,2,3,… } we have 

1

𝑚!
= ∑ (

𝑖

(𝑖 + 1)!
)

∞

𝑖=𝑚

. 

Proof 
1

𝑚!
=
1

𝑚!
+ (

1

(𝑚 + 1)!
+

1

(𝑚 + 2)!
+

1

(𝑚 + 3)!
+⋯) 

                  − (
1

(𝑚 + 1)!
+

1

(𝑚 + 2)!
+

1

(𝑚 + 3)!
+ ⋯) 

= ∑
1

𝑖!

∞

𝑖=𝑚

− ∑
1

𝑖!

∞

𝑖=𝑚+1

= ∑
1

(𝑖 − 1)!

∞

𝑖=𝑚+1

− ∑
1

𝑖!

∞

𝑖=𝑚+1

 

= ∑ (
1

(𝑖 − 1)!
−
1

𝑖!
)

∞

𝑖=𝑚+1

= ∑ (
𝑖

𝑖!
−
1

𝑖!
)

∞

𝑖=𝑚+1

= ∑ (
𝑖 − 1

𝑖!
)

∞

𝑖=𝑚+1

 

= ∑ (
𝑖

(𝑖 + 1)!
)

∞

𝑖=𝑚

. 

∎ 

For example, 

1

5!
=
5

6!
+
6

7!
+
7

8!
+
8

9!
+⋯. 

 

The left-hand side of this expression is called the terminating factorial base representation of 

the rational number 
1

120
=
1

5!
 and the right-hand side is called the nonterminating expression. 

 

For another example, consider the rational number 2/3. 
2

3
      =      

1

2!
+
1

3!
                    Terminating Form

2

3
=
1

2!
+
0

3!
+
3

4!
+
4

5!
+
5

6!
+
6

7!
+⋯                     Nonterminating Form
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Theorem  (Existence and Uniqueness) 

 There exists a unique, terminating form factorial base representation for every rational 

 number in (0,1).  

 

Theorem 

 If  

𝑎

𝑏
=
𝑑2
2!
+
𝑑3
3!
+⋯+

𝑑𝑚
𝑚!

 

 

 is the unique terminating form factorial base representation of the rational number 
𝑎

𝑏
 then 

 𝒎 will equal the smallest integer such that 𝒎! is divisible by 𝒃, the denominator of the 

 rational number 
𝑎

𝑏
 in reduced form. 

 

For example … 

𝑚 = 3 for the rational number   
5

6
  because 3! is divisible by 𝑏 = 6 but 2! is not. 

𝑚 = 4 for the rational number   
1

4
  because 4! is divisible by 𝑏 = 4 but neither 2! nor 3! are. 

𝑚 = 4 for the rational number   
3

8
  because 4! is divisible by 𝑏 = 8 but neither 2! nor 3! are. 

𝑚 = 7 for the rational number   
2

7
  because 7! is divisible by 𝑏 = 7 but none of 2!, 3!, 4!, 5!, 6! are 

divisible by 7. 

 

6.3.2 Converting from Base 10 to a Factorial Base: Standard (or Greedy) Method 

 

𝑑2 equals the largest integer number of times that 
1
2!

 will go into 
𝑎
𝑏

. 

𝑑3 equals the largest integer number of times that 
1
3!

 will go into 
𝑎
𝑏
−
𝑑2
2!

. 

𝑑4 equals the largest integer number of times that 
1
4!

 will go into 
𝑎
𝑏
−
𝑑2
2!
−
𝑑3
3!

. 

… etc. 

 

 
Example 
 

Find the factorial base representation of 
5

8
. 
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Answer 

5

8
=
1

2!
+
0

3!
+
3

4!
. 

Solution 

Step 1.  Find 𝒎. 

𝑚 = 4 for the rational number   
𝑎

𝑏
=
5

8
  because 4! is divisible by 𝑏 = 8 but neither 2! nor 3! are.  

So we need to find 𝑑2, 𝑑3 and 𝑑4 such that 

5

8
=
𝑑2
2!
+
𝑑3
3!
+
𝑑4
4!

 

with 𝑑2 ∈ {0,1}, 𝑑3 ∈ {0,1,2} and 𝑑4 ∈ {0,1,2,3}. 

Step 2.  Find 𝒅𝟐. 

𝑑2 equals the largest integer number of times that 
1
2!

 will go into 
𝑎
𝑏
=
5

8
.  That is, 𝑑2 is the largest 

integer such that  

𝑑2
2!
≤
5

8
. 

 

A straightforward way to find this is to divide 5 ⋅ 2! by 8 with remainder. Now 

5 ⋅ 2! = 𝑑2 ⋅ 8 + 𝑟2 = 1 ⋅ 8 + 2 

So 𝒅𝟐 = 𝟏 and 𝑟2 = 2.  But we can also read off 
𝑎
𝑏
−
𝑑2
2!

 from this calculation.  It follows from 

the result  

𝑎 ⋅ 2! = 𝑑2 ⋅ 𝑏 + 𝑟2 

that  

𝑎

𝑏
−
𝑑2
2!
=

𝑟2
2! ⋅ 𝑏

=
2

2! ⋅ 8
=
1

8
. 
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Note: As we follow through with the next few steps it will become obvious that this result 
generalizes to 

𝑎

𝑏
−
𝑑2
2!
−
𝑑3
3!
− ⋯−

𝑑𝑘
𝑘!
=

𝑟𝑘
𝑘! ⋅ 𝑏

. 

 

Step 3.  Find 𝒅𝟑. 

𝑑3 equals the largest integer number of times that 
1
3!

 will go into 
𝑎
𝑏
−
𝑑2
2!
=

𝑟2
2!⋅8

=
1

8
.  That is, 𝑑3 

is the largest integer such that  

𝑑3
3!
≤
1

8
. 

 

Proceeding as in the previous step we will divide 1 ⋅ 3! by 8 with remainder. 

1 ⋅ 3! = 𝑑3 ⋅ 8 + 𝑟3 = 0 ⋅ 8 + 6 

So 𝒅𝟑 = 𝟎 and 𝑟3 = 6.  We can read off 
𝑎
𝑏
−
𝑑2
2!
−
𝑑3
3!

 from this calculation.  It follows from the 

result 

1 ⋅ 3! = 𝑑3 ⋅ 8 + 𝑟3 

that 

𝑟3 = 1 ⋅ 3! − 𝑑3 ⋅ 8 

𝑟3
3! ⋅ 8

=
1

8
−
𝑑3
3!
= (

𝑎

𝑏
−
𝑑2
2!
) −

𝑑3
3!
. 

 

Step 4.  Find 𝒅𝟒. 

𝑑4 equals the largest integer number of times that 
1
4!

 will go into  

𝑎

𝑏
−
𝑑2
2!
−
𝑑3
3!
=
𝑟3
3!⋅8

=
6

3!⋅8
=
1

8
. 

 

That is, 𝑑4 is the largest integer such that 
𝑑4
4!
≤

1

8
. 
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Continuing in the same manner we will divide 1 ⋅ 4! by 8 with remainder. 

1 ⋅ 4! = 𝑑4 ⋅ 8 + 𝑟4 = 3 ⋅ 8 + 0 

So 𝒅𝟒 = 𝟑 and 𝑟4 = 0. 

 

The process stops now because we have a remainder of 0.  Note that the process stopped with 

𝑑4 (i.e. 𝑚 = 4) as was predicted. 

 
5

8
=
𝑑2
2!
+
𝑑3
3!
+
𝑑4
4!
=
1

2!
+
0

3!
+
3

4!
 

 

and as a check we note that 
1

2!
+
0

3!
+
3

4!
=
1

2
+
1

4
=
5

8
. 

 

∎ 

 

 

6.3.3 Converting from Base 10 to a Factorial Base: Bottom Up “Short Cut” Method 

 

𝑎

𝑏
=
𝑑2
2!
+
𝑑3
3!
+⋯+

𝑑𝑚
𝑚!

 

 

Step 1: Solve for 𝒅𝒎 

We start by multiplying both sides of the defining equation given above by 𝑚!. 

𝑎

𝑏
𝑚! = (

𝑑2
2!
𝑚! +

𝑑3
3!
𝑚! + ⋯+

𝑑𝑚−1
(𝑚 − 1)!

𝑚!) + 𝑑𝑚 

= 𝑚(
𝑑2
2!
(𝑚 − 1)! +

𝑑3
3!
(𝑚 − 1)! +⋯+

𝑑𝑚−1
(𝑚 − 1)!

(𝑚 − 1)!) + 𝑑𝑚 

= 𝑚𝑞1 + 𝑑𝑚 

Recall that 𝑚 equals the smallest integer such that 𝑚! is divisible by 𝑏.  It follows that  

𝑎

𝑏
𝑚! 
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is an integer.  We can see that  

𝑞1 =
𝑑2
2!
(𝑚 − 1)! +

𝑑3
3!
(𝑚 − 1)! + ⋯+

𝑑𝑚−1
(𝑚 − 1)!

(𝑚 − 1)! 

is an integer.  So it follows from the relationship 

𝑎

𝑏
𝑚! = 𝑚𝑞1 + 𝑑𝑚 

That 𝑑𝑚 is the remainder and 𝑞1 is the integer quotient when we divide the integer 
𝑎
𝑏
⋅ 𝑚! by 𝑚 

with remainder. 

Step 2: Solve for 𝒅𝒎−𝟏 

Now subtract 
𝑑𝑚
𝑚!

 from 
𝑎
𝑏

 and repeat the process. 

𝑎

𝑏
−
𝑑𝑚
𝑚!

=
𝑑2
2!
+
𝑑3
3!
+ ⋯+

𝑑𝑚−1
(𝑚 − 1)!

 

Now if we multiply both sides by (𝑚 − 1)! we find 

(
𝑎

𝑏
−
𝑑𝑚
𝑚!
) (𝑚 − 1)! = (

𝑑2
2!
+
𝑑3
3!
+⋯+

𝑑𝑚−1
(𝑚 − 1)!

) (𝑚 − 1)! 

 

= (
𝑑2
2!
(𝑚 − 1)! +

𝑑3
3!
(𝑚 − 1)! + ⋯+

𝑑𝑚−2
(𝑚 − 2)!

(𝑚 − 1)!) + 𝑑𝑚−1 

= (𝑚 − 1)(
𝑑2
2!
(𝑚 − 2)! +

𝑑3
3!
(𝑚 − 2)! + ⋯+

𝑑𝑚−2
(𝑚 − 2)!

(𝑚 − 2)!) + 𝑑𝑚−1 

= (𝑚 − 1)𝑞2 + 𝑑𝑚−1 

Following the reasoning as in the previous step we can see that 𝑑𝑚−1 is the remainder and 𝑞2 is 

the integer quotient when we divide the integer (
𝑎
𝑏
−
𝑑𝑚
𝑚!
) (𝑚 − 1)! by 𝑚 − 1 with remainder. 

But we don’t need to recalculate  

(
𝑎

𝑏
−
𝑑𝑚
𝑚!
) (𝑚 − 1)! 
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because  

(
𝑎

𝑏
−
𝑑𝑚
𝑚!
) (𝑚 − 1)! = (

𝑑2
2!
+
𝑑3
3!
+⋯+

𝑑𝑚−1
(𝑚 − 1)!

) (𝑚 − 1)! 

=
𝑑2
2!
(𝑚 − 1)! +

𝑑3
3!
(𝑚 − 1)! + ⋯+

𝑑𝑚−1
(𝑚 − 1)!

(𝑚 − 1)! = 𝑞1. 

 

That is, 𝑞1 = (𝑚 − 1)𝑞2 + 𝑑𝑚−1.   

Hence to find 𝑑𝑚−1 we simply need to read off the remainder when we divide the previous 

quotient 𝑞1 by (𝑚 − 1) with remainder. 

  

The process continues in the same way.  We will find 𝑞2 = (𝑚 − 2)𝑞3 + 𝑑𝑚−2 and so we can 

find 𝑑𝑚−2 by reading off the remainder when we divide 𝑞2 by (𝑚 − 2) with remainder. 

…  etc. 

 

Example 
 

We will again find the factorial base representation of 
5

8
 but this time we will use the “bottom 

up” process. 

Solution 

Step 1.  Find 𝒎. 

𝑚 = 4 for the rational number   
𝑎

𝑏
=
5

8
  because 4! is divisible by 𝑏 = 8 but neither 2! nor 3! are.  

So we need to find 𝑑2, 𝑑3 and 𝑑4 such that 

5

8
=
𝑑2
2!
+
𝑑3
3!
+
𝑑4
4!

 

with 𝑑2 ∈ {0,1}, 𝑑3 ∈ {0,1,2} and 𝑑4 ∈ {0,1,2,3}. 

Step 2.  Find 𝒅𝟒. 

We have shown that 𝑑𝑚 = 𝑑4 is the remainder when we divide 
5
8
⋅ 4! by 4 with remainder. 
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5

8
⋅ 4! = 4𝑞1 + 𝑟1 = 4(3) + 3. 

Therefore 𝒅𝟒 = 𝒓𝟏 = 𝟑 and 𝑞1 = 3. 

 

Step 3.  Find 𝒅𝟑.  

We have shown that 𝑑𝑚−1 = 𝑑3 is the remainder when we divide the previous quotient 𝑞1 by 3 

with remainder. 

𝑞1 = 3 = 3𝑞2 + 𝑟2 = 3(1) + 0. 

Therefore 𝒅𝟑 = 𝒓𝟐 = 𝟎 and 𝑞2 = 1. 

 

Step 3.  Find 𝒅𝟐. 

We have shown that 𝑑2 is the remainder when we divide the previous quotient 𝑞2 by 2 with 

remainder. 

  

𝑞2 = 1 = 2𝑞3 + 𝑟3 = 2(0) + 1. 

Therefore 𝒅𝟐 = 𝒓𝟑 = 𝟏 and 𝑞2 = 0. 

 

So we have verified that 

5

8
=
𝑑2
2!
+
𝑑3
3!
+
𝑑4
4!
=
1

2!
+
0

3!
+
3

4!
 

using the “bottom up” method. 

∎ 

 

 

(5D974) 

 
Solution 



mathcloset.com  240 

 

 
∎ 

 

 

AMC 1999 Problem #25 

There are unique integers 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7 such that  
5

7
=
𝑎2
2!
+
𝑎3
3!
+
𝑎4
4!
+
𝑎5
5!
+
𝑎6
6!
+
𝑎7
7!
, 

whose 0 ≤ 𝑎𝑖 < 𝑖 for 𝑖 = 2,3, … ,7.  Find 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7. 

(A) 8 (B) 9 (C) 10 (D) 11 (E) 12 

 

Solution 

 
 

∎ 

 

 

https://oeis.org/wiki/Factorial_numeral_system 

https://oeis.org/wiki/Factorial_numeral_system
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6.4 Highest Power of 𝒑 that divides 𝒏! 

Let 𝑝 be any prime and 𝑛 any positive integer.  If 𝑝𝑓|𝑛 and 𝑝𝑓+1∤ 𝑛, we say that 𝑝𝑓  exactly 
divides 𝑛 and write 𝑝𝑓∥𝑛. 

 

Legendre’s Theorem 

If 𝑛 is a positive integer and 𝑝 is a prime, then 𝑝𝑒∥𝑛!, where 

𝑒 = ⌊
𝑛

𝑝
⌋ + ⌊

𝑛

𝑝2
⌋ + ⋯+ ⌊

𝑛

𝑝𝑟
⌋ 

and 𝑟 is determined by 𝑛 by the inequality 𝑝𝑟 ≤ 𝑛 < 𝑝𝑟+1. 
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Alternatively, 

If 𝑝 is prime and if 

𝑛 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 +⋯+ 𝑎𝑟𝑝

𝑟 

with 𝑎𝑟 ≠ 0 and 0 ≤ 𝑎𝑖 < 𝑝 for each 𝑖, and if 𝑝𝑒∥𝑛!, then  

𝑒 =
𝑛 − (𝑎0 + 𝑎1 +⋯+ 𝑎𝑟)

𝑝 − 1
. 

 

Also see article “Factoring Factorials” 
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The number of factors of the prime 𝑝 in (
𝑚
𝑘
) is 

𝛾 =∑(⌊
𝑚

𝑝𝑠
⌋ − ⌊

𝑘

𝑝𝑠
⌋ − ⌊

𝑚 − 𝑘

𝑝𝑠
⌋)

𝑟

𝑠=1

 

where 𝑟 is the largest integer such that 𝑝𝑠 ≤ 𝑘 and 𝑝𝑠 ≤ 𝑚 − 𝑘. 

 

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Problem #22 

Suppose 𝑚 is an integer such that 𝑚 = (
151
9
) =

151!

  142!   9!  
.  Find the largest prime divisor of 𝑚. 

Solution 

𝑛| (
𝑛
𝑘
) whenever gcd(𝑘, 𝑛) = 1.  Note this is a sufficient condition but not a necessary one.  For 

example, 10| (
10
4
) = 210 but gcd(10,4) ≠ 1. 

It is a classical result that 𝑝| (
𝑝
𝑘
) for all 𝑘 whenever 𝑝 is prime. 

In the above problem we simply need to note that 151 is prime.  Therefore, the largest prime 

divisor of (
151
9
) is 151. 

https://math.stackexchange.com/questions/545962/when-is-binomnk-divisible-by-n 

∎ 

 

Example 

https://math.stackexchange.com/questions/545962/when-is-binomnk-divisible-by-n
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Let 𝑛 = 28 and let 𝑝 = 3.  Then 

𝑒 = ⌊
28

3
⌋ + ⌊

28

9
⌋ + ⌊

28

27
⌋ = 9 + 3 + 1 = 13 

and hence by Theorem 2.29, 

𝑝13∥28! 

 

Pg. 65  

By Theorem 2.28, 

⌊
𝑛

𝑝𝑘
⌋ = ⌊

⌊
𝑛
𝑝𝑘−1

⌋

𝑝
⌋ 

so, we can simplify this algorithm a bit to  

𝑒 = ⌊
𝑛

𝑝
⌋ + ⌊

⌊
𝑛
𝑝
⌋

𝑝
⌋ +

⌊
 
 
 
 
 ⌊
𝑛
𝑝
⌋

𝑝

𝑝

⌋
 
 
 
 
 

+ ⋯ 

In particular, 

𝑒 = ⌊
28

3
⌋ + ⌊

⌊
28
3
⌋

3
⌋ +

⌊
 
 
 
 ⌊
28
3
⌋

3
3

⌋
 
 
 
 

= 9 + ⌊
9

3
⌋ + ⌊

⌊
9
3
⌋

3
⌋ = 9 + 3 + 1. 

The preceding computation of the exponent of 3 in the canonical representation of 28! bears a 
marked resemblance to the calculation of the digits in the positional representation of 28 to 
base 3.  That this resemblance is more than superficial is shown by the following theorem. 

