Chapter 5. Modular Arithmetic

5.1 Definitions and Properties of Modular Arithmetic

Congruency

If n is positive and n|(a — b), we say that a is congruent to b modulo n and we write
a = b mod(n). If ais not congruent to b modulo n, we write a b mod(n).

Does m = 2 here? Why or why not.

Let m, a, and b be three integers, with m > 2.

DEFINITION 46. a is congruent to b modulo m <= m|(a —b).
(Equivalently, a2 and b have the same remainder when divided by m
in the Euclidean Algorithm.) The notation for this is “a = b” or

“a = b (mod m)”.

—
~—r

Next, “ (E " respects addition, subtraction, and multiplication: if

a = band ¢ = d, then:
(m) (m)

en+c =b+d,;

(m)

. —c(z) —d (= a—c(z)b—d);and

e ac = bd.

(m)

Repeatedly using these shows also that

e f(a) (ﬁ) f(b) for any polynomial f with integer coefficients.
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Proposition 2.2 (Elementary properties of congruences). Let a,b,c,d € Z, m € N.

(i) If a =bmod m and ¢ = d mod m, then a + ¢ = b+ d mod m.

(i1) If a = b mod m and ¢ = d mod m, then ac = bd mod m.

)

)
(ii) [fa = bmod m, then a = b mod m for any n € N.
(iv) If a = bmod m, then f(a) = f(b) mod m for any polynomial f(n) with integer coefficients.
)

(v) If a = bmod m, then a = b mod d for any positive divisor d of m.

Theorem 2.1 Let a, b, ¢, d denote integers. Then:

(1) a = b(mod m), b = a(mod m), and a — b = 0{mod m) are
equivalent statements.

(2) If a = b(mod m) and b = ¢ (mod m), then a = ¢ (mod m).

(3) Ifa = b(mod m) and ¢ = d(mod m), thena + ¢ = b + d (mod m).
(4} If a = b(mod m) and ¢ = d(mod m), then ac = bd (mod m).

(5) Ifa = b(mod m) and d|m,d > 0, then a = b (mod d).

(6) If a = b(mod m) then ac = be (mod mc) for ¢ > 0.

If a = b (modm) then a™ = b™ (mod m) for all positive integers n.
ca = cb (modm) ifand only if a = b (modm/(c,m))
(v) Show that for any prime p and any a, b € Z we have

a? + b = (a+b)? (mod p).

(vi) Show that for any natural number m and any a,b € Z such that a = b
(mod m™), where n € N, we have a™ = b (mod m™*?).
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Therefore the binomial theorem modulo a prime becomes
(at+by’=a’+b"  (modp)
The result can easily be extended to the powers of sums of three or more terms:
(a1 +az+...+a, )P =dl +d5 +...+a) (mod p)
Ifweleta; =@ =...=a,-= 1, we obtain Fermat’s lesser theorem:

P =r (modp)
THEOREM 4.7 1f ac = bc (mod m) and (¢, m) = d, then a = b (mod m/d).

THEOREM 4.8 Ifa=b (modm;),a=b (mod my), ..., a=b (mod my), then a = b (mod [m,, my,
e mg]).

COROLLARY 4.5 If a=b (mod m;), a=>b (mod my), ..., a= b (mod my), where the moduli are
pairwise relatively prime, then a = b (mod mymy - - - my). [ |

x =y (modm;)fori=12,..,rifandonlyifx =y (mod[ml,mz, e, My ] )

Theorem 2.3
(1) ax = ay (mod m) if and only if x = y (mod ?;?in;j)
(2) If ax = ay (mod m) and (a,m) = 1, then x = y (mod m).

(3) x =y(mod m,) fori = 1,2,---,rif and only if
x=y(mod{m,, m,, -, m1.