Pg. 66, Theorem 2.30  
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If 𝑝 is prime and if 

𝑛 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 +⋯+ 𝑎𝑟𝑝

𝑟 

with 𝑎𝑟 ≠ 0 and 0 ≤ 𝑎𝑖 < 𝑝 for each 𝑖, and if 𝑝𝑒∥𝑛!, then  

𝑒 =
𝑛 − (𝑎0 + 𝑎1 +⋯+ 𝑎𝑟)

𝑝 − 1
. 

 

Example 

Note that 2810 = 10013.  Therefore, using the formula of Theorem 2.30, we again obtain 

𝑒 =
28 − (1 + 0 + 0 + 1)

3 − 1
= 13 

as the exponent of 3 such that 3𝑒∥28! 

Theorem 

There are  
 

⌊
𝑛

5
⌋ + ⌊

𝑛

52
⌋ + ⌊

𝑛

53
⌋ + ⋯+ ⌊

𝑛

5𝑘
⌋ 

 

zeros are there at the end of 𝑛! where 𝑘 is that integer such that 5𝑘 ≤ 𝑛 < 5𝑘+1. 

 

Example 
 
How many zeros are there at the end of 1000!? 
 
Solution 

 

There are ⌊
1000

5
⌋ + ⌊

1000

25
⌋ + ⌊

1000

125
⌋ + ⌊

1000

625
⌋ = 249 zeros at the end of 1000!  

∎ 
 
The following problem is an interesting twist on the problem of counting the number of zeros at 

the end of 𝑛!. 
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Exercise (Source: 2005 Lehigh University High School Math Contest, Problem #25) 

 

How many 0’s occur at the end of the decimal expansion of 100100 − 100!? 

 

Solution 

 

100! has 

⌊
100

5
⌋ + ⌊

100

52
⌋ + ⌊

100

53
⌋ + ⋯ = 20 + 4 + 0 + ⋯ = 24 

terminal zeros.  In contrast, 100100 = 10200 has 200 terminal zeros. 

It follows that  

100100 − 100! = 1 ⋅ 10200 +⋯+ 𝑐2410
24 + 𝑐2310

23 +⋯+ 𝑐110
1 + 𝑐010

0 

= −  
1 ⋅ 10200 + 0 ⋅ 10199 +⋯+ 0 ⋅ 10𝑟 +⋯+   0 ⋅ 1024 + 0 ⋅ 1023 +⋯+ 0 ⋅ 101 + 0 ⋅ 100

  𝑎𝑟 ⋅ 10
𝑟 +⋯+ 𝑎24 ⋅ 10

24 + 0 ⋅ 1023 +⋯+ 0 ⋅ 101 + 0 ⋅ 100
 

for some nonzero base 10 digits 𝑎𝑟  and 𝑎24.  Written in this form we can see that 𝑐24 = 10 −

𝑎24 ≠ 0 while 𝑐23 = 𝑐22 = ⋯ = 𝑐1 = 𝑐0 = 0. 

That is 100100 − 100! has the same number of terminal zeros as 100!, namely 24. 

∎ 

 

Exercise 

 

Pg. 68, Ex. 9  

Find the exponent 𝑒 such that 3𝑒∥91! 

Solution 

 

 

∎ 
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Exercise 

Pg. 68, Ex. 10  

Prove that 3 does not divide the binomial coefficient (
91
10
). 

Solution 

 

 

∎ 

 

Exercise 

Pg. 68, Ex. 11  

Find the highest power of 10 that divides 91! 

Solution 

 

 

∎ 

 

 

 
Exercise 
 
14.  Let 𝑛 be a positive integer.  Show that the power of the prime 𝑝 occurring in the prime-
power factorization of 𝑛! is 
 

[ 
𝑛

𝑝
 ] + [ 

𝑛

𝑝2
 ] + [ 

𝑛

𝑝3
 ] + ⋯. 

Solution 
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∎ 

 

Exercise 
 
15.  Use Exercise 14 to find the prime-power factorization of 20!. 

Solution 

The largest prime in 20! is 19.  So 
 

20! = 2𝑎23𝑎35𝑎57𝑎711𝑎1113𝑎1317𝑎1719𝑎19 
where 

𝑎𝑝 = [ 
20

𝑝
 ] + [ 

20

𝑝2
 ] + [ 

20

𝑝3
 ] + ⋯. 

∎ 

Exercise 

16.  How many zeros are there at the end of 1000! in decimal notation?  How many in base 
eight notation? 

𝑎5 = [ 
1000

5
 ] + [ 

1000

25
 ] + [ 

1000

125
 ] + [ 

1000

625
 ] 

 

Solution 

 

∎ 

 
 

Source: MSHSML 4T046 

 
Solution 
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∎ 

 

(3T815) 

 

 
Solution 

⌊
100

3
⌋ + ⌊

100

9
⌋ + ⌊

100

27
⌋ + ⌊

100

81
⌋ = 33 + 11 + 3 + 1 = 48. 

∎ 

 

 

 

6.5 Highest Power of 𝒑 that divides 𝒏! in Base 𝒃 
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6.6 Number of Terminal Zeroes in 𝒏! Base 10 
 

(4C002) 

 
Solution 

 
∎ 

 

 

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #12 

 
Solution 

 
∎ 

 

 

 

 

6.7 Number of Terminal Zeroes in 𝒏! Base 𝒃 
 

https://math.stackexchange.com/questions/1563986/factorials-in-different-base 

 

Suppose that 𝑏 = 𝑝1
𝑘1𝑝2

𝑘2⋯𝑝𝑡
𝑘𝑡 . 

 

Let 

𝑚𝑖 =
1

𝑘𝑖
(⌊
𝑛

𝑝𝑖
⌋ + ⌊

𝑛

(𝑝𝑖)2
⌋ + ⌊

𝑛

(𝑝𝑖)3
⌋ + ⋯). 

 

Then the number of trailing zeros of 𝑛! in base 𝑏 will be 

 

min
𝑖
(⌊𝑚𝑖⌋). 

https://math.stackexchange.com/questions/1563986/factorials-in-different-base
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(not yet positive about this but I’m starting to believe it) 

 

 

 

 

 
 

 
(unsure about this) 

 

 

 

(TD864)  When written in base three, a positive integer 𝑝 has two terminal zeroes.  When 

written in base four or five, the integer 𝑝 has one terminal zero.  In how many positive integral 

bases greater than one, other than those already mentioned, must the representation of 𝑝 

have at least one terminal zero? 

Solution 
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𝒂 base 𝒃 

If 𝑝10 = 𝑐𝑟 ⋅ 𝑏
𝑟 + 𝑐𝑟−1𝑏

𝑟−1 +⋯+ 𝑐1𝑏
1 + 𝑐0 where 𝑏 is an integer greater than or equal to 2 

and 𝑐𝑗 ∈ {0,1,2, … , 𝑏 − 1} for each 𝑗 = 0,1,… , 𝑟, then we write 𝑝10 = 𝑎𝑏 where 

𝑎𝑏 = (𝑐𝑟     𝑐𝑟−1  ⋯    𝑐1    𝑐0). 

For example, we write 

893110 = 350167. 

because 

893110 = 8931 = 3 ⋅ 7
4 + 5 ⋅ 73 + 0 ⋅ 72 + 1 ⋅ 71 + 6 ⋅ 70. 

 

Terminal Zeroes in Base 𝒃 

Suppose 𝑝10 = (𝑐𝑟    𝑐𝑟−1   ⋯   𝑐𝑘   00 ⋯   00⏟    
𝑘 zeroes

)

𝑏

with 𝑟 > 𝑘.  That is suppose 

𝑝10 = 𝑐𝑟 ⋅ 𝑏
𝑟 + 𝑐𝑟−1𝑏

𝑟−1 +⋯+ 𝑐𝑘𝑏
𝑘 + 0 ⋅ 𝑏𝑘−1 +⋯+ 0 ⋅ 𝑏1 + 0⏟                

𝑘 zeroes

. 

In this case we can factor out 𝑏𝑘 . 

𝑝10 = 𝑐𝑟 ⋅ 𝑏
𝑟 + 𝑐𝑟−1𝑏

𝑟−1 +⋯+ 𝑐𝑘𝑏
𝑘  

= 𝑏𝑘(𝑐𝑟 ⋅ 𝑏
𝑟−𝑘 + 𝑐𝑟−1𝑏

𝑟−1−𝑘 +⋯+ 𝑐𝑘). 

This shows that 

𝑝10 = (𝑐𝑟    𝑐𝑟−1   ⋯   𝑐𝑘   00    ⋯  00⏟    
𝑘 zeroes

)

𝑏

⟺ 𝑏𝑘|𝑝10. 

 

Recall that 𝑏𝑘|𝑝10 means that 𝑏𝑘  divides 𝑝10 or equivalently 𝑏𝑘  is a factor of 𝑝10.  We need this 

result to solve this problem. 

In this problem we are given the information that the base 3 representation of 𝑝 (base 10) has 

(at least) 2 terminal zeroes and when 𝑝 is represented in base four or five, the integer 𝑝 has (at 

least) one terminal zero. 

From our above result this tells us that  

Base 3            𝑝 = ⋆ ⋯⋆ 00     ⟹    32|𝑝

Base 4              𝑝 = ⋆ ⋯⋆⋆ 0     ⟹    41|𝑝

Base 5              𝑝 = ⋆ ⋯⋆⋆ 0     ⟹    51|𝑝.

 

From here it follows that  

𝑝 = 32 ⋅ 41 ⋅ 51 ⋅ 𝒎 = 32 ⋅ 22 ⋅ 51 ⋅ 𝒎 

where 𝒎 is an arbitrary integer. 

Now we come back to the original question.  For what positive integral bases greater than one, 

other than bases 3, 4 and 5, must the representation of 𝑝 have at least one terminal zero? 

What about base 6?  Can we be sure that 61|𝑝?  We can see that it does because 

𝑝 = 32 ⋅ 22 ⋅ 51 ⋅ 𝒎 = 𝟔𝟏 ⋅ 31 ⋅ 21 ⋅ 51 ⋅ 𝒎. 
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It is clear that every base number 𝑏 of the form 𝑏 = 2𝑟13𝑟25𝑟3  with 𝑟1 ∈ {0,1,2}, 𝑟2 ∈ {0,1,2}, 

and 𝑟3 ∈ {0,1} will divide 𝑝 = 32 ⋅ 22 ⋅ 51 ⋅ 𝒎. 

This leads to the enumeration problem where there are 3 choices for 𝑟1, 3 choices for 𝑟2 and 2 

choices for 𝑟3.  Combined this leads to a total of 3 × 3 × 2 = 18 base numbers – except that 

this includes 𝑏 = 1,3,4,5 which we were told to not include in the final count. 

Hence there are 18 − 4 = 14 additional base numbers where 𝑝 expressed in that base must 

have at least one terminal zero. 

∎ 

 

 
 

 

AMC 1965 Problem #33 

If the number 15!, that is, 15 ⋅ 14 ⋅ 13⋯1, ends with 𝑘 zeros when given to the base 12 and 

ends with ℎ zeros when give to the base 10, then 𝑘 + ℎ equals: 

(A) 5 (B) 6 (C) 7  (D) 8 (E) 9 

 

Solution 

 

 

∎ 

 

AMC 1970 Problem #23 

The number 10! (10 is written in base 10), when written in the base 12 system, ends with 

exactly 𝑘 zeros.  The value of 𝑘 is 

(A) 1 (B) 2 (C) 3  (D) 4 (E) 5 

 

Solution 

 

 

∎ 

 



mathcloset.com  257 

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Problem #26 

How many zeros are at the end of (22!)2 when it’s written in base 4? 

Solution 

Suppose 𝑚10 = 𝑛𝑏.  That is, the base 10 𝑚 equals the base 𝑏 integer 𝑛.  Then the number of 

zeros at the end of 𝑛𝑏 equals the largest positive integer 𝑘 such that 𝑏𝑘|𝑚10.   

So, in this problem we are looking for the largest 𝑘 such that 4𝑘|(22!)2. 

From Legendre’s Theorem we know that if 𝑛 is a positive integer and 𝑝 is a prime, then 𝑝𝑒∥𝑛!, 

where 

𝑒 = ⌊
𝑛

𝑝
⌋ + ⌊

𝑛

𝑝2
⌋ + ⋯+ ⌊

𝑛

𝑝𝑟
⌋ 

and 𝑟 is determined by 𝑛 by the inequality 𝑝𝑟 ≤ 𝑛 < 𝑝𝑟+1. 

 

This problem comes with two “twists”.  First the base 10 number of interest is (22!)2 instead of 
just 22!.  (i.e. Legendre’s Theorem does not directly apply.) 

The second “twist” we want to find the highest power of 4 that divides our number of interest 

and 4 is not a prime number.  (i.e. we have a second reason why Legendre’s Theorem does not 

directly apply.) 

However, if 𝑝𝑘‖𝑛 for some prime 𝑝, then (𝑝2)𝑘‖𝑛2.  Applying this result to our problem, if 

2𝑘‖22! then 4𝑘‖(22!)2.  

But Legendre’s Theorem applies directly to finding the value of 𝑘 such that 2𝑘‖22! .  From 
Legendre’s Theorem we see that 

𝑘 = ⌊
22

2
⌋ + ⌊

22

4
⌋ + ⌊

22

8
⌋ + ⌊

22

16
⌋ = 11 + 5 + 2 + 1 = 19. 

 

Therefore, the largest 𝑘 such that 4𝑘‖(22!)2 must be 19.   

∎ 

 

Note: We could have also used the result: 
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If 𝑝 is prime and if 

𝑛 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 +⋯+ 𝑎𝑟𝑝

𝑟 

with 𝑎𝑟 ≠ 0 and 0 ≤ 𝑎𝑖 < 𝑝 for each 𝑖, and if 𝑝𝑒‖𝑛!, then  

𝑒 =
𝑛 − (𝑎0 + 𝑎1 +⋯+ 𝑎𝑟)

𝑝 − 1
. 

 

∎ 

 

 

6.8 Sum of Factorials Mod 𝒏 
 

 

(Koshy, page 242) 

 
 

 
 

 

6.9 Extra Factorial Problems 
 

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #10 
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Solution 

 
∎ 

 

 

AMC 1965 

 
Solution 

 

 

∎ 
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Chapter 7. Linear Congruence Equations 
 

Develop more before launching into systems 

 
 

 
Theorem 
 
If 𝑎, 𝑏, 𝑐1, 𝑐2 , … , 𝑐𝑛 ∈ ℤ and if 𝑐1, 𝑐2 , … , 𝑐𝑛 are pairwise relatively prime, then 
 
 

𝑎 ≡ 𝑏 mod (𝑐1 ∙ 𝑐2⋯𝑐𝑛)  ⟺ 

𝑎 ≡ 𝑏 mod 𝑐1
𝑎 ≡ 𝑏 mod 𝑐2

⋮
𝑎 ≡ 𝑏 mod 𝑐𝑛−1
𝑎 ≡ 𝑏 mod 𝑐𝑛
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7.1 Chinese Remainder Theorem 

 
 

Theorem 

 

Let 𝑎1, 𝑎2… ,𝑎𝑟 ∈ ℤ (set of integers) and let 𝑚1,𝑚2, … ,𝑚𝑟 ∈ ℕ (set of positive integers) with 

(𝑚𝑖, 𝑚𝑗) = 1 for 𝑖 ≠ 𝑗 be given.  Let 𝑀 = 𝑚1 ⋅ 𝑚2⋯𝑚𝑟.  Let 𝑀𝑖 = 𝑀/𝑚𝑖.  Then the single 

congruence equation 

 

(∑𝑀𝑖

𝑟

𝑖=1

)𝑥 ≡∑𝑀𝑖𝑎𝑖

𝑟

𝑖=1

  (mod𝑀) 

 

has the same unique solution (mod𝑀) as the system of equations 

 

𝑥  ≡  𝑎1    (mod𝑚1) 

𝑥  ≡  𝑎2   (mod𝑚2) 
 ⋮    
𝑥  ≡  𝑎𝑟    (mod𝑚𝑟).
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https://forthright48.com/chinese-remainder-theorem-part-2-non-coprime-moduli/ 

 

 

 
 

 

Example Illustrating the Chinese Remainder Theorem 
 
Find the least nonnegative solution of the system of linear congruences 
 

𝑥 ≡ 𝟏 mod 𝟐 
𝑥 ≡ 𝟐 mod 𝟑 
𝑥 ≡ 𝟏 mod 𝟓 
𝑥 ≡ 𝟓 mod 𝟕. 

 
Answer: 131. 
 
Proof: 
 
By the Chinese remainder theorem, provided the moduli (𝑚1 = 𝟐,𝑚2 = 𝟑,𝑚3 = 𝟓, and 𝑚4 = 𝟕) are 
pairwise relatively prime, there will be a unique solution 𝑥′ (modulo 𝑀 = 𝑚1 ∙ 𝑚2 ∙ 𝑚3 ∙ 𝑚4 = 2 ∙ 3 ∙ 5 ∙
7 = 210) of the form 
 

𝑥′ = 𝑏1𝑀1𝑥1 + 𝑏2𝑀2𝑥2 + 𝑏3𝑀3𝑥3 + 𝑏4𝑀4𝑥4 

https://forthright48.com/chinese-remainder-theorem-part-2-non-coprime-moduli/
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where 𝑏1 = 𝟏,𝑏2 = 𝟐, 𝑏3 = 𝟏, and 𝑏4 = 𝟓,  𝑀𝑖 = 𝑀 𝑚𝑖⁄   and 𝑥𝑖  is the unique solution to 𝑀𝑖𝑥 ≡ 1 mod 
𝑚𝑖. 
 
Clearly, the moduli 2,3,5 and 7 are pairwise relatively prime so we can proceed to find 𝑥′ via the CRT 
(Chinese remainder theorem). 
 
First, we need to find the 𝑀𝑖 = 𝑀 𝑚𝑖⁄ . 

𝑀1 = 210 2 = 105⁄  

𝑀2 = 210 3 = 70⁄  

𝑀3 = 210 5 = 42⁄  

𝑀4 = 210 7 = 30⁄ . 
 
The next step is find the 𝑥𝑖, the solutions to the linear congruences 𝑀𝑖𝑥 ≡ 1 mod 𝑚𝑖.  That is, solve 
 

105 𝑥1 ≡ 1 mod 2 

70 𝑥2 ≡ 1 mod 3 

42 𝑥3 ≡ 1 mod 5 

30 𝑥4 ≡ 1 mod 7. 
 
(Remember that part of the proof of the CRT was to show that the 𝑥𝑖  will exist and will be unique 
modulo 𝑚𝑖 .) 
 
We have already learned how we can work back up through the Euclidean algorithm or by using 
Blankinship’s algorithm to solve the general linear congruence 𝑎𝑥 ≡ 𝑏 mod 𝑚  (Section 2.2). 
 
 
 
However, for moduli this small it is probably easier to find the solutions by brute force.   
 
We know that the unique solution (modulo 2) to 
 

105 𝑥1 ≡ 𝟏 mod 2 
 
must be 0 or 1.  So simply check both possibilities and see which one works! 
 
We see that  

105 (0) ≡ 0 mod 2 
but 

105 (𝟏) ≡ 𝟏 mod 2. 
 
So 𝑥1 = 𝟏. 
 
We know that the unique solution (modulo 3) to 
 

70 𝑥2 ≡ 𝟏 mod 3 



mathcloset.com  266 

 
must be 0, 1 or 2.  So simply check all three possibilities and see which one works! 
 
We see that  

70 (0) ≡ 0 mod 3 

70 (𝟏) ≡ 𝟏 mod 3 

70 (2) ≡ 2 mod 3. 
 
So 𝑥2 = 𝟏. 
 
We know that the unique solution (modulo 5) to 
 

42 𝑥3 ≡ 𝟏 mod 5 
 
must be 0, 1,2,3 or 4.  So simply check all five possibilities and see which one works! 
 
We see that  

42 (0) ≡ 0 mod 5 

42 (1) ≡ 2 mod 5 

42 (2) ≡ 4 mod 5 

42 (𝟑) ≡ 𝟏 mod 5 

42 (4) ≡ 3 mod 5. 
 
So 𝑥3 = 𝟑. 
 
 
 
 
 
Finally, we know that the unique solution (modulo 7) to 
 

30 𝑥4 ≡ 𝟏 mod 7 
 
must be 0, 1,2,3,4,5,6 or 7.  So simply check all seven possibilities and see which one works! 
 
We see that  

30 (0) ≡ 0 mod 7 

30 (1) ≡ 2 mod 7 

30 (2) ≡ 4 mod 7 

30 (3) ≡ 6 mod 7 

30 (𝟒) ≡ 𝟏 mod 7 

30 (5) ≡ 3 mod 7 

30 (6) ≡ 5 mod 7 
 
So 𝑥4 = 𝟒. 
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Therefore the desired unique solution modulo 𝑀 = 2 ∙ 3 ∙ 5 ∙ 7 = 210 is 
 

𝑥′ 

 = 𝑏1𝑀1𝑥1 + 𝑏2𝑀2𝑥2 + 𝑏3𝑀3𝑥3 + 𝑏4𝑀4𝑥4 

 = (1 ∙ 105 ∙ 1) + (2 ∙ 70 ∙ 1) + (1 ∙ 42 ∙ 3) + (5 ∙ 30 ∙ 4) 

 = 971. 

 
 
However, we can find a smaller nonnegative solution!  We see that 
 

971 = 4 ∙ 210 + 131. 
 
Therefore, 131 ≡ 971 mod 210.  We also note that 0 ≤ 131 < 210 which tells us that 131 is the least 
nonnegative solution. 

∎ 
 

TA054 

 
 
 

1T943 

 
 
 

1A104 

A certain positive integer is three greater than a multiple of 5, five greater than a multiple of 8, 

and eight greater than a multiple of 13.  Determine the value of the least such integer. 

 

Solution 

Let 𝑥 be the integer we are looking for.  Then 

 𝑥 is three greater than a multiple of 5 ⟺ 𝑥 ≡ 3mod(5) (1) 

 𝑥 is five greater than a multiple of 8 ⟺ 𝑥 ≡ 5mod(8) (2) 

 𝑥 is eight greater than a multiple of 13 ⟺ 𝑥 ≡ 8mod(13). (3) 

 

By the Chinese Remainder Theorem the value of 𝑥 is unique mod(5 ⋅ 8 ⋅ 13) = mod(520). 
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From (Eq. 1) we know that 𝑥 is three greater than a multiple of 5 ⟺ 𝑥 = 5𝑘 + 3 for some 

integer 𝑘.  Consider both sides of (Eq. 1) mod(8). 

𝑥 mod(8) = (5𝑘 + 3)mod(8). 

But from (Eq. 2) we also know that  

𝑥 ≡ 5mod(8). 

Therefore 

𝑥mod(8) = (5𝑘 + 3)mod(8) = 5mod(8)  

or 

(5𝑘 + 3) ≡ 5mod(8) 

which implies  

5𝑘 ≡ 5 − 3 = 2mod(8). 

 

What does the statement 5𝑘 ≡ 2 mod(8) really mean?  Because we are working mod(8) we 

must have 𝑘 ∈ {0,1,2,3,4,5,6,7}.  So we are looking for that value of 𝑘 ∈ {0,1,2,3,4,5,6,7} such 

that 5𝑘 has a remainder of 2 when divided by 8.  We can see by inspection that 𝑘 = 2 satisfies 

this requirement because 5𝑘 = 5(2) = 10 has a remainder of 2 when divided by 8. 

 

But if we were working mod(488) then 𝑘 ∈ {0,1,2,3,… ,486,487} and it may take you forever 

to find 𝑘 “by inspection”.  We need a systematic approach. 

 

7.2 Euler’s Systematic Reduction Method 
 

Find 𝑘 such that 5𝑘 ≡ 2mod(8) using Euler’s Systematic Reduction Method. 

5𝑘 ≡ 2mod(8) 

⟺ 5𝑘 = 8𝑎 + 2 for some integer 𝑎 

⟺ 5𝑘mod(5) = (8𝑎 + 2)mod(5) 

⟺ 0 ≡ (3𝑎 + 2)mod(5) 

⟺ 3𝑎 + 2 = 5𝑏 for some integer 𝑏 

⟺ (3𝑎 + 2)mod(3) = 5𝑏mod(3) 

⟺ 3𝑎mod(3) + 2mod(3) = 5𝑏mod(3) 

⟺ 2mod(3) = 5𝑏mod(3) 
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⟺ 2 ≡ 2𝑏mod(3) 

⟺ 2𝑏 = 3𝑐 + 2 for some integer 𝑐 

⟺ 2𝑏mod(2) = (3𝑐 + 2)mod(2) 

⟺ 0 ≡ 𝑐mod(2). 

So, we have systematically reduced the problem of finding 𝑘 ∈ {0,1,2,3,4,5,6,7} such that 5𝑘 ≡

2mod(8) to the easier problem of find 𝑐 ∈ {0,1} such that 𝑐 ≡ 0mod(2).  Now we can 

immediately see that 𝑐 = 0 satisfies 𝑐 ≡ 0mod(2). 

Now work your way back up the if and only if (i.e. ⟺) statements 

𝑐 = 0 

2𝑏 = 3𝑐 + 2 ⟺ 2𝑏 = 2 ⟺ 𝑏 = 1 

3𝑎 + 2 = 5𝑏 ⟺ 3𝑎 + 2 = 5 ⟺ 3𝑎 = 3 ⟺ 𝑎 = 1 

5𝑘 = 8𝑎 + 2 ⟺ 5𝑘 = 8 + 2⟺ 5𝑘 = 10 ⟺ 𝑘 = 2. 

 

So 𝑘 = 2, which is the same answer we got “by inspection”.  More specifically, 

5𝑘 ≡ 2mod(8) ⟺ 𝑘 ≡ 2mod(8). 

That is, 𝑘 ∈ {2,10,18,26,34,42,50,58,66,74,… }. 

 

Now consider both sides of (Eq. 1) mod(13). 

𝑥 mod(13) = (5𝑘 + 3)mod(13). 

But from (Eq. 3) we also know that  

𝑥 ≡ 8mod(13). 

Therefore 

𝑥 mod(13) = (5𝑘 + 3)mod(13) = 8mod(13)  

or 

(5𝑘 + 3) ≡ 8mod(13) 

which implies  

5𝑘 ≡ 8 − 3 = 5mod(13). 

 

Now we want to find that value of 𝑘 ∈ {0,1,2,3,4,… ,11,12} such that 5𝑘 has a remainder of 5 

when divided by 13.  We can see by inspection that 𝑘 = 1 satisfies this requirement because 

5𝑘 = 5(1) = 5 has a remainder of 5 when divided by 13. 

5𝑘 ≡ 5mod(13) ⟺ 𝑘 ≡ 1mod(13). 

That is, 𝑘 ∈ {1,14,27,40,53,66,79,92,105,… }. 

 

The smallest positive value of 𝑘 that is in both lists is 𝑘 = 66.  Therefore, 

𝑥 = 5𝑘 + 3 = 5(66) + 3 = 333mod(520). 

∎ 

 

 

(TA054) 
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Solution 

 
∎ 

 

7.3 Extra Linear Congruence Problems 
 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 9 

What is the smallest positive prime number that leaves a remainder of one when divided by 

both 3 and 11? 

Solution 

 
3|(𝑥 − 1) and 11|(𝑥 − 1) ⟹ 33|(𝑥 − 1) 

(𝑥 − 1) ∈ {33,66,99,… } 

𝑥 ∈ {34,67,100,… } 

Smallest prime value of 𝑥 is 67. 

∎ 
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Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #29 

 
Solution 

 
∎ 
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Chapter 8. Fibonacci Numbers 
 

8.1 Definition 
 

The Fibonacci sequence 𝐹1, 𝐹2, 𝐹3, … is defined by the recurrence relation 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1.   

 

𝐹1 and 𝐹2 need to be specified in order to initiate the recurrence.  The standard set of initial 

values are 𝐹1 = 1 and 𝐹2 = 1.  But for some problems it is sufficient to state that 𝐹1 = 𝑎 and 

𝐹2 = 𝑏 without assigning particular values to 𝑎 and 𝑏. 

 

In the standard model with 𝐹1 = 1 and 𝐹2 = 1, the first five numbers in the sequence are  

 

 𝐹1 = 1 𝐹2 = 1 𝐹3 = 2 𝐹4 = 3 𝐹5 = 5 

 

In some textbooks the Fibonacci sequence starts at 𝐹0 instead of 𝐹1.  Notice that taking the 

initial values 𝐹0 = 0 and 𝐹1 = 1 with the recurrence 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 leads to the same value 

for 𝐹𝑛, 𝑛 = 1,2,3,… as the “standard” model.  That is, with this alternative definition we get 

 

𝐹0 = 0 𝐹1 = 1 𝐹2 = 1 𝐹3 = 2 𝐹4 = 3 𝐹5 = 5 

 

 

8.2 𝐠𝐜𝐝(𝑭𝒊, 𝑭𝒋) 
 

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #14 

The Fibonacci sequence is defined such that the first two numbers in the sequence are both 1 

and each successive number is the sum of the two previous numbers in the sequence.  The first 

5 numbers in the sequence are 1,1,2,3, and 5.  What is the greatest common divisor of the 23rd 

and 24th numbers in the Fibonacci sequence? 

Solution 

The two important results to remember are 
(𝑖) 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1

(𝑖𝑖) gcd(𝑎, 𝑏) = gcd(𝑎 + 𝑏, 𝑏) .
 

Repeatedly using these two results we can see why gcd(𝐹𝑛 , 𝐹𝑛−1) = 1 for all 𝑛. 

gcd(𝐹24, 𝐹23) = gcd(𝐹23 + 𝐹22, 𝐹23) = gcd(𝐹22, 𝐹23) 

gcd(𝐹23, 𝐹22) = gcd(𝐹22 + 𝐹21, 𝐹22) = gcd(𝐹21, 𝐹22) 

gcd(𝐹22, 𝐹21) = gcd(𝐹21 + 𝐹20, 𝐹21) = gcd(𝐹20, 𝐹21) 

                           ⋮ 

gcd(𝐹2, 𝐹1) = gcd(1,1) = 1. 
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∎ 

 

 

Theorem 

gcd(𝑓𝑚 , 𝑓𝑛) = 𝑓gcd(𝑚,𝑛) 

𝑚|𝑛 ⟺ 𝑓𝑚|𝑓𝑛 

Proof 

 
 

 

8.3 Fibonacci Numbers Mod 𝒎 
 

Let 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 and let 𝐹1 = 𝑎 and let 𝐹2 = 𝑏.  Let ℎ𝑛,𝑚 = 𝐹𝑛 mod(𝑚).  Then 

 

𝐹𝑛+1 mod(𝑚) = (𝐹𝑛 + 𝐹𝑛−1)mod(𝑚) = (𝐹𝑛 mod(𝑚) + 𝐹𝑛−1 mod(𝑚))mod(𝑚). 

 

That is, 

ℎ𝑛+1,𝑚 = (ℎ𝑛,𝑚 + ℎ𝑛−1,𝑚)mod(𝑚). 

∎ 

 

The sequence ℎ1,𝑚 , ℎ2,𝑚 , ℎ3,𝑚 , … is periodic. 

 

In mathematics, a periodic sequence (sometimes called a cycle[citation needed]) is a sequence for 

which the same terms are repeated over and over:  

a1, a2, ..., ap,  a1, a2, ..., ap,  a1, a2, ..., ap, ...
[citation needed] 

The number p of repeated terms is called the period (period).[1]  

A (purely) periodic sequence (with period p), or a p-periodic sequence, is a sequence a1, a2, 

a3, ... satisfying One size fits all  

an+p = an 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Term_(logic)
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:0-1
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[2] for all values of n.[1][3][4][5][6] If a sequence is regarded as a function whose domain is the set of 

natural numbers, then a periodic sequence is simply a special type of periodic function.[citation 

needed] The smallest p for which a periodic sequence is p-periodic is called its least period[1][7] or 

exact period.[7][verification needed]  

A periodic sequence is one that repeats itself. The period, p, of a periodic sequence is the 

number of terms in each repetition. 

 

In number theory, the nth Pisano period, written as π(n), is the period with which the sequence 

of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo 

Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers 

was noted by Joseph Louis Lagrange in 1774.[1][2] 

 

 

 
∎ 

https://sites.math.rutgers.edu/~zeilberg/essays683/renault 

 

http://webspace.ship.edu/msrenault/fibonacci/fib.htm 

 

 

 
 

https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-2
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:0-1
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:1-3
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-4
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:2-5
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-6
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Periodic_function
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:0-1
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:3-7
https://en.wikipedia.org/wiki/Periodic_sequence#cite_note-:3-7
https://en.wikipedia.org/wiki/Wikipedia:Verifiability
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Periodic_function
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Fibonacci
https://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
https://en.wikipedia.org/wiki/Pisano_period#cite_note-mathworld-1
https://en.wikipedia.org/wiki/Pisano_period#cite_note-2
https://sites.math.rutgers.edu/~zeilberg/essays683/renault
http://webspace.ship.edu/msrenault/fibonacci/fib.htm
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Let 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 and let 𝐹1 = 𝐹2 = 1.  Find 𝐹324 mod(4). 

Solution 

Let 𝑏𝑛,𝑚 = 𝐹𝑛 mod(𝑚).  It follows from the Fibonacci recurrence that 

 

𝐹𝑛+1 mod(𝑚) = (𝐹𝑛 + 𝐹𝑛−1)mod(𝑚) 

 

= (𝐹𝑛 mod(𝑚) + 𝐹𝑛−1 mod(𝑚))mod(𝑚) 

That is, 

𝑏𝑛+1,𝑚 = (𝑏𝑛,𝑚 + 𝑏𝑛−1,𝑚)mod(𝑚) 

 

 

∎ 

 

Mu Alpha Theta National Convention 2001, Number Theory Test, Alpha Division, Problem # 

39 

Let 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 and let 𝐹1 = 𝐹2 = 1.  Find the smallest positive integer 𝑚 such that 

𝐹𝑛+𝑚 ≡ 𝐹𝑛 (mod7) for all integers 𝑛. 

 
Solution 

 
∎ 

 

8.4 Fibonacci Number Identities 
 

https://www.cut-the-knot.org/arithmetic/algebra/FibonacciGCD.shtml 

 

(see file “Fibonacci  HW #2”) 

𝑓1 + 𝑓3 +⋯+ 𝑓2𝑛−1 = 𝑓2𝑛 

https://www.cut-the-knot.org/arithmetic/algebra/FibonacciGCD.shtml
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𝑓1 = 1, 𝑓2 = 1, 𝑓3 = 2,… 

 

 
 

 
 

 

8.5 Extra Problems for Fibonacci Numbers 
 

AMC 1992 Problem #18 

The increasing sequence of positive integers 𝑎1, 𝑎2, 𝑎3, …  has the property that 

𝑎𝑛+2 = 𝑎𝑛 + 𝑎𝑛+1  for all  𝑛 ≥ 1. 

If 𝑎7 = 120, then 𝑎8 is 

(A) 128 (B) 168 (C) 193 (D) 194 (E) 210 

 

Solution 

 

 
 

 

𝑎3 = 𝑎1 + 𝑎2 

𝑎4 = 𝑎2 + 𝑎3 = 𝑎2 + 𝑎1 + 𝑎2 = 𝑎1 + 2𝑎2 
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𝑎5 = 𝑎3 + 𝑎4 = (𝑎1 + 𝑎2) + (𝑎1 + 2𝑎2) = 2𝑎1 + 3𝑎2 

𝑎6 = 𝑎4 + 𝑎5 = 3𝑎1 + 5𝑎2 

𝑎7 = 𝑎5 + 𝑎6 = 5𝑎1 + 8𝑎2 

𝑎8 = 8𝑎1 + 13𝑎2 

 

5𝑎1 + 8𝑎2 = 120,   1 ≤ 𝑎1 < 𝑎2 

 

𝑎1 + 𝑎2 +
3𝑎2
5
= 24 

 
6𝑎2
5
= 𝑝 

𝑎2 +
𝑎2
5
= 𝑝 

𝑎2 = 5𝑝 

 

120 = 5𝑎1 + 8𝑎2 = 5𝑎1 + 40𝑝 

 

5𝑎1 = 120 − 40𝑝 

𝑎1 = 24 − 8𝑝, 𝑎2 = 5𝑝 

 

The only positive solutions for both 𝑎1 and 𝑎2 happen when 𝑝 = 1 and 𝑝 = 2 

𝑎1 = 16, 𝑎2 = 5 

𝑎1 = 8, 𝑎2 = 10. 

But 𝑎1 < 𝑎2 so 𝑎1 = 8 and 𝑎2 = 10. 

Therefore, 

𝑎8 = 8𝑎1 + 13𝑎2 = 8(8) + 13(10) = 64 + 130 = 194. 

∎ 

 

 

Mu Alpha Theta National Convention 2001, Number Theory Test, Alpha Division, Problem # 

39 

Let 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 and let 𝐹1 = 𝐹2 = 1.  Find the smallest positive integer 𝑚 such that 

𝐹𝑛+𝑚 ≡ 𝐹𝑛 (mod7) for all integers 𝑛. 

 
Solution 
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∎ 

 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 10 

How many of the first 400 Fibonacci numbers are multiples of 3?  (Let the first two Fibonacci 

numbers both be 1.) 

Solution 

 
 

∎ 

 

 

 
Solution 

 

I am still hoping to find a set of results about the 

Fibonacci sequence modulo 𝒎. 
∎ 

 

Fibonacci Series Modulo m 

Author(s): D. D. Wall 
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Mu Alpha Theta National Convention 2007, Alpha Division, Number Theory Test, Problem #16 

 
Solution 

 
∎ 
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Chapter 9. Pythagorean Triples 
 

If 𝑥, 𝑦, and 𝑧 are positive integers such that 𝑥2 + 𝑦2 = 𝑧2 then we call the triple (𝑥, 𝑦, 𝑧) a 
Pythagorean Triple. 
 