Proof of (3) [Niven, Zuckerman page 16]
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Definition 1.4 The integers a,,a,, "', a,, all different from zero, have a
common multiple b if a,|b for i = 1,2, -, n. (Note that common multiples
do exist; for example the product a,a, ' a, is one.) The least of the positive
common multiples is called the least common multiple, and it is denoted by
la,,a;, ", a,)

@ If x=y(modm,) for i =1,2,---,r, then m;|(y —x) for i =
1,2,---,r. That is, y — x is a common multiple of m,,m,, -+, m,, and
therefore (see Theorem 1.12) {m,, m,, -+, m,)[(y — x). This implies x =
y(mod[m,, m,, -+, m,].

If x = y(mod[m,, m,,---,m,] then x =y (mod m,)) by Theorem 2.1
part 5, since m,|[m,, m,," -, m,].

Theorem 1.12 If b is any common multiple of a,, a,, " ,a,, then
la,,a,, -, a,llb. This is the same as saying that if h denotes [a,, a,," " -, a,],
then 0, + h, + 2h, + 3h, - -+ comprise all the common multiples of
@y, 85, ' ", 4,

Theorem 2.1 Let a, b, ¢, d denote integers. Then:

(1) a = b(mod m), b = a(mod m), and a — b = 0(mod m) are
equivalent statements.

(2) If a = b(mod m) and b = ¢ (mod m), then a = ¢ (mod m).

(3) Ifa = b(mod m) and ¢ = d (mod m), thena + ¢ = b + d (mod m).

(4) If a = b(mod m) and ¢ = d (mod m), then ac = bd (mod m).

(5) Ifa = b(mod m) and d\m,d > 0, then a = b (mod d).

(6) If a = b (mod m) then ac = be (mod me) for ¢ > 0.

x =y (modm;)fori=12,..,rifandonlyifx =y (mod[ml,mz, e, My ] )
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Theorem 4. Let N =a,,_1...ajag be an n—digit positive integer, where aq is the
number of units, a; be the number of tens, and so on. Then
(i) N=ap+a+- -+ ap—1 (mod 3)
(iil) N=ao+a; +-+-+an_1 (mod9)
(ili) N=ag—a; +---+ (=1)""ta, 1 (mod 11)
(iv) N = @yap (mod 4), where ayag is the number formed by two last digits of

N
(v) N = azaiag (mod 8), where azajag is the number formed by three last
digits of N

EXAMPLE 49. Letn € N, and write n = ag + 10a; + 10%a, + - - - +
10%a,. We have

0=1 = 10=1 = n=ay+am+ - +a,
(9) 9) 9)

so that 9|n <= 9 divides the sum of the digits of n. On the other
hand,

10=-1 = 10 = (-1) = n = ay— (1)K
(11) (11)( ) LTI ay+ -4 (=1)a

reveals that 11|n <= 11 divides the alternating sum of the digits of
n.

5.2 Theorems of Fermat, Euler, and Wilson
Theorem
Let p be a prime. A positive integer m is its own inverse modulo p if and only if p dividesm + 1

or p dividesm — 1.

Wilson’s Theorem
If pis a prime number, then p divides (p — 1)! + 1.

Euler’s Phi (or Totient) Function
Euler's product formula
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w-ell(-)

An equivalent formulation for n = pfl p;cg . -pff", where p1, po, ..., p, are the distinct primes dividing n, is:

o(n) =i Hp—1) &2 H(pe—1) - pF H (p—1).

& “In order words, ¢(n) is the number of positive integers less than or equal to n that are
relatively prime to n.” (page 68, textbook)

Section 2.6 Euler’s Theorem (pp 68-72)

Definition 7 (Euler’s Phi Function) Let n € Z withn > 0. The Euler phi-function, denoted
¢(n), is the function defined by

¢(n) = {er:leSn;(x,n)zl}

where { set A } is the notation for the cardinality of set 4, i.e. the number of elements in set

A.

& “In order words, ¢p(n) is the number of positive integers less than or equal to n that are
relatively prime to n.” (page 68, textbook)

& “Note that n will be relatively prime to itself if and only if n = 1.” (page 68, textbook)

& Example 12(c). “If p is a prime number, then all positive integers less than p are relatively
prime to p. Inasmuch as there are p — 1 such numbers, we have ¢(p) = p — 1.” (page 69,
textbook)
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Theorem 3.3: Let p be a prime number and let a € Z with a > 0. Then ¢(p?) = p% — p*~ 1.

e.g. ¢$4)=¢p2) =2%2-2L Check: 2=4—27? VYes.
b(8) = p(23) = 23 — 22, Check: 4=8—47 Yes.
$(9) = ¢$(32) =32 -31, Check: 6 =9—-37? Yes.

Theorem 3.4: Letn € Z withn > 0. Then

w=n T] (-}

p|n, p prime

(T1159) Determine the number of elements of S that are in simplest form if

_ { 1 2 3 142 143}
- (14471447 144° 77’ 1447 144)

Solution

Start by counting the number of numbers from 1 to 143 that have 2 or 3 as a factor. The number that have two as a

144 144
factor is T ~1=71. The number that have 3 as a factor is T —1=47. However, note that we have double counted the

144
numbers with 2 and 3 as a factor. There are T_ 1=23. Thus, we have 143 - 71 - 47 +23 = numbers.

Using Euler’s Phi Function:

P(144) = p(2*32) = 144 (1 — %) (1 — %) = 144 (%) (%) = 48.

Euler’s Theorem
If m is a positive integer and a is an integer such that (a, m) = 1, then
a®™ =1 (modm)

where ¢ is Euler’s ¢-function.
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Fermat’s Theorem

If p is a prime and a is a positive integer with p t a, then a?~1 = 1 (mod p).

Order of a mod m, written ord,,, a

The order of a mod m (with a and m relatively prime) is the smallest positive integer x such
that a* = 1 (mod m).

We know from Euler’s Theorem that a®™) = 1 (mod m) therefore (by definition)
ord,, a < ¢p(m).

$(1132) = 564

564 = 22.31.47!

orderi132(51)=94

orderi1132(45)=6

orderi132(29)=47

45°mod(1132) =1

29 mod(1132) =1
47=32+8+4+2+1
291 mod(1132) = 29

292mod(1132) = 841
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29*mod(1132) = (841 - 841) mod(1132) = 913
298 mod(1132) = (913 - 913) mod(1132) = 417
296 mod(1132) = 693
2932 mod(1132) = 281
294 mod(1132) = (2932 - 298 - 29% . 292 . 291) mod(1132)
= (281-417-913 - 841 - 29) mod(1132)

=1

Exercises

1)
2)
3)
4)
5)

6)

7)

Show that 10! + 1 is divisible by 11.

What is the remainder when 5! 25! is divided by 31?

What is the remainder when 51°° is divided by 7?

Show that if p is an odd prime, then 2(p — 3)! = —1(mod p).

Find a reduced residue system modulo 2™, where m is a positive integer.

Show that if a;, a,,..., Ag(m) is a reduced residue system modulo m, where m is a positive

integer withm # 2, then a; + a,+... +agm) =0 (mod m).

Show that if a is an integer such that a is not divisible by 3 or such that a is divisible by 9,

then a’ = a (mod 63).
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EXAMPLE 50 (Fast powering algorithm). To compute 5° (mod 11),
we need not actually compute 5° and then apply the Euclidean Al-
gorithm. Rather, apply EA at each step:

5 =25 =3
(11)

5 =52.5 = 3.5=15 = 4
(11) (11)

50 =5%.5 =4.5=20 = 9
(11) (11)

5 =5%*.5 = 9.5 =45 = 1.
(11) (11)

But if we want (say) 513 this is wasteful. Instead, compute

52 =3 5°=(5)2 =3 =9, 55=(5%? = 92=81 = 4
(11) (11) (11) (11)

— 50 =51 = 4.9.5-180 = 4.
(11) (11)
(In fact, using Fermat’s theorem below will give an even faster short-
cut.) The general algorithm here for finding 4° (mod m) is to write
the exponent in binary, compute all the a2 you need, then multiply
them together. This reduces us from computing ¢ multiplications to
< 2log, e multiplications mod .}

What is he talking about when he says using the Euclidean algorithm to find 5° mod 11?