 
Pg. 60, Definition (Primitive Pythagorean Triples) 

If 𝑥, 𝑦, and 𝑧 are relatively prime positive integers such that 𝑥2 + 𝑦2 = 𝑧2 then we call the triple 
(𝑥, 𝑦, 𝑧) a Primitive Pythagorean Triple. 
 
Note: Recall that 𝑥, 𝑦, 𝑧 are relatively prime provided (𝑥, 𝑦, 𝑧) = 1. 
 
 
Pg. 60, Theorem 2.26 (Pythagorean Triples) 

The integers 𝑥, 𝑦, and 𝑧 with 𝑥 even form a primitive Pythagorean triple if and only if there 

exists integers 𝑠 and 𝑡, with 𝑠 < 𝑡, with (𝑠, 𝑡) = 1 and with one of 𝑠 and 𝑡 even and the other 

odd, such that 𝑥 = 2𝑠𝑡, 𝑦 = 𝑡2 − 𝑠2, and 𝑧 = 𝑡2 + 𝑠2. 

 

 
 

 

 

∎ 

 
 

 
 

Exactly one of 𝑥, 𝑦 is divisible by 3. 

Exactly one of 𝑥, 𝑦 is divisible by 4. 

Exactly one of 𝑥, 𝑦, 𝑧 is divisible by 5. 

The largest number that always divides 𝑥𝑦𝑧 is 60. 

𝑧 is odd 
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All prime factors of 𝑧 are primes of the form 4𝑛 + 1. Therefore, 𝑧 is of the form 4𝑛 + 1. 

 

9.1 Longest Leg and Hypotenuse Differ By Exactly One 
 

https://en.wikipedia.org/wiki/Pythagorean_triple 

There exist infinitely many Pythagorean triples in which the hypotenuse and the longest leg 

differ by exactly one.  Such triples are necessarily primitive and have the form (2𝑛 + 1, 2𝑛2 +

2𝑛, 2𝑛2 + 2𝑛 + 1).  This results from Euclid’s formula by remarking that the condition implies 

that the triple is primitive and must verify (𝑚2 + 𝑛2) − 2𝑚𝑛 = 1.  This implies (𝑚 − 𝑛)2 = 1, 

and thus 𝑚 = 𝑛 + 1.  The above form of the triples results thus of substituting 𝑚 for 𝑛 + 1 in 

Euclid’s formula. 

There exist infinitely many Pythagorean triples in which the hypothenuse and the longest leg 

differ by exactly two.  They are all primitive and are obtained by putting 𝑛 = 1 in Euclid’s 

formula.   

More generally, for every integer 𝑘 > 0, there exist infinitely many primitive Pythagorean 

triples in which the hypothenuse and the odd leg differ by 2𝑘2.  They are obtained by putting 

𝑛 = 𝑘 in Euclid’s formula. 

 

9.2 Legs Differ By Exactly One 

 
 

9.3 How do I find all primitive Pythagorean triples with one given number? 
 
Let the given number be denoted by 𝑏.   

https://en.wikipedia.org/wiki/Pythagorean_prime
https://en.wikipedia.org/wiki/Pythagorean_triple
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We invoke the property that all primitive Pythagorean triple can be expressed in the form  
 

(𝑚2 − 𝑛2, 2𝑚𝑛,𝑚2 + 𝑛2) 
 
with integers 𝑚 > 𝑛 > 0 where exactly one of 𝑚 and 𝑛 is odd and where gcd(𝑚, 𝑛) = 1. 
 
Case 1.  𝒃 is even. 
 
It must be that 𝑏 = 2𝑚𝑛 because 2𝑚𝑛 is the only even number in a primitive Pythagorean 
triple. 
 
So, we need to find integers 𝑚 and 𝑛 (subject to the above restrictions) such that 𝑏 = 2𝑚𝑛. 
 

Case 2.  𝒃 is odd and 𝒃 = 𝒎𝟐 − 𝒏𝟐. 
 
In this case, 𝑏 = 𝑚2 − 𝑛2 = (𝑚 − 𝑛)(𝑚 + 𝑛). 
 
So, we need to find integers 𝑚 and 𝑛 (subject to the above restrictions) such that 𝑏 =
(𝑚 − 𝑛)(𝑚 + 𝑛). 
 

Case 3.  𝒃 is odd and 𝒃 = 𝒎𝟐 + 𝒏𝟐. 
 
In this case, 𝑏 = 𝑚2 + 𝑛2. 
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Mu Alpha Theta 1996 National Convention, Open Division, Number Theory, Problem 13 
(adapted) 
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Let (𝑎, 𝑏, 𝑐) be a Pythagorean triple such that 𝑎, 𝑏 and 𝑐 are positive integers with 𝑎 < 𝑏 < 𝑐 
and 𝑎2 + 𝑏2 = 𝑐2.  If 𝑏 = 1996, find 𝑎 and 𝑐. 

Solution 

𝑏2 = 𝑐2 − 𝑎2 = (𝑐 − 𝑎)(𝑐 + 𝑎). 

We note that the sum of these two factors is even.  That is (𝑐 − 𝑎) + (𝑐 + 𝑎) = 2𝑐.  Also the 

difference of these two factors is even.  That is (𝑐 + 𝑎) − (𝑐 − 𝑎) = 2𝑎. 

Therefore, either (𝑐 − 𝑎) and (𝑐 + 𝑎) are both odd or both even.  But we are given that their 

product (𝑐 − 𝑎)(𝑐 + 𝑎) = 𝑏2 = 19962 is an even number.  Therefore (𝑐 − 𝑎) and (𝑐 + 𝑎) 

must both be even numbers. 

We note that 19962 = 24 ⋅ 4992 with 499 a prime number.  Therefore, 

(𝑐 − 𝑎, 𝑐 + 𝑎) = {(2,234992), (22, 224992), (23, 214992), (214991, 234991)} 

in order that 𝑏2 = (𝑐 − 𝑎)(𝑐 + 𝑎) = 19962.  We ruled out the two possibilities 

(224991, 224991) and (234991, 214991) because 𝑐 + 𝑎 > 𝑐 − 𝑎.  We also ruled out all 

possibilities where either (𝑐 − 𝑎) or (𝑐 + 𝑎) is an odd number.  

Now suppose we take 𝑐 − 𝑎 = 𝑑 and 𝑐 + 𝑎 = 𝑒.  Solving for 𝑎 and 𝑐 we find 

𝑎 =
𝑒 − 𝑑

2
  and   𝑐 =

𝑒 + 𝑑

2
. 

Now notice that when we solve for 𝑎 in each of the first three cases listed above for 

(𝑐 − 𝑎, 𝑐 + 𝑎) = (𝑑, 𝑒), we find that 𝑎 > 𝑏 = 1996. 

In particular, 

𝑎 =
234992 − 21

2
> 1996 = 𝑏 

𝑎 =
224992 − 22

2
> 1996 = 𝑏 

𝑎 =
214992 − 23

2
> 1996 = 𝑏. 
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By elimination we have that 

(𝑐 − 𝑎, 𝑐 + 𝑎) = (214991, 234991). 

Solving for 𝑎 and 𝑐 we find 

𝑎 =
234991 − 214991

2
= 1497 

and 

𝑐 =
234991 + 214991

2
= 2495. 

 

So, the Pythagorean triple in this problem is (𝑎, 𝑏, 𝑐) = (1497,1996,2495).  As a check we note 
that 

14972 + 19962 = 2241009 + 3984016 = 6225025 = 24952. 

∎ 

 

(3A934) 

 
Solution 

 
∎ 
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(TT932) 

 
Solution 

 
∎ 

 

(TI9312) 

 
Solution 

 
∎ 

 

9.4 Congruent Number Problem 
 

see file “The Congruent Number Problem” Resonance 

A positive integer 𝑛 is called a congruent number if there exists a right-angled triangle whose 
sides are rational numbers and whose area is the given number 𝑛. 
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PROPOSITION   A number 𝑛 is congruent if and only if there exists a rational number 𝑎 such that 
𝑎2 + 𝑛 and 𝑎2 − 𝑛 are both squares of rational numbers. 
 
 
 

9.5 Extra Pythagorean Triple Problems 
 
 
 
(TA163)  There is one three-digit integer 𝐴  𝐵  𝐶 with the following property: remove the first 

digit to form the one-digit number 𝐴  and the two-digit number 𝐵  𝐶.  Then (𝐵  𝐶)
2
− 𝐴 2 is a 

perfect square.  Form the two-digit number  𝐵  𝐶 and the one-digit number 𝐶.  Both of these 

numbers are perfect squares.  Determine the number 𝐴  𝐵  𝐶. 

Solution 

 
∎ 

 

(1T146)  In Figure 6, segments 𝑃𝑄 and 𝑅𝑆 intersect at 𝑇.  All seven line segments in the figure 

have integer side lengths.  If 𝑃𝑆 = 37, determine exactly the largest possible length 𝑃𝑄. 

 
Figure 6 

Solution 
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∎ 

 

(1T104)  Hexagon HEXGON can be dissected into right triangles, as shown in Figure 4.  The nine 

line segments in the diagram all have different integer lengths, and 𝐺𝑂 has the shortest length 

of these all those segments.  Calculate the smallest possible value for the perimeter of 

HEXAGON. 

 
Solution 
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∎ 

 

Source: National Mathematics Magazine, Vol. 15, No. 3 (Dec., 1940), pp. 145-153 

5525 hypotenuse of 22 Pythagorean triangles 
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Chapter 10. Continued Fractions 
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To simplify a finite continued fraction (as in the example below) start at the bottom and work 
up. 
 

5 −
1

4 −
1

3 −
1

2 −
1
1

= 5 −
1

4 −
1

3 −
1
1

= 5 −
1

4 −
1
2

= 5 −
1

7
2

= 5 −
2

7
=
33

7
. 

 
To simplify an infinite continued fraction, identified as 𝑥 in the example below, look for a way to 
rewrite a “smaller” part of the fraction in terms of the same 𝑥.  Then solve for 𝑥. 
 

𝑥   =    
3

2 +
3

2 +
3

2 +
3
⋱

   =    
3

2 +

(

 
 
 

𝟑

𝟐 +
𝟑

𝟐 +
𝟑
⋱

 

)

 
 

   =   
3

2 + 𝒙
 

That is, 
 

𝑥 =
3

2 + 𝑥
⟹ 𝑥(2 + 𝑥) = 3 ⟹ 𝑥2 + 2𝑥 − 3 = 0 ⟹ (𝑥 + 3)(𝑥 − 1) = 0. 

 
So, 𝑥 = −3 and 𝑥 = 1.  But 𝑥 = −3 is an extraneous solution (a false solution that satisfies the 
final step of the derivation but does not satisfy the original problem) so it does not count as a 
solution.  (i.e. toss out 𝑥 = −3 because 𝑥 is clearly positive) 
 
So, 

𝑥 =
3

2 +
3

2 +
3

2 +
3
⋱

= 1. 
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10.1 Expand a number into continued fraction form 
 
Example 30. 
 

The fraction
37

13
 can be written in the form 2 +

1

𝑥 +
1

𝑦 +
1
𝑧

  where 𝑥, 𝑦 

 
and 𝑧 are positive integers.  Find the values of (𝑥, 𝑦, 𝑧). 
 
Solution 
 
Step 1.  Express 37/13 in the form 𝑞 + 𝑟/13 where 𝑞 and 𝑟 are positive integers and 𝑟 < 13 
(i.e. integer quotient with remainder form).  A result called the remainder theorem says that 
there will always be a 𝑞 and 𝑟 as described above. 
 

37

13
= 2 +

11

13
. 

 
Step 2.  Rewrite the fraction 𝑟/13 as 1/(13/𝑟). 
 

11

13
=

1

   
13
11   

 

 
Step 3.  It follows by our requirement that 𝑟 < 13 that 13/𝑟 > 1.  So we can carry out Step 1 on 
13/𝑟. 
 

13

11
= 1 +

2

11
. 

 
Summarizing our work up to this point we have 
 

37

13
= 2 +

11

13
= 2 +

1

13
11 

= 2 +
1

1 +
2
11

. 

 
Step 4.  Continue in this pattern. 

2

11
=
1

11
2

=
1

5 +
1
2

. 

 



mathcloset.com  295 

37

13
= 2 +

1

1 + (
2
11)

= 2 +
1

1 + (
1

5 +
1
2

)

= 2 +
1

1 +
1

5 +
1
2

. 

 
Final step.  Compare and identify (𝑥, 𝑦, 𝑧). 
 

37

13
= 2 +

1

𝑥 +
1

𝑦 +
1
𝑧

= 2 +
1

𝟏 +
1

𝟓 +
1
𝟐

 

 
So (𝑥, 𝑦, 𝑧) = (1,5,2).  Note that the process stops when we reach a remainder of 𝟏. 

∎ 

 
Example 31. 
 

The fraction
18

11
  can be written in the form 2 −

1

𝑥 +
1

𝑦 −
1
𝑧

where 𝑥, 𝑦 and 𝑧 are positive   

integers.  Find the values of (𝑥, 𝑦, 𝑧). 
 
Solution 
 
The new twist is the presence of minus (– ) signs in the above form.  Similar to our first step in 
the last example we now need to 18/11 in the form 𝑞 − 𝑟/11 where 𝑞 and 𝑟 are positive 
integers and 𝑟 < 11 (i.e. integer quotient with remainder form).  The remainder theorem 
mentioned above also guarantees that this is always possible. 
 

18

11
= 2 −

3

11
. 

Step 2.  Continue as in Example 1. 
 

18

11
= 2 −

3

11
= 2 −

1

11
3

= 2 −
1

3 +
2
3

= 2 −
1

3 +
1
3
2

= 2 −
1

3 +
1

2 −
1
2

. 

 
So (𝑥, 𝑦, 𝑧) = (3,2,2). 

∎ 
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10.2 Summary Result 
 

In general, if we want a plus (+) sign we can construct 
  

𝑎

𝑏
= 𝑞 +

𝑟

𝑏
  for some integers 𝑎. 𝑏, 𝑞 and 𝑟 

with 𝑟 < 𝑏 < 𝑎. 
 
And if we want a minus (−) sign we can construct  
 

𝑎

𝑏
= 𝑞 −

𝑟

𝑏
  for some (different) integers 𝑎, 𝑏, 𝑞 and 𝑟 

with 𝑟 < 𝑏 < 𝑎. 

 
 

 

10.3 Extra Continued Fraction Problems 
 

(1T124)  The fraction 
37

13
 can be written in the form 

2 +
1

𝑥 +
1

𝑦 +
1
𝑧

 , 

where 𝑥, 𝑦, and 𝑧 are positive integers.  Find the values of (𝑥, 𝑦, 𝑧). 

[Original source: Australian M.C., 1981] 

Solution 

The problem is asking you to express 37/13 in finite simple continued fraction form. 

 
Step 1.  Express 37/13 in the form 𝑞 + 𝑟/13 where 𝑞 and 𝑟 are positive integers and 𝑟 < 13 

(i.e. integer quotient with remainder form).  A result called the remainder theorem says that 

there will always be a 𝑞 and 𝑟 as described above. 

 
37

13
= 2 +

11

13
. 

 
Step 2.  Rewrite the fraction 𝑟/13 as 1/(13/𝑟). 

 
11

13
=

1

   
13
11   
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Step 3.  It follows by our requirement that 𝑟 < 13 that 13/𝑟 > 1.  So, we can carry out Step 1 
on 13/𝑟. 

13

11
= 1 +

2

11
. 

 
Summarizing our work up to this point we have 
 

37

13
= 2 +

11

13
= 2 +

1

13
11
 
= 2 +

1

1 +
2
11

. 

 
Step 4.  Continue in this pattern. 

2

11
=
1

11
2

=
1

5 +
1
2

. 

 
37

13
= 2 +

1

1 + (
2
11)

= 2 +
1

1 + (
1

5 +
1
2

)

= 2 +
1

1 +
1

5 +
1
2

. 

 
Final step.  Compare and identify (𝑥, 𝑦, 𝑧). 

 
37

13
= 2 +

1

𝑥 +
1

𝑦 +
1
𝑧

= 2 +
1

𝟏 +
1

𝟓 +
1
𝟐

 

 
So (𝑥, 𝑦, 𝑧) = (𝟏, 𝟓, 𝟐).  Note that the process stops when we reach a remainder of 𝟏. 
 
[An alternative approach.] 

2 +
1

𝑥 +
1

𝑦 +
1
𝑧

=
37

13
 

 

⟹
1

𝑥 +
1

𝑦 +
1
𝑧

=
37

13
− 2 =

11

13
 

 

⟹ 𝑥 +
1

𝑦 +
1
𝑧

=
13

11
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⟹ 𝑥 +
1

𝑦 +
1
𝑧

= 1 +
2

11
⟹ 𝑥 = 𝟏,   

1

𝑦 +
1
𝑧

=
2

11
 

 

⟹ 𝑦+
1

𝑧
=
11

2
= 5 +

1

2
⟹ 𝑦 = 𝟓,    

1

𝑧
=
1

2
⟹ 𝑧 = 𝟐. 

∎ 

 

(TA922) 

Solve for 𝑥:         1 −
1

2 −
1

3 −
1

4 − 𝑥

=
1

3
. 

Solution 

 

Approach 1.  Expand 
1

3
 into finite simple continued fraction form. 

 
1

3
= 1 −

2

3
= 1 −

1

3
2

= 1 −
1

2 −
1
2

= 1 −
1

2 −
1

3 −
1
1

. 

 
Matching the given expression with this form  
 

1 −
1

2 −
1

3 −
1

𝟒 − 𝒙

= 1 −
1

2 −
1

3 −
1
𝟏

 

 
we see that 4 − 𝑥 = 1 which means that 𝑥 = 3. 
 
 
Approach 2.  (Their approach:  Go inside out.) 
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∎ 

 

 
 
(1A132)  The expression 

5 −
1

4 −
1

3 −
1

2 −
1
1

 

can be simplified and written as a single rational number.  Determine exactly that rational 

number. 

Solution 

Working from the inside and going out is your best approach. 
 

5 −
1

4 −
1

3 −
1

2 −
1
1

= 5 −
1

4 −
1

3 −
1
1

= 5 −
1

4 −
1
2

= 5 −
1

(7/2)
= 5 −

2

7
=
33

7
. 

 
If the problem had been to find 𝑥 such 
 

5 −
1

4 −
1

3 −
1

2 − 𝑥

=
33

7
 

 
then working from outside and going in is the best approach (in my opinion, at least). 
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∎ 

 

(TT892) 

 
Solution 

 
∎ 

 

(TA164)  Let 𝑛 = 200.  If 

 

𝑥 =
1

𝑛 +
𝑛 − 1

𝑛 − 2 +
𝑛 − 3

𝑛 − 4 +
𝑛 − 5
⋱

(𝑛 − 𝑛 + 2) + (𝑛 − 𝑛 + 1)

 

 

the continued fraction until 𝑛 − 𝑘 = 1, determine exactly the value of 𝑥. 

Solution 

 
∎ 

 
 

(1T046) 

Give a numeric value for the continued fraction 
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3

2 +
3

2 +
3

2 +
3
⋱

 

 

Solution 
To simplify an infinite continued fraction that we will label as 𝑥, look for a way to rewrite a “smaller” part 
of the fraction in terms of the same 𝑥.  Then solve for 𝑥. 
 

𝑥   =    
3

2 +
3

2 +
3

2 +
3
⋱

   =    
3

2 +

(

 
 
 

𝟑

𝟐 +
𝟑

𝟐 +
𝟑
⋱

 

)

 
 

   =   
3

2 + 𝒙
 

That is, 
 

𝑥 =
3

2 + 𝑥
⟹ 𝑥(2 + 𝑥) = 3 ⟹ 𝑥2 + 2𝑥 − 3 = 0 ⟹ (𝑥 + 3)(𝑥 − 1) = 0. 

 
So, 𝑥 = −3 and 𝑥 = 1.  But 𝑥 = −3 is an extraneous solution (a false solution that satisfies the final step 
of the derivation but does not satisfy the original problem) so it does not count as a solution.  (i.e. toss 
out 𝑥 = −3 because 𝑥 is clearly positive) 
 
So, 

𝑥 =
3

2 +
3

2 +
3

2 +
3
⋱

= 1. 

 

∎ 

(1T034) 

 
Solution 
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∎ 
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Chapter 11. Representations as a Difference or Sum of Two 

Squares 

 

 

If 𝑝 is an odd prime, then the congruence 

𝑥2 ≡ −1  (mod𝑝) 

has the solutions  

𝑥 ≡ ± ⌊
𝑝 − 1

2
⌋ !  (mod𝑝) 

if 𝑝 ≡ 1  (mod4) and has no solution if 𝑝 ≡ 3  (mod4). 

 

 

If 𝑝 is an odd prime, 𝑝|(𝑎2 + 𝑏2), and (𝑎, 𝑏) = 1, the 𝑝 ≡ 1 (mod4). 
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2008 Lehigh University High School Math Contest, Problem #29 

 
Solution 

 

∎ 

 

 

 

Solution 
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Only numbers of the form 4𝑘 + 2 cannot be expressed as difference of two squares. 
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https://math.stackexchange.com/questions/934124/how-many-ways-are-there-to-write-675-

as-a-difference-of-two-squares 

How many ways are there to write the number 𝟔𝟕𝟓 as a difference of two squares? 

 
 

 

https://math.stackexchange.com/questions/934124/how-many-ways-are-there-to-write-675-as-a-difference-of-two-squares
https://math.stackexchange.com/questions/934124/how-many-ways-are-there-to-write-675-as-a-difference-of-two-squares
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Chapter 12. Decimals, Repeating Decimals 
 

Theorem 1 

Every repeating decimal can be expressed in the form 𝑎/𝑏 where 𝑎 and 𝑏 are integers. 

∎ 

Theorem 2 

 

A fraction 𝑎/𝑏, where 𝑎 and 𝑏 are relatively prime integers, is terminating ⟺ the prime 

factorization of 𝑏 only contains 2’s and/or 5’s. 

∎ 

 

 
A pure repeating decimal is a repeating decimal in which all the digits are periodic,  i.e. the 

perodicity starts at the decimal point. 

 

 
 

For example, the pure repeating decimal 

0.23232323⋯ = 0. 23 =
23

99
 

and also 

0.432143214321⋯ = 0. 4321 =
4321

9999
. 

 

In this first example, 0.23232323⋯ the repetend 𝑅 is 23 and the period is 2.  The formula 

 

0. 𝑑1𝑑2⋯𝑑𝑃 =
𝑑1𝑑2⋯𝑑𝑝
10𝑝 − 1
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is valid even if 𝑅 is not the shortest possible period.  For example, instead of thinking of 

0.23232323⋯ as a pure repeating decimal with repetend 23 and period 2 we can view this 

number as a pure repeating decimal with repetend 2323 and period 4.  That is, 

 

0. 23 = 0. 2323. 

 

From the above result this would imply that 

 

23

99
=
? 2323

9999
. 

 

Verifying this particular by cross multiplication and simplification reveals why this will always be 

the case. 

9999 ⋅ 23 =
?
99 ⋅ 2323 

(10000 − 1) ⋅ 23 =
?
(100 − 1) ⋅ 2323 

230000− 23 =
?
232300 − 2323 

230000− 23 =
?
232300 − 2300 − 23 

230000 − 23 =
✓
230000 − 23. 

 

 

For 1/𝑞 with a prime denominator other than 2 or 5, all cycles 𝑛/𝑞 have the same length.  

Conway, J. H. and Guy, R. K. ``Fractions Cycle into Decimals.'' In The Book of Numbers. New 

York: Springer-Verlag, pp. 157-163 and 166-171, 1996. 

 

 

December, 1999, MT Calendar, Problem 13 

Express 0. 1 + 0. 12 + 0. 123 as a repeating decimal. 

 

Solution 

0. 1 + 0. 12 + 0. 123 =
1

9
+
12

99
+
123

999
 

=
111111

999999
+
121212

999999
+
123123

999999
 

http://www.amazon.com/exec/obidos/ISBN%3D038797993X/ericstreasuretroA/
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=
355446

999999
 

= 0. 355446 . 

 

Notice that the least common multiple of the three period lengths of 1,2 and 3 is 6.  This is why 

it is necessary to the common denominator to have six 9’s. 

∎ 

 

(1A954) 

Find 1.25757575… = 1.2575.  Express your answer as the quotient of relatively prime 

integers. 

Solution 

Let 𝑥 = 1.25757575… = 1.2575.  Then 
  

100𝑥 = 125.75 
and 

10,000𝑥 = 12575. 75. 
Therefore, 
 

10,000𝑥 − 100𝑥 = 12575− 125 
 

9900𝑥 = 12450 
 

𝑥 =
12450

9900
=
2 ⋅ 3 ⋅ 52 ⋅ 83

22 ⋅ 32 ⋅ 52 ⋅ 11
=
83

66
. 

∎ 

 

(TA094) 

For certain digits 𝐴 and 𝐵, the quantity 𝑥 = (0. 3𝐴)(0. 𝐵25) is a non-repeating decimal.  

Compute the sum of all possible values of 𝑥. 

Solution 

 
Theorem 
A fraction 𝑎/𝑏, where 𝑎 and 𝑏 are relatively prime integers, is terminating ⟺ the prime 
factorization of 𝑏 only contains 2’s and/or 5’s. 
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∎ 

 
 

Example 32. 
 
Convert 0.38427̅̅ ̅̅ ̅ = 0.38427427427⋯ into a rational number. 
 
Solution 
 
Let 𝑠 = 0.38427̅̅ ̅̅ ̅ = 0.38427427427… 
 
Then,  

100000𝑠 = 38427.427427427…
100𝑠 = 38.427427427…

 

and 
 

100000𝑠 − 100𝑠 = 38427 − 38 
99900𝑠 = 38389 

So, 
 

𝑠 = 0.38427̅̅ ̅̅ ̅ =
38389

99900
.. 

∎ 

 

12.1 Basimals 
 

Numbers of the form (0. 𝑎1𝑎2𝑎3⋯)10 =
𝑎1

10
+

𝑎2

102
+

𝑎3

103
+⋯ with 𝑎𝑗 ∈ {0,1,2,3,… ,9} are called 

decimals. 
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Analogously, we define the term basimals for non-base 10 numbers of this form.  That is, a 

basimal is a number of the form (0. 𝑎1𝑎2𝑎3⋯)𝑘 =
𝑎1
𝑘
+
𝑎2

𝑘
2 +

𝑎3

𝑘
3 +⋯  with 𝑎𝑗 ∈ {0,1,2,… , 𝑘 −

1}. 
∎ 

12.1.1 Converting Basimals 

 
Example 33. 

Convert the basimal number 0.2346 to a fraction in base 10. 

 

Solution 

We have 

0.2346 =
2

61
+
3

62
+
4

63
. 

So, 

0.2346 =
2

61
+
3

62
+
4

63
=
2(62) + 3(6) + 4

63
=
72 + 18 + 4

216
=
94

216
. 

∎ 

 

12.1.2 Converting a Repeating Basimal Number 

 

Example 34. 

Convert 0. 2346 to a fraction in base 10. 

 

Solution 

 

Let 𝑥 = 2346.  Then 10006 ⋅ 𝑥 = (10006) ⋅ (2346) = 234. 2346 

 

Therefore,  

10006 ⋅ 𝑥 − 𝑥 = 234. 2346 − 0. 2346 = 2346. 

 

(10006 − 16)𝑥 = 2346 

 
(5556)𝑥 = 2346 

 

𝑥 =
2346
5556

. 
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Now separately convert 2346 and 5556 to base 10. 

 

2346 = 2 ⋅ 6
2 + 3 ⋅ 61 + 4 ⋅ 60 = 72 + 18 + 4 = 9410 

 

5556 = 5 ⋅ 6
2 + 5 ⋅ 61 ⋅ 5 ⋅ 60 = 5(62 + 61 + 60) = 63 − 1 = 216 − 1 = 21510 

 

Note: 

𝑠 = 62 + 61 + 60 

6𝑠 = 63 + 62 + 61 

∴   5𝑠 = 63 − 60 = 63 − 1 

Therefore, 

0. 2346 =
2346
5556

=
9410
21510

. 

∎ 

 

Example 35. 

Convert 0. 315 to a fraction in base 10. 

 

Solution 

 

Let 𝑥 = 0. 315.  Then 1005 ⋅ 𝑥 = 1005 ⋅ 315 = 31. 315.  Therefore 

 

1005𝑥 − 𝑥 = 31. 315 − 0. 315 = 315 

 

(1005 − 15)𝑥 = 315 

 

445 ⋅ 𝑥 = 315 

 

𝑥 =
315
445

=
3(51) + 1(50)

4(51) + 4(50)
=
1610
2410

=
16

24
=
2

3
. 

∎ 

 
 

 

AMC 1966, Problem #39 

In base 𝑅1 the expanded fraction 𝐹1 becomes 0.373737⋯, and the expanded fraction 𝐹2 

becomes 0.737373⋯ .  In base 𝑅2 fraction 𝐹1, when expanded, becomes 0.252525⋯, while 

fraction 𝐹2 becomes 0.525252⋯ .  The sum of 𝑅1 and 𝑅2 each written in the base ten, is: 

(A) 24 (B) 22 (C) 21  (D) 20 (E) 19 

 

Solution 
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∎ 

 
 
 

12.1.3 Converting a Decimal to a Basimal Number 

 

Example 36. 

Convert 
3
5
= .6 to a basimal in base 7.   

 

Solution 

In analogy to how we can express an integer in base 10 to an integer in base 7 we ask what is 

the largest fraction 
𝑘
7

, 𝑘 = 0,1,2,3,4,5,6 that is less than or equal to 
3
5

. 

4

7
≈ 0.57 <

3

5
= .6 <

5

7
≈ .71  

So, the first digit must be 4.   

Now repeat this process by finding the largest fraction 
𝑘

72
, 𝑘 = 0,1,2,… ,6 that is less than or 

equal to 
3
5
−
4
7
=
1
35
≈ 0.029.  We note that 

 
1

49
≈ 0.020 <

1

35
≈ 0.028 <

2

49
≈ 0.041. 

 

So, the second digit must be 1. 

 

This is already getting tedious!  Fortunately, there is a very simple short cut procedure. 

 

12.1.4 Introducing a Short Cut Approach 

 

(1)   Multiple the base ten decimal by the base you want to convert to.  In this case, the base is 

7. 

0.6 ⋅ 7 = 4.2. 

 The units digit is the first digit in the basimal representation in base 7. 

0.4 

(2)   Multiple just the decimal part of the above product (i.e. the 0.2 from the product 4.2) by 

7.   

0.2 ⋅ 7 = 1.4 

 The units digit in this product is the second digit in the basimal representation in base 7. 
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0.41 

(3)   Repeat 

0.6 ⋅ 7 = 4.2 ⟹ 0.4 

0.2 ⋅ 7 = 1.4 ⟹ 0.41 

0.4 ⋅ 7 = 2.8 ⟹ 0.412 

0.8 ⋅ 7 = 5.6 ⟹ 0.4125 

⋮ 

We can see that this basimal will continuously repeat the pattern 4125 after this.  That is,  

 

0.610 = 0. 41257 . 

∎ 

 

 Check!  

𝑥 = 0. 41257 

100007 ⋅ 𝑥 = 4125.41257 

 

100007 ⋅ 𝑥 − 𝑥 = 41257 

66667 ⋅ 𝑥 = 41257 

 

𝑥 =
41257
66667

=
4 ⋅ 73 + 1 ⋅ 72 + 2 ⋅ 71 + 5 ⋅ 70

6 ⋅ 73 + 6 ⋅ 72 + 6 ⋅ 71 + 6 ⋅ 70
=
1440

2400
= 0.6 

∎ 

 
 

(3D134)  Convert the base-ten fraction 
13

16
 into a base-eight equivalent that does not involve a 

quotient (fraction bar). 

Solution 

 
∎ 

 

(3T136)  Find the number base 𝑛 such that (
5
24
)
10
= (0.113)𝑛. 

Solution 
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∎ 

 

AMC 2019 10A Problem #18 

For some positive integer 𝑘, the repeating base-𝑘 representation of the (base-ten) fraction 
7
51

 is 

0. 23𝑘 = (0.232323… )𝑘 .  What is 𝑘 ? 

(A) 13 (B) 14 (C) 15 (D) 16 (E) 17 

 

Solution 

 

∎ 

 

 

12.2 Repetends 
 

Example 37. 

When expanded as a decimal, the fraction 1/97 has a repetend (the repeating part of the 

decimal) of 96 digits that start right after the decimal point.  Find the last three digits 𝐶𝐵𝐴 of 

the repetend. 

Solution 

We need to reverse engineer the standard long-division algorithm. 

 

We want to determine the last three digits in the repetend so draw a three step long-division 

grid with the three “dropped” 0’s in place. 
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The quotient will restart its repeating pattern when the remainder is the same as the dividend.  
That is, when the remainder equals 1. 
                     

 
The last digit in this row must be a 9 in order to leave a difference of 1 (10 − 9 = 1). 

 
The third ? = 7 because 97 ×? must end in a 9 and the only digit times 7 that ends in a 9 is 7 

(7 × 7 = 4𝟗).  Now that we have the third ?= 7 we can see that 97 ×?= 97 × 7 = 679. 

 



mathcloset.com  320 

 
 

In order to leave a difference of 1 we have to subtract the 679 from 680. 
 

 

The last digit in the next row up must be a 2 in order to leave a difference of 8 (10 − 2 = 8). 
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The next ?= 6 because 97 ×? must end in a 2 and the only digit times 7 that ends in a 2 is 6 

(7 × 6 = 4𝟐).  Now that we have the next ? = 2 we have 97 ×?= 97 × 6 = 582. 

 

In order to leave a difference of 68 we have to subtract the 582 from 650. 
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The last digit in the next row up must be a 5 in order to leave a difference of 5 (10 − 5 = 5). 

 

 

The first ?= 5 because 97 ×? must end in a 5 and the only digit times 7 that ends in a 5 is 5 

(7 × 5 = 3𝟓).  Now that we have the next ? = 5 we have 97 ×?= 97 × 5 = 485. 
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Of course, we could continue to work backwards but the question only asked for the last three 

digits of the repetend.   

We have reversed engineered (worked backwards) the long division process to find out that the 

last three digits of the repetend are 567. 

∎ 

 

(1T015)   

 

When expanded as a decimal, the fraction 1/97 has a repetend (the repeating part of the 

decimal) of 96 digits that start right after the decimal point.  If the last five digits of the 

repetend are BA567, find the digits A and B. 

 

Solution 

 
You need to reverse engineer the standard long-division algorithm. 
 

Step 1 Step 2 Step 3 Step 4 
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We want to determine the last 
five digits in the repetend so 
draw a five step long-division 
grid with the five “dropped” 0’s 
in place.  

The quotient will restart its 
repeating pattern when the 
remainder is the same as the 
dividend.  That is, when the 
remainder equals 1. 

The last digit in this row must 
be a 9 in order to leave a 
difference of 1 (10 − 9 = 1). 

The third ? = 7 because 97 ×? 
must end in a 9 and the only 
digit times 7 that ends in a 9 is 
7 (7 × 7 = 4𝟗).  Now that we 
have the third ? = 7 we can see 
that 97 ×?= 97 × 7 = 679.  

 

Step 5 Step 6 Step 7 Step 8 

    
In order to leave a difference of 
1 we have to subtract the 679 
from 680. 

The last digit in this row must 
be a 2 in order to leave a 
difference of 8 (10 − 2 = 8). 

The next ? = 6 because 97 ×? 
must end in a 2 and the only 
digit times 7 that ends in a 2 is 
6 (7 × 6 = 4𝟐).  Now that we 
have the next ?= 2 we have 
97 ×?= 97 × 6 = 582. 

In order to leave a difference of 
68 we have to subtract the 582 
from 650. 

 

Step 9 Step 10 Step 11 Step 12 

    
The last digit in this next row up 
must be a 5 in order to leave a 
difference of 5 (10 − 5 = 5). 

The next ? = 5 because 97 ×? 
must end in a 5 and the only 
digit times 7 that ends in a 5 is 

In order to leave a difference of 
65 we have to subtract the 485 
from 550. 

The last digit in this next row up 
must be a 5 in order to leave a 
difference of 5 (10 − 5 = 5). 
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5 (7 × 5 = 3𝟓).  Now that we 
have the next ?= 5 we have 
97 ×?= 97 × 5 = 485. 

 

Step 13 Step 14 Step 15 Step 16 

    
A = 5 because 97 × A must 
end in a 5 and the only digit 
times 7 that ends in a 5 is 5 
(7 × 5 = 3𝟓).  Now that we 
have A = 5 we have 97 × A =
97 × 5 = 485. 

In order to leave a difference of 
55 we have to subtract the 485 
from 540. 

The last digit in this next row up 
must be a 6 in order to leave a 
difference of 4 (10 − 6 = 4). 

B = 8 because 97 × B must 
end in a 6 and the only digit 
times 7 that ends in a 6 is 8 
(7 × 8 = 5𝟔).  Now that we 
have B = 8 we have 97 × B =
97 × 8 = 776. 

 
We have determined that 𝐵 = 8 and 𝐴 = 5 by this reverse engineered long division.  