5’modll=x<5°=1lk+x &
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DEFINITION 57. (a) [Euler’s phi-function]® ¢(m) := |(Z/mZ)*| =
#{a e {0,1,...,m—1}|(m,a) =1}

(b) A reduced residue system (mod m) is a set of ¢(m) integers
relatively prime to m, with no two in the same mod-m-residue class

(eg. {ac{0,1,....m—1}|(m,a) =1}).

Example

229 is a 9-digit integer with distinct digits. What digit (from 0 to 9) does it not contain?
(Source: 2010 Lehigh University High School Math Contest, Problem #34)

Solution
Let 229 = ag10® + a,107 + - + a; 10 + a,.
Let k be the single digit in {0,1,2, ...,9} that 22° does not include. Then
ag+a;+a;,+a,=09+8+7+6+5+4+3+2+1+0)—k=45—k.
We know from the divisibility rule for 9 that
22°mod(9) = (ag + a, + - a; + ag) mod(9) = (45 — k) mod(9) = (0 — k) mod(9).
We can see that gcd(2,9) = 1 so we can apply Euler’s Theorem to determine that

29 =1 mod(9)
1
where ¢(9) =9 (1 - §) = 6. So

229 =(20)*.2>=1*-2>=32=5 = —4 mod(9).

Hence —k = —4 or k = 4. That is, the missing digit is 4. Using a calculator (which was not
allowed on this contest) we can see that in fact 22° = 536870912.
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Example (Source: 2009 Lehigh University High School Math Contest, Problem #17)
What is the remainder when 32°°? s divided by 21?
Solution

We cannot directly apply Euler’s Theorem as we did in the previous example because the

necessary condition ged(3,21) ; 1 for the theorem to hold is not met.
We can circumvent this problem by using the result

x =y (modm;)fori=12,..,rifandonlyifx =y (mod[ml,mz, ...,mr])
of the previous chapter.

Notice that [7,3] = 7 - 3 = 21 because 7 and 3 are relatively prime. So, it follows from this
result that

x =y mod(21) & x =y mod(7) and x =y mod(3).

Note that ¢(7) = 6 and hence 3° = 1 mod(7) by Euler’s Theorem. Thus,
32009 mod(7) = ((36)334 : 35) mod(7) = (1-5) mod(7) = 5 mod(7).

And clearly
32009 = 0 mod(3).

But there appears to be a problem because to apply the above result we needed 32°°° mod(7)
and 32%99 mod(3) to be congruent to the same value but we found 32°°° mod(7) = 5 and

32009 mod(3) = 0.

Fortunately, there is a simple fix. We note that 5 = 12 mod(7) and 3 = 12 mod(3). Hence,
32009 = 12 mod(7) and 32°%° = 12 mod(3) = 32%%° = 12 mod(21).

Therefore, we get a remainder of 12 when we divide 32099 by 21.
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Note: In the next chapter we will introduce the Chinese Remainder Theorem which will
generalize the approach taken in this last example.

The next example shows that Euler’s Theorem is often but not always the best tool for finding
b
a” mod n.

Example (Source: 1999 Lehigh University High School Math Contest, Problem #34)
What is the remainder when 683 + 883 is divided by 49?
Solution

At first glance it is tempting to see this as an application of Euler’s Theorem and to separately
find 683 mod 49 and 883 mod 49. But at first glance this also has the appearance of a time-

consuming approach because ¢(49) = 42 which means

6% mod 49 = (6*2 - 6*1) mod 49 = (6%“? - 6*1) mod 49 = 6*! mod 49
and we are still facing the problem of finding 6! mod 49.

Are there any clues for a better approach? If we notice the disguised 7’s we can rewrite the
problem as
((7 =1 + (7 + 1)%) mod 72.

This form suggests expanding the binomial terms and looking for cancellation. It also suggests
that the remaining terms will involve a factor of 7/ which is convenient when working mod 72.