∎ 

 

 

 

(1T996) 

 
Find the last seven digits of the repetend of the fraction 1/2001.  That is, if we write 
 

1/2001 =. 𝑎𝑏𝑐 … 𝑒𝑓𝑔ℎ𝑖𝑗𝑘𝑎𝑏𝑐… 𝑒𝑓𝑔ℎ𝑖𝑗𝑘𝑎𝑏𝑐 … 𝑒𝑓𝑔ℎ𝑖𝑗𝑘 …, 
 
find the digits 𝑒𝑓𝑔ℎ𝑖𝑗𝑘. 

 

Solution 

 
You can use the following blank “reverse engineered repetend form” as an aid in keeping the 
columns lined up.  It might help to cut, paste and enlarge the blank form on a separate piece of 
paper.  
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You should find that the last seven digits are 6001999. 

 

Alternatively, 



mathcloset.com  327 

 
∎ 

 

 

 
 

Wiki 
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Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #26 

 
 

Solution 
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∎ 
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Chapter 13. Miscellaneous 
 

13.1 Number of Digits 
 

Let nd(𝑎) represent the number of digits in the (base 10) number 𝑎.  Then 

 

nd(𝑎) = ⌊log10(𝑎) ⌋ + 1. 

 

Proof 

 

Suppose 𝑎 = 10𝑥 for some real number 𝑥 ≥ 0.  Then 𝑎 consists of ⌊𝑥⌋ + 1 digits.  We also know 

that 𝑎 = 10log10(𝑎).  Therefore, for any positive number 𝑎, 

 

nd(𝑎) = ⌊log10(𝑎)⌋ + 1. 

∎ 

 

This result is particularly useful when the number 𝑎 is expressed in exponential form.  Consider 

the following example.  

 

How many digits are there in the integer representation of 22001  ? 

 

Solution 

nd(22001) = ⌊log10(2
2001)⌋ + 1 

= ⌊2001 ⋅ log10(2)⌋ + 1 

= ⌊602.361⌋ + 1 

= 602 + 1 

= 603. 

∎ 

 

(1T885) 

 

Consider the integer 𝑀 = 525. 

 

 (a) How many digits does it take to write 𝑀 using ordinary base ten notation? 

 (b) What are the last three digits of 𝑀? 

 

Solution 
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∎ 

 

College of Charleston 

 
Solution 

nd(𝑎) = ⌊log10(𝑎) ⌋ + 1 

 

nd(𝑚𝑛) = ⌊log10(𝑚𝑛) ⌋ + 1 

= ⌊log10(𝑚) + log10(𝑛) ⌋ + 1 

= ⌊12.3 + 15.4⌋ + 1 

= ⌊27.7⌋ + 1 

= 27 + 1 = 28. 
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∎ 

 

 

 

Saint Mary’s College Mathematics Contest Problems 

246.  How many digits are there in 55
5
 ?   

Caution: 55
5
 is the (standard) notation for 5(5

5) which is not the same as (55)5.  Tetration. 

Solution 

 
∎ 

 

 
 

13.1.1 Number of Digits in Base 𝒃 

 

Contest problems sometimes ask for the number of digits a base ten number would have if it 

were expressed in a different base. 

 

Let nd𝑏(𝑐) represent the number of digits in the base 𝑏 representation of the positive base 10 

integer 𝑐.  Then 

nd𝑏(𝑐) = ⌊log𝑏(𝑐) ⌋ + 1. 

 

(Note: Be aware that this result only applies when 𝑐 is a base 10 number.) 
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Before proving this result, it will be helpful to consider a very simple example to clarify what 

this result tells us (and what it doesn’t). 

 

Example 

 

How many digits are in the base 3 representation of the base ten number 143 ? 

 

Solution 

nd3(143) = ⌊log3(143) ⌋ + 1 = ⌊4.517… ⌋ + 1 = 4 + 1 = 5. 

 

Let’s check by actually writing out the base 3 representation of 14310. 

 

14310 = 1 ⋅ 3
4 + 2 ⋅ 33 + 0 ⋅ 32 + 2 ⋅ 31 + 2 ⋅ 30 = (12022)3 

 

This verifies the result that the base 10 number 143 has 5 digits when expressed in base 3. 

 

Proof 

 

For any integer 𝑏 ≥ 2, let 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑟−1 be a sequence of integers such that 0 ≤ 𝑎𝑗 < 𝑏 for 

all 𝑗 = 0,1,… , 𝑟 − 1 and such that 𝑎𝑟−1 ≠ 0.  Then we can say that ( 𝑎𝑟−1⋯𝑎1𝑎0)𝑏  is a base 𝑏 

number of 𝑟 digits.   

 

Let 𝑐 be the base 10 equivalent of ( 𝑎𝑟−1⋯𝑎1𝑎0)𝑏.  Then 𝑐 equals 

 

𝑐 = ∑𝑎𝑖𝑏
𝑖

𝑟−1

𝑖=0

. 

 

Substituting the lower and upper bounds for each 𝑎𝑗 we have 

 

∑(𝟎)𝑏𝑖

𝑟−1

𝑖=0

+ (𝟏)𝑏𝑟−1 ≤∑𝑎𝑖𝑏
𝑖

𝑟−1

𝑖=0

≤∑(𝒃 − 𝟏)𝑏𝑖
𝑟−1

𝑖=0

 

or 

𝑏𝑟−1 ≤ 𝑐 ≤ (𝑏 − 1)∑𝑏𝑖
𝑟−1

𝑖=0

 

We recognize that 

∑𝑏𝑖
𝑟−1

𝑖=0

=
𝑏𝑟 − 1

𝑏 − 1
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from our understanding of geometric series.  Hence 

 

𝑏𝑟−1 ≤ 𝑐 ≤ 𝑏𝑟 − 1 

or equivalently 

𝑏𝑟−1 ≤ 𝑐 < 𝑏𝑟 . 

 

Because logarithms are increasing functions, it follows that 

 

log𝑏(𝑏
𝑟−1) ≤ log𝑏(𝑐) < log𝑏(𝑏

𝑟) 

 

(𝑟 − 1) log𝑏(𝑏) ≤ log𝑏(𝑐) < 𝑟 log𝑏(𝑏) 

 

𝑟 − 1 ≤ log𝑏(𝑐) < 𝑟 

 

Therefore, 

𝑟 − 1 = ⌊log𝑏(𝑐)⌋ 

or 

𝑟 = ⌊log𝑏(𝑐)⌋ + 1 

∎ 

 

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 36 

A positive integer has 32 digits when expressed in base 2.  How many digits are there in the 

base 10 representation of that number? 

 

Solution 

 

 
 

 

∎ 

 

 

13.1.2 Number of Digits in a Product 

 

If 𝑎 and 𝑏 are positive integers then the number of digits in their product 𝑎𝑏 is given exactly by 
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𝑑𝑛(𝑎𝑏) = 

 
 

AMC 1969 Problem #20 

Let 𝑃 equal 3,659,893,456,789,325,678 and 342,973,489,379,256.  The number of digits in 𝑃 

is: 

(A) 36 (B) 35 (C) 34  (D) 33 (E) 32 

 

Solution 

 

 

∎ 

 

 

 

13.2 Simon’s Favorite Factoring Trick 
 

Simon’s Favorite Factoring Trick 
 
Now let’s get back to the magic of subtracting 10 from both sides.  How did I know to do this?  
On math contest sites such as AoPS ( https://artofproblemsolving.com/ ) and Math Stack 
Exchange ( https://math.stackexchange.com/ ) the idea goes by the name “Simon’s Favorite 
Factoring Trick” or just SFFT. 
 

The general idea of SFFT is that if you have a Diophantine equation of the form 
 

𝑎𝑓(𝑥)𝑔(𝑦) + 𝑎𝑏𝑓(𝑥) + 𝑐𝑔(𝑦) = 𝑑 
 
in the variables 𝑥 and 𝑦 then add the constant 𝑏𝑐 to both sides.  In this way the left-hand side 
will factor as 

(𝑎𝑓(𝑥) + 𝑐)(𝑔(𝑦) + 𝑏) = 𝑑 + 𝑏𝑐. 
 
By writing 𝑑 + 𝑏𝑐 in terms of its prime factors you can find 𝑓(𝑥) and 𝑔(𝑦) by considering 
cases of splitting the prime factors between the two factors on the left-hand side. 
 
The process of adding 𝑏𝑐 to both sides is called “completing the rectangle”. 

https://artofproblemsolving.com/
https://math.stackexchange.com/
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(4A113)  List all possible values of 𝑥𝑦, if 𝑥 and 𝑦 are integers such that 𝑥𝑦 = 𝑥 + 𝑦 + 1. 

Solution 

 
∎ 

 

(1T083) 

 
[Original Source Mass. Math Olympiad, 2007-2008] 

Solution 

 

 
 

Alternative Method Using SFFT 
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1

𝑎
+
5

𝑏
=
1

2
⟺
2𝑏 + 10𝑎

𝑎𝑏
= 1 ⟺ 𝑎𝑏 − 2𝑏 − 10𝑎 = 0 

 

⟺ (𝑎 − 2)(𝑏 − 10) = 20 

 
𝑎 − 2 = 1 𝑏 − 10 = 20       (𝑎, 𝑏) = (3,20)

𝑎 − 2 = 2 𝑏 − 10 = 10 (𝑎, 𝑏) = (4,20)

𝑎 − 2 = 4 𝑏 − 10 = 5 (𝑎, 𝑏) = (6,15)

𝑎 − 2 = 5 𝑏 − 10 = 4 (𝑎, 𝑏) = (7,14)

𝑎 − 2 = 10 𝑏 − 10 = 2 (𝑎, 𝑏) = (12,12)

𝑎 − 2 = 20       𝑏 − 10 = 1 (𝑎, 𝑏) = (22,11).

 

 

Notice that if we try 

 
𝑎 − 2 = −1 𝑏 − 10 = −20       (𝑎, 𝑏) = (−1,−10)

𝑎 − 2 = −2 𝑏 − 10 = −10 (𝑎, 𝑏) = (0,0)

𝑎 − 2 = −4 𝑏 − 10 = −5 (𝑎, 𝑏) = (−2,5)

𝑎 − 2 = −5 𝑏 − 10 = −4 (𝑎, 𝑏) = (−3,6)

𝑎 − 2 = −10 𝑏 − 10 = −2 (𝑎, 𝑏) = (−8,8)

𝑎 − 2 = −20       𝑏 − 10 = −1 (𝑎, 𝑏) = (−18,9)

 

 

which all fail the requirement that 𝑎 and 𝑏 are both positive integers.  So there are a total of 6 

ordered pairs for (𝑎, 𝑏) that will satisfy the given requirements. 

∎ 

 

 

(5A934) or maybe (5D934) 

 
Solution 
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(Note: Simon’s Favorite Factoring Trick ?) 

∎ 

 

 

AMC 2007B Problem #23 

How many non-congruent right triangles with positive integer leg lengths have areas that are 

numerically equal to 3 times their perimeters? 

(A) 6 (B) 7 (C) 8 (D) 10 (E) 12 

 

Solution 

Involves Simon’s Favorite Factoring Trick 

 

∎ 

 

National Mu Alpha Theta Convention 1991, Number Theory Topic Test, Problem #21 

 

Find all Pythagorean triangles with the property that the area of the triangle equals the 

perimeter. 

 

Solution 

 

Let the positive integers 𝑎, 𝑏 and 𝑐 be the three sides of a Pythagorean triangle with 

hypotenuse 𝑐.  Then 𝑎2 + 𝑏2 = 𝑐2.  Using this notation 

Area Δ =
1

2
𝑎𝑏  and  Perimeter Δ = 𝑎 + 𝑏 + 𝑐. 

We are given the additional information that Area Δ = Perimeter Δ.  With simplification we find 

that 
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1

2
𝑎𝑏 = 𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + √𝑎2 + 𝑏2  

𝑎𝑏 = 2𝑎 + 2𝑏 + 2√𝑎2 + 𝑏2 

2√𝑎2 + 𝑏2 = 𝑎𝑏 − 2𝑎 − 2𝑏 

4(𝑎2 + 𝑏2) = (𝑎𝑏 − 2𝑎 − 2𝑏)2 

4𝑎2 + 4𝑏2 = 𝑎2𝑏2 − 2𝑎2𝑏 − 2𝑎𝑏2 − 2𝑎2𝑏 + 4𝑎2 + 4𝑎𝑏 − 2𝑎𝑏2 + 4𝑎𝑏 + 4𝑏2 

0 = 𝑎2𝑏2 − 4𝑎2𝑏 − 4𝑎𝑏2 + 8𝑎𝑏 

𝑎𝑏(𝑎𝑏 − 4𝑎 − 4𝑏 + 8) = 0. 

We are constrained by 𝑎, 𝑏 positive integers so 𝑎𝑏 ≠ 0.  Therefore, we know 

𝑎𝑏 − 4𝑎 − 4𝑏 + 8 = 0. 

Applying SFFT we see that this means 

(𝑎 − 4)(𝑏 − 4) = 8. 

The set of all factors of 8 are ±1,±2,±4 and ±8.  Considering each of these eight cases as a 

value for 𝑎 − 4 produces the following results. 
𝑎 − 4 = −8, 𝑏 − 4 = −1 ⟺ 𝑎 = −4, 𝑏 = 3
𝑎 − 4 = −4, 𝑏 − 4 = −2 ⟺ 𝑎 = 0, 𝑏 = 2
𝑎 − 4 = −2, 𝑏 − 4 = −4 ⟺ 𝑎 = 2, 𝑏 = 0
𝑎 − 4 = −1, 𝑏 − 4 = −8 ⟺ 𝑎 = 3, 𝑏 = −4
𝑎 − 4 = 1, 𝑏 − 4 = 8 ⟺ 𝑎 = 5, 𝑏 = 12
𝑎 − 4 = 2, 𝑏 − 4 = 4 ⟺ 𝑎 = 6, 𝑏 = 8
𝑎 − 4 = 4, 𝑏 − 4 = 2 ⟺ 𝑎 = 8, 𝑏 = 6
𝑎 − 4 = 8, 𝑏 − 4 = 1 ⟺ 𝑎 = 12, 𝑏 = 5

 

We can throw out the first four answers because 𝑎 and 𝑏 must both be positive integers.  This 

leaves us with two or four solutions for (𝑎, 𝑏, 𝑐), (5,12,13), (6,8,10), (8,6,10) and (12,5,13), 

depending on whether we consider the two legs as distinct or not. 

∎ 

 

 

13.3 Mediants 
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Elementary Number Theory, Uspensky, Heaslet, Problem 2, Page 40.  

∎ The mediant of the fractions 𝑎/𝑐 and 𝑏/𝑑, namely, 
𝑎 + 𝑏

𝑐 + 𝑑
 

is irreducible if |𝑎𝑑 − 𝑏𝑐| = 1. 

Proof 

Now we know that 
𝑎+𝑏

𝑐+𝑑
 is expressed in simplest terms if and only if gcd(𝑎 + 𝑏, 𝑐 + 𝑑) = 1. 

But recall that, in general, the gcd(𝛼, 𝛽) is the least positive integer that is expressible as a 

integral linear combination of the integers 𝛼 and 𝛽. 

So it is sufficient to find integers 𝑚, 𝑛 (positive or negative) such that 

𝑚(𝑎 + 𝑏) + 𝑛(𝑐 + 𝑑) = 1. 

Take 𝑚 = −𝑐, 𝑛 = 𝑎.  Then 

|(−𝑐)(𝑎 + 𝑏) + (𝑎)(𝑐 + 𝑑)| 

= |−𝑎𝑐 − 𝑏𝑐 + 𝑎𝑐 + 𝑎𝑑| 

= |𝑎𝑑 − 𝑏𝑐| 

= 1  by hypothesis. 

So, if  

(−𝑐)(𝑎 + 𝑏) + (𝑎)(𝑐 + 𝑑) = 1 

then we are done.  Otherwise  

(−𝑐)(𝑎 + 𝑏) + (𝑎)(𝑐 + 𝑑) = −1 

and 

(𝑐)(𝑎 + 𝑏) + (−𝑎)(𝑐 + 𝑑) = 1. 

 

So in all cases we have found integers 𝑚,𝑛 such that 𝑚(𝑎 + 𝑏) + 𝑛(𝑐 + 𝑑) = 1.  Therefore, 

gcd(𝑎 + 𝑏, 𝑐 + 𝑑) = 1 which implies 
𝑎 + 𝑏

𝑐 + 𝑑
 

is irreducible. 

∎ 
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https://artofproblemsolving.com/community/c4931_2005_india_national_olympiad 

The Indian National Mathematical Olympiad (INMO) is a high school mathematics competition 

held annually in India since 1989. 

 

2005 Indian National Mathematical Olympiad, Problem #2 

 
Solution 

https://math.stackexchange.com/questions/4122009/fraction-with-the-smallest-entries 

 

 

https://artofproblemsolving.com/community/c4931_2005_india_national_olympiad
https://math.stackexchange.com/questions/4122009/fraction-with-the-smallest-entries
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∎ 

 

https://math.stackexchange.com/questions/2494774/questions-concerning-smallest-fraction-

between-two-given-fractions 

 

Find the smallest positive integer 𝑛 such that there exists an integer 𝑚 satisfying 

0.33000 =
33

100
<
𝑚

𝑛
<
1

3
= 0.33333333. 

Solution 

Notice that  
33

100
<
1

3
 and |33(3) − 100| = 1. 

 

Therefore, the mediant 
33 + 1

100 + 3
=
34

103
=
𝑚

𝑛
. 

∎ 

 

 

If we started with the interval (
𝑎

𝑏
,
𝑐

𝑑
) where |𝑎𝑑 − 𝑏𝑐| ≠ 1 then we would have to go through 

an iterative process as demonstated below. 

 
0

1
<
1

0
 

0

1
<
𝟏

𝟏
<
1

0
 

0

1
<
𝟏

𝟐
<
1

1
 

0

1
<
1

3
<
1

2
 

https://math.stackexchange.com/questions/2494774/questions-concerning-smallest-fraction-between-two-given-fractions
https://math.stackexchange.com/questions/2494774/questions-concerning-smallest-fraction-between-two-given-fractions
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0

1
<
1

4
<
1

3
 

1

4
<
𝟐

𝟕
<
1

3
 

2

7
<
𝟑

𝟏𝟎
<
1

3
 

3

10
<
𝟒

𝟏𝟑
<
1

3
 

4

13
<
𝟓

𝟏𝟔
<
1

3
 

5

16
<
𝟔

𝟏𝟗
<
1

3
 

6

19
<
𝟕

𝟐𝟐
<
1

3
 

Etc. 

 

 

 
∎ 

 

https://artofproblemsolving.com/wiki/index.php/2018_AMC_12B_Problems/Problem_17 

 

https://artofproblemsolving.com/wiki/index.php/2018_AMC_12B_Problems/Problem_17
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Solution 

Notice that |5(7) − 9(4)| = 1.  Therefore, the mediant of 
5

9
 and 

4

7
 gives the answer. 

𝑝

𝑞
=
5 + 4

9 + 7
=
9

16
 

𝑞 − 𝑝 = 16 − 9 = 7. 

∎ 

 

Find the smallest positive integer 𝑛 such that there exists an integer 𝑚 satisfying 
1

3
<
𝑚

𝑛
<
3

4
. 

Solution 

First note that we are starting with an interval (
𝑎

𝑏
,
𝑐

𝑑
) where |𝑎𝑑 − 𝑏𝑐| = |1(4) − 3(3)| ≠ 1 so 

we have to engage in an iterative process as demonstated below. 

Step 1.
0

1
<
1

0
Start with (

0

1
,
1

0
) and calculate the mediant 

0 + 1

1 + 0
=
𝟏

𝟏
.

Step 2.
0

1
<
𝟏

𝟏
<
1

0

1

3
 and

3

4
 are both <

1

1
 so replace 

1

0
 with 

1

1
 and iterate.

Step 3.
0

1
<
𝟏

𝟐
<
1

1

1

3
<
1

2
 and 

3

4
>
1

2
.  Stop.  New mediant 

1

2
 is the answer.

 

 
𝑚

𝑛
=
1

2
. 

∎ 

 

13.4 Midy’s Theorem 
 

 

(Midy’s Theorem.) The following was proved in 1837 by E. Midy (Dickson, 2005, p.163): 
 
For a prime 𝑝, if the repetend of 1 𝑝⁄  has 2𝑛 digits, then digit (𝑛 +  𝑘)  =  9 − 𝑑𝑖𝑔𝑖𝑡 (𝑘) 
 
In 1769 Lambert noted that the number of the digits of the repetend of a repeating decimal, 
1/a, divides 𝑎 − 1 for 𝑎 = 3 or a prime greater than 5. 
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13.5 Counting Integer Solutions of 𝟏/𝒙 + 𝟏/𝒚 = 𝟏/𝒏. 
 

(Are these problems just examples of SFFT ?) 

 

How many solutions are there to 
1

𝑥
+
1

𝑦
=
1

𝑛
 

where 𝑥, 𝑦 and 𝑛 are positive integers? 

Solution 
1

𝑥
+
1

𝑦
=
1

𝑛
 

𝑥 + 𝑦

𝑥𝑦
=
1

𝑛
 

𝑥𝑦 − 𝑛𝑥 − 𝑛𝑦 = 0 
(𝑥 − 𝑛)(𝑦 − 𝑛) − 𝑛2 = 0 
(𝑥 − 𝑛)(𝑦 − 𝑛) = 𝑛2 

Let 𝑚 be any divisor of 𝑛2.  Then 

𝑥 − 𝑛 = 𝑚,𝑦 − 𝑛 =
𝑛2

𝑚
 

is a solution.  Therefore 

𝑥 = 𝑚 + 𝑛, 𝑦 =
𝑛2

𝑚
+ 𝑛 

is a solution for every divisor 𝑚 of 𝑛2. 

 

Suppose 𝑛2 has 𝑟 divisors including 1 and 𝑛2.  Then there will be 𝑟 positive integral solutions to 

the above equation if we count (𝑎, 𝑏) as distinct from (𝑏, 𝑎) and there will be (𝑟 + 1)/2 

solutions otherwise. 

∎ 

 

For example, let 𝑛 = 6.  How many positive integer solutions are there to  
1

𝑥
+
1

𝑦
=
1

6
 ? 

Solution 

Then the divisor of 𝑛2 = 62 = 2232 = 36 are 

{2030, 2031, 2032, 2130, 2131, 2132, 2230, 2231, 2232} 

= {1,3,9,2,6,18,4,12,36} 

 

𝑥 = 𝑚 + 𝑛, 𝑦 =
𝑛2

𝑚
+ 𝑛 
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(𝑥, 𝑦) = (𝑚 + 6,
36

𝑚
+ 6) ,𝑚 ∈ {1,3,9,2,6,18,4,12,36} 

 

(𝑥, 𝑦) ∈ {(7,42), (9,18), (15,10), (8,24), (12,12), (24,8), (10,15), (18,9), (42,7)} 

 
1

7
+
1

42
=
1

6
 

1

9
+
1

18
=
1

6
 

1

15
+
1

10
=
1

6
 

1

8
+
1

24
=
1

6
 

1

12
+
1

12
=
1

6
 

1

24
+
1

8
=
1

6
 

1

10
+
1

15
=
1

6
 

1

18
+
1

9
=
1

6
 

1

42
+
1

7
=
1

6
. 

 

A total of 9 solutions.  If we don’t want to count 
1

𝑎
+
1

𝑏
 

as separate from 
1

𝑏
+
1

𝑎
 

then there are 5 solutions. 

∎ 

 

Let 𝑝 be a prime.  What are the integer solutions (𝑥, 𝑦) of  
1

𝑥
+
1

𝑦
=
1

𝑝
 ? 

Solution 
𝑥 + 𝑦

𝑥𝑦
=
1

𝑝
 

𝑥𝑦 − 𝑥𝑝 − 𝑦𝑝 = 1 
(𝑥 − 𝑝)(𝑦 − 𝑝) − 𝑝2 = 1    (SFFT) 

(𝑥 − 𝑝)(𝑦 − 𝑝) = 𝑝2 

((𝑥 − 𝑝), (𝑦 − 𝑝)) ∈ {(1, 𝑝2), (𝑝, 𝑝), (𝑝2, 1)} 
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(𝑥, 𝑦) ∈ {(1 + 𝑝, 𝑝2 + 𝑝), (2𝑝, 2𝑝), (𝑝2 + 𝑝, 1 + 𝑝)} 

∎ 

 

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem # 

21 

How many pairs of integers (𝑚, 𝑛) satisfy the equation 
1

𝑚
+
1

𝑛
=

1

10
 ? 

Solution 

 
∎ 

 

AMC 1993 Problem #19 

How many ordered pairs (𝑚, 𝑛) of positive integers are solutions to 
4

𝑚
+
2

𝑛
= 1 ? 

(A) 1 (B) 2 (C) 3 (D) 4 (E) more than 4 

 

Solution 

 

 

 

∎ 

 

13.5.1 Counting Integer Solutions of 𝟏/𝒙 + 𝟏/𝒚 + 𝟏/𝒛 = 𝟏/𝒏. 

 

See Indeterminate Equation, Xing Zhou, Section 3.3, Page 21. 

 

 

13.6 Perfect Squares 
 

13.6.1 Properties of Perfect Squares 

 

Properties of Perfect Squares (in Base 10) 

1) The last digit is 0, 1, 4, 5, 6, or 9.  
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2) The digital root is always 1, 4, 7, 9. 
3) If the last digit is 6, then the penultimate digit must be odd. 
4) If the last digit is not 6, then the penultimate digit is even. 
5) If the last digit is 5, then the penultimate digit must be 2. 
6) The last two digits cannot both be odd. 
7) If the last digit is zero, it must also end in an even number of zeros. 
8) Even square numbers have an even square root. Odd squares have an odd square root. 
9) The remainder after dividing by 3 is either 1 or 0. 
10) The remainder after dividing by 4 is either 1 or 0. 
11) They always have an odd number of prime factors. 

(wiki, Perfect Squares) 

Proof of (3) and (4). 

Every perfect square may be represented by (10𝑎 + 𝑏)2 where 𝑎 is a nonnegative integer and 

𝑏 is nonnegative integer less than 10. 

Now (10𝑎 + 𝑏)2 = 100𝑎 + 20𝑎𝑏 + 𝑏2 = 2(10)(5𝑎 + 𝑎𝑏) + 𝑏2.  It follows that the tens digit 

of (10𝑎 + 𝑏)2 is an odd number if and only if the tens digit of 𝑏2 is an odd number. 

But by checking all cases we see that the tens digit of (10𝑎 + 𝑏)2 is an odd number only for 

42 = 16 and 62 = 36. 

02 = 00 52 = 25 

12 = 01 62 = 36 

22 = 04 72 = 49 

32 = 09 82 = 64 

42 = 16 92 = 81 

 

And in both of these cases the units digit equals 6.  Hence we can state that the tens digit of 

(10𝑎 + 𝑏)2 is odd if and only if the units digit of (10𝑎 + 𝑏)2 is 6. 

∎ 

 

Theorem 

If 𝑝 is a perfect square then 𝑝𝑞 is a perfect square if and only if 𝑞 is a perfect square. 

Proof 

𝑝𝑞 = 𝑛2, 𝑝 = 𝑘2 

𝑝│𝑝𝑞 ⟺ 𝑘2│𝑛2 ⟺ 𝑘│𝑛 ⟺ 𝑛 = 𝑟𝑘  for some integer 𝑟 

𝑞 =
𝑝𝑞

𝑝
=
𝑛2

𝑘2
=
(𝑟𝑘)2

𝑘2
= 𝑟2. 

∎ 
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https://www.quora.com/The-number-8A3BC5-is-a-perfect-square-of-a-number-that-is-

divisible-by-3-What-is-A-B-C-if-A-B-and-C-are-different-digits 

 

The number 8𝐴3𝐵𝐶5 is a perfect square of a number that is divisible by 3. What is 𝐴 + 𝐵 + 𝐶 if 

𝐴, 𝐵, and 𝐶 are different digits? 

Solution 

From the list of properties of perfect squares we can immediately see that 𝐶 = 2. 

8𝐴3𝐵25 = (3 ⋅ 𝑛)2 

So 8𝐴3𝐵25 is divisible by 9.  Therefore 

8 + 𝐴 + 3 + 𝐵 + 2+ 5 = 18 + 𝐴 + 𝐵 

must be divisible by 9.  Hence 𝐴 + 𝐵 must be divisible by 9.  This means 𝐴 + 𝐵 = 0,𝐴 + 𝐵 = 9 

or 𝐴 + 𝐵 = 18.  But we can rule out 𝐴 + 𝐵 = 0 and 𝐴 + 𝐵 = 18 because this requires 𝐴 = 𝐵 =

0 or 𝐴 = 𝐵 = 9 and we are given that 𝐴 ≠ 𝐵. 

So 𝐴 + 𝐵 = 9.  And we already know that 𝐶 = 2.  Therefore, 𝐴 + 𝐵 + 𝐶 = 11. 

∎ 

 

https://www.flyingcoloursmaths.co.uk/ask-uncle-colin-a-six-digit-square/ 

𝐴𝐵𝐶𝐷𝐸𝐹 is a six-digit perfect square (i.e. 𝐴 ≠ 0) in base ten such that 𝐷𝐸𝐹 = 8 × 𝐴𝐵𝐶, what is 

the sum of 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 ?   

Solution 

𝐴𝐵𝐶𝐷𝐸𝐹 = 1000 ⋅ 𝐴𝐵𝐶 + 𝐷𝐸𝐹 

= 1000 ⋅ 𝐴𝐵𝐶 + 8 ⋅ 𝐴𝐵𝐶 

= 1008 ⋅ 𝐴𝐵𝐶 

= 24 ⋅ 32 ⋅ 7 ⋅ 𝐴𝐵𝐶 

We are given that 𝐴𝐵𝐶𝐷𝐸𝐹 is a perfect square which means that all prime factors occur to an 

even power.  Therefore 𝐴𝐵𝐶 must be a multiple of 7. 

We note that if 𝐴 > 125 then 8 × 𝐴𝐵𝐶 will be a four-digit number and hence cannot equal 

𝐷𝐸𝐹.  Furthermore 𝐴 ≠ 0.  Therefore, 100 ≤ 𝐴𝐵𝐶 ≤ 125. 

The multiples of 7 between 100 and 125 are {105,112,119}.  That is, 𝐴𝐵𝐶 ∈ {105,112,119}. 

Therefore, 

𝐴𝐵𝐶𝐷𝐸𝐹 = 1008 ⋅ 𝐴𝐵𝐶 ∈ {105840,  112896,  119952}. 

We can use our list of properties of perfect squares to rule out 105840 and 119952.  (A perfect 

square cannot end with an odd number of 0’s and cannot end with a 2.) 

Therefore, 𝐴𝐵𝐶𝐷𝐸𝐹 = 112896.  (If a calculator was allowed on your test, you could directly 

verify that 112896 = 3362 is the only perfect square in this list of candidates.) 

Hence, 

https://www.quora.com/The-number-8A3BC5-is-a-perfect-square-of-a-number-that-is-divisible-by-3-What-is-A-B-C-if-A-B-and-C-are-different-digits
https://www.quora.com/The-number-8A3BC5-is-a-perfect-square-of-a-number-that-is-divisible-by-3-What-is-A-B-C-if-A-B-and-C-are-different-digits
https://www.flyingcoloursmaths.co.uk/ask-uncle-colin-a-six-digit-square/
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𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 = 1 + 1 + 2 + 8 + 9 + 6 = 27. 

∎ 

 

Saint Mary’s College Mathematics Contest Problems 

18.  In what bases (less than or equal to 12) is 2101 a perfect square? 

Solution 

 

 

∎ 

 

Saint Mary’s College Mathematics Contest Problems 

97.  What is the smallest base in which 213 is odd and a perfect square? 

Solution 

 

 

∎ 

 

AMC 

 
Solution 

 

∎ 

 

 

 

Find all positive integer 𝑛 such that 𝑛2 + 4𝑛 + 10 is a perfect square, i.e. 𝑛2 + 4𝑛 + 10 = 𝑘2 

for some positive integer 𝑘. 

Solution 

We know that 𝑎2 ≡ 0 or 1 (mod 4) for all integer 𝑎.  Therefore, 𝑘2 ≡ 0 or 1 (mod4).  But  

𝑘2 = 𝑛2 + 4𝑛 + 10 = (𝑛 + 2)2 + 6 

and 

(𝑛 + 2)2 ≡ 0 or 1 (mod 4). 

 

Therefore, 

𝑘2 = (𝑛 + 2)2 + 6 ≡ 0 + 6 or 1 + 6 (mod4) 
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≡ 2 or 3 (mod4) 

which is a contradiction.  Hence there are no values of 𝑛 where 𝑛2 + 4𝑛 + 10 is a perfect 

square. 

∎ 

 

Find all positive integer 𝑛 such that 𝑛2 + 𝑛 + 109 is a perfect square, i.e. 𝑛2 + 𝑛 + 109 = 𝑘2 

for some positive integer 𝑘. 

Solution 

 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎 (𝑥 +
𝑏

2𝑎
)
2

−
𝑏2

4𝑎
+ 𝑐 

 

𝑛2 + 𝑛 + 109 = (𝑛 +
1

2
)
2

−
1

4
+ 109 

 

=
(2𝑛 + 1)2

4
+
4(109) − 1

4
 

 

=
(2𝑛 + 1)2 + 435

4
 

So 

4𝑘2 = (2𝑛 + 1)2 + 435 

 

4𝑘2 − (2𝑛 + 1)2 = 435 
(2𝑘 − 2𝑛 − 1)(2𝑘 + 2𝑛 + 1) = 435 

 

Now 435 = 3 ⋅ 5 ⋅ 29.  So, we have the following possible cases to solve for (𝑘, 𝑛). 

2𝑘 − 2𝑛 − 1 = 1, 2𝑘 + 2𝑛 + 1 = 435  

2𝑘 − 2𝑛 − 1 = 3, 2𝑘 + 2𝑛 + 1 = 145 

2𝑘 − 2𝑛 − 1 = 29, 2𝑘 + 2𝑛 + 1 = 15 

2𝑘 − 2𝑛 − 1 = 15, 2𝑘 + 2𝑛 + 1 = 29 

2𝑘 − 2𝑛 − 1 = 87, 2𝑘 + 2𝑛 + 1 = 5 

2𝑘 − 2𝑛 − 1 = 145, 2𝑘 + 2𝑛 + 1 = 3 

2𝑘 − 2𝑛 − 1 = 435, 2𝑘 + 2𝑛 + 1 = 1 

 

2𝑘 = 2𝑛 + 1 + 1, (2𝑛 + 2) + 2𝑛 + 1 = 435 

4𝑛 + 3 = 435, 𝑛 = 108,𝑘 = 218 

 

4𝑘2(mod4) ≡ 0(mod4) 

435 (mod4) ≡ 3(mod4) 
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Therefore, we need  

(2𝑛 + 1)2 ≡ 1(mod4) 

which implies that 

2𝑛 + 1 ≡ 1(mod 4)  or  2𝑛 + 1 ≡ 3(mod4) 

2𝑛 ≡ 0(mod 4)  or  2𝑛 ≡ 2(mod 4) 

𝑛 ≡ 0(mod 4)  or  𝑛 ≡ 1(mod4) 

 

02 ≡ 0(mod4) 

12 ≡ 1(mod4) 

22 ≡ 0(mod4) 

32 ≡ 1(mod4) 

 

AMC 1965 

 
Solution 
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𝑥4 + 6𝑥3 + 11𝑥2 + 3𝑥 + 31 = (𝑎𝑥2 + 𝑏𝑥 + 𝑐)2 + 𝑙𝑜𝑤𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑟𝑒𝑚 

= 𝑎2𝑥4 + 2𝑎𝑏𝑥3 + (2𝑎𝑐 + 𝑏2)𝑥2 + 2𝑏𝑐𝑥 + 𝑐2 + 𝑙𝑜𝑤𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑟𝑒𝑚 

𝑎 = 1, 𝑏 = 3, 𝑐 = 1 
(𝑥2 + 3𝑥 + 1)2 + 6𝑥 + 1+? ? ? 

Not sure where I am heading with this! 

∎ 

 

435 
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109 − 𝑘2

2𝑘 − 1
= −(

𝑘2 − 109

2𝑘 − 1
) = −(

2𝑘 + 1

4
−

435

4(2𝑘 − 1)
) 

 

435 = 3 ∗ 5 ∗ 29 

 
∎ 

Perfect Squares notes by John Goebel 

 

 
 

 
 

Perfect Squares notes by John Goebel 
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(1T075) 

 
Solution 
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∎ 

 

Mathematics Teacher, Calendar Problem Number 24, October 1990 

 
Solution 
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∎ 

 

The Pentagon, Volume 15, Number 2, Spring 1956, Problem Corner, Problem #90, page 106 

A merchant buys an odd number of felt hats at $10 each and one cloth hat for a whole number 

of dollars less than $10.  How much does the cloth hat cost if the total amount of money 

involved is a perfect square? 

Solution 

Let 𝑛 be the number of felt hats the merchant buys and let 𝑚 be the cost of a cloth hat.  From 

the information given we know that 

10𝑛 + 𝑚 = 𝑟2 

where 𝑛 is odd, 𝑚 ∈ {1,2, … ,9} and 𝑟 is a positive integer.  The tens digit of 10𝑛 + 𝑚 does not 

depend on 𝑚 and the tens digit of 10𝑛 is odd because 𝑛 is odd. 

This means that the tens digit of 𝑟2 is odd.  But we have shown above that the tens digit of 𝑟2 is 

odd if and only if the units digit of 𝑟2 equals 6. 

That is, if and only if 𝑚 = 6. 