(7-1DB+(7+1)% = Z (8].3) 7/ (=183 + Z (8].3) 7/(1)83
_ Z (8}3) 7] ((_1)83—j + (1)83-) )
_ ;3230 (8}3) 7 ((_1)83—j + (1)83- )
j odd
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It follows that
83

(7= D%+ 7+ D®)mod 7> = 2(%) 7" mod 72 + 73 Z (8].3) 7/-3 . 2 mod 72
=
j odd

_ 83 1 2 _ 2
_2(1)7 mod 72 = 1162 mod 7
= 35.

THEOREM 60 (Euler). (a,m) =1 — af(™) = 1.

(m)

COROLLARY 61 (Fermat’s “Little” Theorem). Let a be an integer,

and p a prime not dividing a. Then aP~1 (E) 1.
p
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2.5 Fermat’s Theorem

Theorem 2.14 (Fermat’s Little Theorem). Let p be a prime number. Then, for any integer a
satisfying (a,p) = 1,
(2.5) a?~! =1 mod p.

Corollary 2.15 (Fermat’s Little Theorem, Variant). Let p be a prime number. Then, for any
integer a,

(2.6) a? = a mod p.

Corollary 2.16 (Inverses via Fermat’s Theorem). Let p be a prime number, and let a be an
integer such that (p,a) = 1. Then @ = aP~? is an inverse of a modulo p.

Remark. In contrast to Wilson’s Theorem, Fermat’s Theorem does not have a corresponding
converse; in fact, there exist numbers p that satisfy the congruence in Fermat’s Theorem, but
which are compositive. Such “false positives” to the Fermat test are rare, but they do exist,
movitating the following definition:
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Method 2: Fermat’s Little Theorem

There are several ways to deal with large exponents more efficiently, one of which is to
leverage the so-called Fermat’s Little Theorem (FLT), which asserts that:

Given a prime modulus p and any non-zero integer n (i.e., n % 0 (mod p)), we have
that n ' =1 (mod p).

In other words, when the modulus is a prime number, any non-zero number, when raised to
the predecessor of the modulus, will be congruent to 1. While FLT has profound implications
in number theory, its immediate usefulness for us is that it allows for fast calculations within
prime moduli.

For example, since 31 is a prime number, any non-zero number raised to 30 will be congruent
to linmod 31 (eg, 2°® = 1 (mod 31),15°° =1 (mod 31)). n practice, this means that
a big number such as 2345%7 can be reduced in mod 31 as follows:

934%67 = [(31)7 + 17]567 — 17567 = 17(30)18+27 _ (17)1817%7 = 177 (mod 31)

As you can see here, in the case of prime modulus, the base can always be reduced so that it
is smaller than the modulus, and the exponent smaller than the predecessor of the modulus.
Once there, we can resort again to brute force to further simplify the expression:

17 =289 =10,17* =100 = 7,17° = 49 = 18 (mod 31)
17'% =324 = 14,17** = (17'%)17° = (14)18 =4 (mod 31)
172 = (17*Y)17* = (4)10 = 9 (mod 31)

177 = (17%%)17 = (9)17 = 153 = 29 (mod 31)

Thatis, 234°%" = 29 (mod 31)!
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Before we get overly excited about FLT though, it is to be emphasized that this theorem only
works when we have a prime modulus. In fact, we even know that the same theorem is false if
the modulus were composite. and the search for more general techniques would lead us to
yet another standard trick...

2.6 Euler’s Theorem

Definition 2.18 (Reduced residue system). Let m € N. A set of integers is called a reduced
residue system modulo m, if (i) its elements are pairwise incongruent modulo m, and (ii)
every integer n with (n,m) = 1 is congruent to an element of the set. Equivalently, a reduced
residue system modulo m is the subset of a complete residue system consisting of those elements
that are relatively prime with m.

Definition 2.19 (Euler phi-function). Let m € N. The Euler phi-function, denoted by p(m),
is defined by
@(m) = #{1 sn<m: (nvm) = 1}7

i.e., p(m) is the number of elements in a reduced system of residues modulo m.

Proposition 2.20. If {ry,r,... ,T¢(m)} is a reduced residue system modulo m, then so is the
set {ary,ary, ..., ary(n)}, for any integer a with (a,m) = 1.

Theorem 2.21 (Euler’s generalization of Fermat’s theorem). Let m € N. Then, for any integer
a such that (a,m) =1,

(2.7) a?™ =1 (mod m).

3.3 The Euler phi function and the Carmichael Conjecture
Definition 3.3 (Euler phi function). The Euler phi function is defined by
en)=#{1<m<n:(m,n) =1}

Proposition 3.4 (Properties of ¢(n)).

(i) (Multiplicativity) The Euler phi function is multiplicative (though not completely multi-
plicative).

(11) (Faxplicit formula) For any n € N,

o) = T » -0 =a]] (1-3).

P
peln pln
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2.4 Wilson’s Theorem

Theorem 2.12 (Wilson’s Theorem). Let p be a prime number. Then
(2.4) (p— 1) = —1 mod p.

Theorem 2.13 (Converse to Wilson’s Theorem). If p is an integer > 2 satisfying (2.4), then p
is a prime number.

Remark. The converse to Wilson’s Theorem can be stated in contrapositive form as follows: If
n is composite, then (n — 1)! is not congruent to —1 modulo n. In fact, the following much
stronger statement holds: If n > 4 and n is composite, then (n—1)! = 0 mod n. Thus, for n > 4,
(n — 1)! is congruent to either —1 or 0 modulo n; the first case occurs if and only if » is prime,
and the second occurs if and only if n is composite.

Example 8. What is the remainder of the division of N = 3752199 — 3587 by 6 ?

Solution. Here we stop writing the references to the parts of Theorem 3, but we
do use them constantly. All congruences below are modulo 6. We have: 375 = 3
(mod 6), 2109 = (2°)20 = 3220 = 220 = (2°)1 = 321 = 2% = 16 = 4 (mod 6).
Also, since 35 = —1 (mod 6), then 3557 = (—1)%" = —1 (mod 6). Therefore N =
3752100 _ 3587 =3.4 — (—1) =13 =1 (mod 6). Since 0 < 1 < 6, the remainder
of the division of N by 6 is 1.

o N A

’\To find the renllairllder of the division of the product 32517 - 5328 by 14, we
can first divide each factor by 14 with remainder, then multiply the obtained

remainders, and then divide their product by 14. Using congruences, this
can be written as: 32517 =9 (mod 14), 5328 =8 (mod 14), and

32517-5328=9-8=72=2 (mod 14)

(here we used (vi) and (viii)).
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Example 8. What is the remainder of the division of N = 375.2100 — 3587 by 6 ?

Solution. Here we stop writing the references to the parts of Theorem 3, but we
do use them constantly. All congruences below are modulo 6. We have: 375 = 3
(mod 6), 2190 = (2°)20 = 3220 = 220 = (25)1 = 321 = 2! = 16 = 4 (mod 6).
Also, since 35 = —1 (mod 6), then 35%7 = (—1)%" = —1 (mod 6). Therefore N =
3752100 3587 =3.4 - (1) =13 =1 (mod 6). Since 0 < 1 < 6, the remainder
of the division of N by 6 is 1.

ELEMENTS OF NUMBER THEORY: LECTURE NOTES, FELIX LAZEBNIK, pg. 12

Exercise Set 3

8. Prove that the sum of squares of three integers cannot give remainder 7 when
divided by 8. Are there three integers x, y, z such that z%+y?+2? = 236540098397

Solution

(8) First {nvestigate what can be a remainder of the division of a square of an
integer by 7.

23654009839 mod 8 = 839 mod 8 = (8(104) + 7) mod 8 = 7

0°mod8 =0 1°mod8 =1 22mod8 = 4
32mod8 =1 4°mod8 =0 52mod8 =1
62mod8 =4 72mod 8 = 4

But there is no combination of three of {0,1,4} sampling with replacement that can equal 7.

9. Are there integers z, v, z such that z° + y® + 2° = 12345678947
(Hint: Think about the corresponding congruence modulo 9.)