∎ 

 

 

Mu Alpha Theta National Convention 2004, Number Theory Test, Mu Division, Problem #11 

 
Solution 
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∎ 

 

ARML 1995 #I-3 

Find all primes 𝑝 such that 𝑝1994 + 𝑝1995  is a perfect square. 

Solution 

𝑝1994 + 𝑝1995 = 𝑝1994(𝑝 + 1) 

 

𝑝1994  is a perfect square therefore 𝑝1994 + 𝑝1995  is a perfect square if and only if 𝑝 + 1 is a 

perfect square. 

Let 𝑝 + 1 = 𝑘2.  Then 𝑝 = 𝑘2 − 1 = (𝑘 − 1)(𝑘 + 1).  But 𝑝 is prime, therefore 𝑘 − 1 = 1 and 

𝑘 = 2.  Hence 𝑝 = 3.  That is, 𝑝 = 3 is the only prime such that 𝑝1994 + 𝑝1995  is a perfect 

square. 

Note: The same argument shows that 𝑝2𝑛 + 𝑝2𝑛+1 is a perfect square for prime 𝑝 if and only if 

𝑝 = 3. 

∎ 

 

 

Find all (𝑚, 𝑛, 𝑥) positive integer triples satisfying the equation 
 

2𝑚 + 3𝑛 = 𝑥2. 
 
Solution 
 
Let (𝑚, 𝑛, 𝑥) be such a triple.  Then (2𝑚 + 3𝑛) ≡ 𝑥2 mod 3. 
 
We can see that 3 divides 3𝑛 but 3 does not divide 2𝑚.  Therefore, 
 

3𝑛 ≡ 0 mod 3 and 2𝑚 ≢ 0 mod 3 

 ⟹ (2𝑚  mod 3) + (3𝑛 mod 3) ≢ 0 mod 3 

 ⟹ (2𝑚 + 3𝑛) ≢ 0 mod 3 

 ⟹ 𝑥2 ≢ 0 mod 3 

 
Now the square of an integer is never equivalent to 2 mod 3 (as the following simple argument 
shows). 
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(3𝑘)2 mod 3 ≡ 0 
 

(3𝑘 + 1)2 mod 3 ≡ (9𝑘2 + 6𝑘 + 1) mod 3 

≡ (3(3𝑘2 + 2𝑘))  mod 3 + 1 mod 3 ≡ 1 mod 3 

 
(3𝑘 + 2)2 mod 3 ≡ (9𝑘2 + 12𝑘 + 4) mod 3 

≡ (3(3𝑘2 + 2𝑘 + 1))  mod 3 + 1 mod 3 ≡ 1 mod 3 

 
Therefore, it must be that 𝑥2 ≡ 1 mod 3.   But 3𝑛 ≡ 0 mod 3 tells us that 2𝑚 ≡ 𝑥2 mod 3.  
Therefore, we can conclude that  
 

2𝑚 ≡ 1 mod 3. 
 
But 

2𝑚 ≡ 1 mod 3  ⟺    𝑚 is even 
 
as the following simple argument will show. 
 
 

22𝑘  mod 3 ≡ (22)𝑘 mod 3 ≡ 4𝑘 mod 3 
 

4𝑘 mod 3 ≡ (4 mod 3)𝑘 mod 3 ≡ 1𝑘 mod 3 ≡ 1 mod 3 

 
 

22𝑘+1 mod 3 ≡ (22)𝑘 ∙ 2 mod 3 ≡ 4𝑘 ∙ 2 mod 3 
 

4𝑘 ∙ 2 mod 3 ≡ (4 mod 3)𝑘 mod 3 ∙ 2 mod 3

≡ ((1𝑘 mod 3) ∙ (2 mod 3)) mod 3 

 

((1𝑘 mod 3) ∙ (2 mod 3)) mod 3 ≡ (1 ∙ 2) mod 3 ≡ 2 mod 3 

 
 
Now consider the equation 2𝑚 + 3𝑛 = 𝑥2 modulo 4.  Then (2𝑚 + 3𝑛) ≡ 𝑥2 mod 4.   
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Because 𝑚 is (by assumption) greater than or equal to 1 and because we have just shown that 
𝑚 is even, we can now conclude that 𝑚 ≥ 2. 
 
Therefore,  2𝑚 ≡ 0 mod 4.  But clearly 4 does not divide 3𝑛 so 3𝑛 ≢ 0 mod 4.  Therefore, it has 
to also be true that 𝑥2 ≢ 0 mod 4. 
 
However the square of an integer is never equivalent to 2 or 3 mod 4 (as the following simple 
argument shows). 
 

(4𝑘)2 mod 4 ≡ 0 
 

(4𝑘 + 1)2 mod 4 ≡ (4(4𝑘2 + 2𝑘) + 1)  mod 4 ≡ 1 mod 4 

(4𝑘 + 2)2 mod 4 ≡ (4(4𝑘2 + 4𝑘 + 1))  mod 4 ≡ 0 mod 4 

(4𝑘 + 3)2 mod 4 ≡ (4(4𝑘2 + 2𝑘 + 2) + 1)  mod 4 ≡ 1 mod 4 

 

 
Therefore, it must be that 𝑥2 ≡ 1 mod 4.   But 2𝑚 ≡ 0 mod 4 tells us that 3𝑛 ≡ 𝑥2 mod 4.  
Therefore, we can conclude that  
 

3𝑛 ≡ 1 mod 4. 
 
But 

3𝑛 ≡ 1 mod 4  ⟺    𝑛 is even 
 
as the following simple argument will show. 
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32𝑘  mod 4 ≡ (32)𝑘 mod 4 ≡ 9𝑘 mod 4 
 

9𝑘 mod 4 ≡ (9 mod 4)𝑘 mod 4 ≡ 1𝑘 mod 4 ≡ 1 mod 4 

 
 

32𝑘+1 mod 4 ≡ (32)𝑘 ∙ 3 mod 4 ≡ 9𝑘 ∙ 3 mod 4 
 

9𝑘 ∙ 3 mod 4 ≡ (9 mod 4)𝑘 mod 4 ∙ 3 mod 4

≡ ((1𝑘 mod 4) ∙ (3 mod 4)) mod 4 

 

((1𝑘 mod 4) ∙ (3 mod 4)) mod 4 ≡ (1 ∙ 3) mod 4 ≡ 3 mod 4 

 
 
So now we know that 𝑚 and 𝑛 are both even.  This means that 2𝑚 and 3𝑛 are perfect squares. 
 
 

2𝑚 + 3𝑛 = 𝑥2. 
 
 

This means that 2𝑚 2⁄  and 3𝑛 2⁄  are positive integers.  It follows that 
 

2𝑚 + 3𝑛 = (2𝑚 2⁄ )
2
+ (3𝑛 2⁄ )

2
= 𝑥2 

 

where 2𝑚 2⁄  and 3𝑛 2⁄  are positive integers. 
 
 

That is, (2𝑚 2⁄ , 3𝑛 2⁄ , 𝑥) is a Pythagorean triple!   Is a primitive Pythagorean triple?  Yes. 

 

We note that 2𝑚 2⁄  only has factors of 2 and 3𝑛 2⁄  only has factors of 3.  [Don’t forget that we 
have just shown that 𝑚 2⁄  and 𝑛 2⁄  are integers.] 
 

Therefore, gcd(2𝑚 2⁄ , 3𝑛 2⁄ ) = 1.  But this tells us that gcd(2𝑚 2⁄ , 3𝑛 2⁄ , 𝑥) = 1.  [Show this.] 

 

Therefore, (2𝑚 2⁄ , 3𝑛 2⁄ , 𝑥) is a primitive Pythagorean triple. 

 
∎ 

 

 

The USSR Olympiad Problem Book: Selected Problems and Theorems of Elementary 

Mathematics,  Shklarsky, Chentzov, Yaglom 
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Problem 110(a) 

Find a four-digit number which is an exact square and such that its first two digits are the same 

and its last two digits are the same. 

Solution 

 
∎ 

 

13.7 Repunits 
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𝑅𝑛 = 11⋯11⏟    
𝑛 ones

=
10𝑛 − 1

9
 

 

Suppose 𝑚 < 𝑛.  Then 

11⋯11⏟    
𝑛 ones

− 11⋯11⏟    
𝑚 ones

00⋯00⏟    
𝑛−𝑚 ones

= 11⋯11⏟    
𝑛−𝑚 ones

. 

 

That is, 

𝑅𝑛 − 10
𝑛−𝑚𝑅𝑚 = 𝑅𝑛−𝑚 . 

 

Suppose 𝑎 − 𝑘𝑏 > 0.  Then 

gcd(𝑎, 𝑏) = gcd(𝑎 − 𝑘𝑏, 𝑏) 

Proof 

If 𝑟|𝑏 then 𝑟|𝑘𝑏. 

If 𝑟|𝑎 and 𝑟|𝑘𝑏 then 𝑟|(𝑎 − 𝑘𝑏). 

If 𝑟|(𝑎 − 𝑘𝑏) and 𝑟|𝑏 then 𝑟|((𝑎 − 𝑘𝑏) + 𝑘𝑏). 

So 𝑟|𝑎 and 𝑟|𝑏 if and only if 𝑟|(𝑎 − 𝑘𝑏) and 𝑟|𝑏.  Therefore gcd(𝑎, 𝑏) = gcd(𝑎 − 𝑘𝑏, 𝑏). 

 

gcd(𝑅𝑛 , 𝑅𝑚) = gcd(𝑅𝑛 − 10
𝑛−𝑚𝑅𝑚 , 𝑅𝑚) 

= gcd(𝑅𝑛 , 𝑅𝑛−𝑚) 

 

gcd(52,14) = gcd(52 − 14,14) = gcd(38,14) = gcd(24,14) = gcd(10,14) 

= gcd(14,10) = gcd(4,10) = gcd(10,4) = gcd(6,4) = gcd(2,4) 

= gcd(4,2) = gcd(2,2) = 2 

 

gcd(𝑅52, 𝑅14) = gcd(𝑅38, 𝑅14) = gcd(𝑅24, 𝑅14) = gcd(𝑅10, 𝑅14) 

= gcd(𝑅14, 𝑅10) = gcd(𝑅4, 𝑅10) = gcd(𝑅10, 𝑅4) = gcd(𝑅6, 𝑅4) 

= gcd(𝑅2, 𝑅4) = gcd(𝑅4, 𝑅2) = gcd(𝑅2, 𝑅2) = 𝑅2 = 𝑅gcd(52,14)  

 

 

gcd(52,15) = gcd(52 − 15,15) = gcd(37,15) = gcd(22,15) = gcd(15,7) 

= gcd(8,7) = gcd(1,7) = 1 

 

gcd(𝑅52, 𝑅15) = gcd(𝑅37, 𝑅15) = gcd(𝑅22, 𝑅15) = gcd(𝑅15, 𝑅7) 

= gcd(𝑅8, 𝑅7) = gcd(𝑅1, 𝑅7) = gcd(1, 𝑅7) = 1 = 𝑅gcd(52,15) 

 

𝑟𝑛 = 11⋯11⏟    
𝑛 ones
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Suppose 𝑛 = 𝑘𝑚.  Then 

10𝑛 − 1 = (10𝑚 − 1)(10(𝑘−1)𝑚 + 10(𝑘−2)𝑚 +⋯+ 10𝑚 + 1) 

 

10𝑘𝑚 + 10(𝑘−1)𝑚 +⋯+ 102𝑚 + 10𝑚 − 10(𝑘−1)𝑚 − 10(𝑘−2)𝑚 −⋯− 10𝑚 − 1 

= 10𝑘𝑚 = 10𝑛 

 

Conclusion 

If 𝑚|𝑛 then 𝑅𝑚|𝑅𝑛. 

∎ 

 

If 𝑑|𝑅𝑛 and 𝑑|𝑅𝑚, then 𝑑|𝑅𝑛+𝑚  

Proof 

𝑅𝑛 − 10
𝑛−𝑚𝑅𝑚 = 𝑅𝑛−𝑚 . 

Therefore, 

𝑅𝑛+𝑚 − 10
(𝑛+𝑚)−𝑚𝑅𝑚 = 𝑅(𝑛+𝑚)−𝑚 

𝑅𝑛+𝑚 = 10
𝑚𝑅𝑚 + 𝑅𝑛 

Therefore, if 𝑑|𝑅𝑛 and 𝑑|𝑅𝑚, then 𝑑|𝑅𝑛+𝑚 

∎ 

 

Repdigit 

 

Example  (Source: Mu Alpha Theta 2001 National Convention, Mu Division, Number Theory 

Topic Test, Problem 30) 

 

A number 𝑁 expressed in base (𝐴 + 1) is 𝐴𝐴𝐴𝐴.  If 𝑁 = 𝑄(𝑄 − 2), what is 𝑄 expressed in base 

(𝐴 + 1)? 

 

Solution 

 

𝑁 = (𝐴𝐴𝐴𝐴)𝐴+1 = 𝐴 ⋅ (𝐴 + 1)
3 + 𝐴 ⋅ (𝐴 + 1)2 + 𝐴 ⋅ (𝐴 + 1)1 + 𝐴 

 

(𝐴𝐴00) 

 

 

(𝐴 + 1)2(𝐴(𝐴 + 1) + 𝐴) + (𝐴(𝐴 + 1) + 𝐴) 

 
((𝐴 + 1)2 + 1)(𝐴(𝐴 + 1) + 𝐴) 

 

(1(𝐴 + 1)2 + 0(𝐴 + 1)1 + 1(𝐴 + 1)0)(𝐴(𝐴 + 1)1 + 𝐴(𝐴 + 1)0) 

 

(101)𝐴+1(𝐴𝐴)𝐴+1 
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https://math.stackexchange.com/questions/881503/length-of-smallest-repunits-divisible-by-

primes 

 
 

https://math.stackexchange.com/questions/881503/length-of-smallest-repunits-divisible-by-primes
https://math.stackexchange.com/questions/881503/length-of-smallest-repunits-divisible-by-primes
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Find the number of digits in the smallest repunit divisible by 19. 

https://math.stackexchange.com/questions/3824172/finding-the-number-of-digits-in-repunit 

 

 

  

https://math.stackexchange.com/questions/3824172/finding-the-number-of-digits-in-repunit
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https://mathlesstraveled.com/2011/11/17/fun-with-repunit-divisors-more-solutions/ 

 
 

 
 

https://mathlesstraveled.com/2011/11/17/fun-with-repunit-divisors-more-solutions/
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Solution 
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∎ 

 

Alberta High School Mathematics Competition 
First Round, 2007 

1.  The positive integer 𝐴 has 1001 digits all of which are 1’s.  That is, 𝐴 = 11⋯11⏞    
1001 1's

.  Find 

𝐴mod(1001). 

Solution 

We can expand 𝐴 as follows: 

11⋯11⏞    
1001 1's

= 101000 + 10999 + 10998 +⋯+ 103 + 102 + 101 + 100 

= (101000 + 10997) + (10999 + 10996) + ⋯+ (104 + 101) + (103 + 100) + 102 

= 10997(1001) + 10996(1001) + ⋯+ 101(1001) + 100(1001) + 102. 

From here we can immediately see that 𝐴mod(1001) = 102 = 100.   

Alternatively, we could expand 𝐴 as 

𝐴 = 111111⏞    
six 1's

0⋯0⏞  
995 0's

+ 111111⏞    
six 1's

0⋯0⏞  
989 0's

+⋯+ 111111⏞    
six 1's

0⋯0⏞  
11 0's

+ 111111⏞    
six 1's

0⋯0⏞  
5 0's

+ 11111⏞    
5 1's

 

= (111111⏞    
six 1's

) ⋅ (10995 + 10989 +⋯+ 1011 + 106) + (11111⏞    
five 1's

) 

= (1001 ⋅ 111) ⋅ (10995 + 10989 +⋯+ 1011 + 106) + (1001 ⋅ 11 + 100) 

from which it is again immediate that 𝐴mod(1001) = 100. 

∎ 

 

 

 

13.8 Need to Generalize 
 

Saint Mary’s College Mathematics Contest Problems 

117.  How many ways could one make $2.43 with 5¢ and 8¢ stamps? 

Solution 

 

 

∎ 
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13.9 Else 
 

(5T895)  Two seventh grade students were allowed to enter a chess tournament otherwise 

comprised of eighth-graders.  Each contestant played one match against every other 

contestant.  In this tournament, a contestant received 1 point for a win, 0 for a loss, and in the 

case of a tie, each contestant received 1/2 point.  The two seventh grade students amassed a 

total of 8 points, and each eighth-grader scored the same number of points.  What is the largest 

number of eighth-graders that might have participated?  [This is not an original problem, but 

the source is lost.] 

Solution 

With this setup we can see that the total number of games played equals the sum of the points 

earned by all the contestants. 

Let 𝑛 be the number of eighth grade contestants and let 𝑝 equal the number of points scored 

by each eighth grader. 

Then, the total number of contestants equals 𝑛 + 2 and the total number of games played 

equals (
𝑛 + 2
2
), as each contestant plays one match against every other contestant .  And as 

noted above, this implies the sum of the points earned by all the contestants also equals 

(
𝑛 + 2
2
). 

But we also know that the sum of the points earned by all the contestants equals 𝑛𝑝 + 8.  

Therefore, we have 

𝑛𝑝 + 8 = (
𝑛 + 2
2
) =

(𝑛 + 2)!

2! 𝑛!
=
(𝑛 + 2)(𝑛 + 1)

2
. 

 

This gives us a quadratic equation in the variable 𝑛. 

2𝑛𝑝 + 16 = (𝑛 + 2)(𝑛 + 1) 

or 

𝑛2 + (3 − 2𝑝)𝑛 − 14 = 0. 

 

We know that 𝑛 is an integer and we know that the only possible integer solutions of this 

quadratic are the factors of 14.  That is, 𝑛 ∈ {1,2,7,14}. 

 

Now consider the value of 𝑝 for each possible value of 𝑛.  Note that on solving for 𝑝 in the 

above quadratic equation we have 

𝑝 =
𝑛2 + 3𝑛 − 14

2𝑛
. 

Therefore, 

𝑛 = 1 ⟹ 𝑝 =
12 + 3(1) − 14

2(1)
= −5 
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𝑛 = 2 ⟹ 𝑝 =
22 + 3(2) − 14

2(2)
= −1 

𝑛 = 7 ⟹ 𝑝 =
72 + 3(7) − 14

2(7)
= 4 

𝑛 = 14 ⟹ 𝑝 =
142 + 3(14) − 14

2(14)
= 8. 

 

𝑝, the number of points scored by each eight-grade contestant, cannot be a negative number.  

Therefore, we can eliminate the cases of 𝑛 = 1 and 𝑛 = 2.  Hence there are two possible 

scenarios.  Either there are 𝑛 = 7 eight-grade contestants and each scored 𝑝 = 4 points or 

there are 𝑛 = 14 eight-grade contestants and each scored 𝑝 = 8 points. 

The problem asks for the largest possible number of eight-grade contestants, which is 14. 

∎ 

 

 

 

 