Solution

(9) A hint has already been given. First investigate what can be a remainder
of the division of a cube of an integer by 9.

Niven, Zuckermann
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8. Prove that any number that is a square must have one of the
following for its units digit: 0,1,4, 5,6, 9.
9. Prove that any fourth power must have one of 0, 1, 5,6 for its units
digit.
5.3 Largest Integer that Divides Integer Polynomial f(n) foralln

Complete Residue System

Aset A = {ay,a,,...,a,} of nintegers is a complete residue system mod(n) if every integer in
Z is congruent mod(n) to exactly one of the a;'s in A.

Equivalently, the set A = {a,, a,, ..., a,} of n integers is a complete residue system (mod n) if
each element of A mod(n) is distinct. Thatis, n t |aj - al-| forany1 <i<j<n

Theorem. Every set of n consecutive integers is a complete residue system mod(n).

Proof

Consider theset A = {ay,a,,...,a,} ={c+1,c+2,c+3,..,c + n}forintegers c and n. In
this case forany 1 < i <j < n, we have

|aj—al-|=|(c+j)—(c+i)|=|j—i|<n.

Hence, n { |aj - al-|.

As a particular example of this theorem, the set of integers A = {0,1,2, ...,n — 1} is a complete
residue system mod(n). The set {0,1,2,...,n — 1} is generally referred to as the set of least
nonnegative residues mod(n).

Theorem. For all integers c and all integers n > 0, exactly one of the consecutive integers
{c+1,c+2,¢c+3,..,c+n}isdivisible by n.

Proof
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By the previous theorem, the set of integers A = {a,, a,,...,a,} ={c+1,c+2,c+3,..,c+
n}is a complete residue system mod(n). Hence (exactly) one of these elements is congruent
to 0 mod(n). Thatis n|(aj — O) for exactly one of the elementsin A = {a,,a,,...,a,}.

In other words, n|(c + j) for exactly one j € {1,2, ...,n}.

]
Theorem (n+ 1)(n+ 2) .- (n + k) is divisible by k! for all integersn > 0 and k > 1.
Proof
n+1)(n+2)---(n+k) _nl n+1Dn+2)--(n+k)
k! B n!- k!
_ (n+k)! _ (n+k)
Conlckl o\ k)
But we know that the binomial coefficient (n ;lc- k) equals the number of ways to select k
objects without replacement from a set of n + k distinct objects and is necessarily a positive
integer. Thatisk!|(n+ 1)(n+2)---(n+ k).
]

If gcd(6,n) = 1, then n? — 1 is divisible by 24.
Proof
ged(6,n) =1 =n=6k+ 10r6k +5.

Casel. n=6k+ 1. Thenn? — 1 = (36k?+ 12k + 1) — 1 = 12k(3k + 1). If k is even then
k is divisible by 2. If k is odd, then 3k + 1 is divisible by 2. So in general, k(3k + 1) is divisible
by 2 and hence n? — 1 = 12k(3k + 1) is divisible by 24.

Case2. n =6k +5. Thenn? —1 = (36k? + 60k + 25) — 1 =12(3k* + 5k + 2) =

12(3k + 2)(k + 1). If kis even then 3k + 2 is divisible by 2. If k is odd then k + 1 is divisible
by 2. Soin general, (3k + 1)(k + 1) is divisible by 2 and hence n? — 1 =123k + 1)(k + 1) is
divisible by 24.

Note that from the previous result it follows immediately that p? — 1 is divisible by 24 for all
primep > 3.
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Furthermore, it also follows that p? — g2 is divisible by 24 for all prime p, q > 5.

p? — q% = (p? — 1) — (q® — 1) and because 24 divides both p? — 1
and g2 — 1 it must divide their difference.

Example

2. (AHSME 1960) Let m and n be any two odd numbers, with n less than m. What is the
largest integer which divides all possible numbers of the form m? — n2?

Solution

First, factor the difference of squares.

(m +n)(m—n)
Since m and n are odd numbers, let m = 2a + 1 and n = 2b + 1, where @ and b can be
any integer.

(2a + 2b + 2)(2a — 2b)

Factor the resulting expression.
4(a+b+1)(a—b)

If @ and b are both even, then a — b is even. If a and b are both odd, then a — b is even as
well. If a is odd and b is even (or vise versa), then a + b + 1is even. Therefore, in all cases, 8

can be divided into all numbers with the form m? — n?.

This can be confirmed by setting m = 3 and n = 1, making m? —n® =9 —1 = 8 Since
8 is not a multiple of 3 and is less than 16, we can confirm that the answer is | (D) |

Example (Source: 2022 Lehigh University High School Math Contest, Problem #4)

Find the prime number p such that p? — 1 has exactly 10 divisors (including 1 and p? — 1)?
Solution

Suppose the prime factorization of p? — 1is p? — 1 = 2¢325¢7%11¢ ..., Then

p # 2 and p # 3 because neither 22 — 1 = 5 nor 32 — 1 = 8 have 10 factors. Therefore, by
the previous example, p? — 1 is divisible by 24 = 23 - 31,
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Therefore, the prime factorization has the form
pz —1= 23+a31+b5c7d11e
where a, b, c,d, e, -+ are nonnegative integers.

From this factorization and hence p? —1has 3+a+ 1)(1+ b+ 1)(c+ 1)(d + 1)(e + 1) -
factors. But we are told that p? — 1 has 10 = 2 - 5 factors.

Thus,
2:5=@4+a)2+b)(c+1D)d+1D(e+1)--

for some nonnegative integers a, b, c,d, e, -+ . Clearly the only possibilityisa=1,b=c=d =
cee — O_

Thatis, p? — 1 = 2%3 = 48. Thus,p? =49andp = 7.

Example

Both 2n and 2n + 2 are divisible by 2 and exactly one of 2n and 2n + 2 is divisible by 4.
Proof

Clearly both 2n and 2n + 2 are divisible by 2.

Now consider (2n) mod(4)

Suppose n is odd. Then 2n = 2(2k + 1) = 4k + 2 and (2n) mod(4) = 2. And in this case
(2n+ 2) mod(4) = 0. Thatis, (2n + 2) is divisible by 4.

Suppose n is even. Then 2n is divisible by 4. And in this case (2n + 2) mod(4) = 2.
So, exactly one of 2n and 2n + 2 is divisible by 4.
Find the largest positive integer b such that

f(m) =n2n+ 1)(n? —1)(4n? + 4n)
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is divisible by b for all integersn > 1.

Solution
We can rewrite f(n) as

fm)=4-((n—Dnn+1) (n(n+1DC2n+1)) =4-gn) - hn).

First note that g(n) = (n — 1)n(n + 1) is the product of 3 consecutive integers and hence is
divisible by both 2 and 3.
Second, note that exactly one of the two factors n and (n + 1) in h(n) must be divisible by 2
because they are consecutive.
Finally, we | claim that exactly one of the three factors n, (n + 1) and (2n + 1) in h(n) must be
divisible by 3. To see why, consider the three cases for n mod(3) separately.

If n = 0 mod(3), then n is divisible by 3 while (n + 1) and (2n + 1) are not.

Ifn = 1 mod(3), then (2n + 1) is divisible by 3 while n and (n + 1) are not.

If n = 2 mod(3), then (n + 1) is divisible by 3 while n and (2n + 1) are not.
Therefore, in all cases exactly on of the factors n, (n + 1) and (2n + 1) is divisible by 3.
We have now shown that

f(n)=4- ((n —Dnn+ 1)) . ((n —Dnn+ 1)).
divisible by 2 and 3 divisible by 2 and 3

Thus, f(n) is always divisibleby b = 4 - (2-3) - (2 - 3) = 144.

Mu Alpha Theta National Convention 2004, Number Theory Test, Alpha Division, Problem #18
Find the largest integer that evenly divides n® — 513 + 4n for all integers n.

A. 24 B. 60 C. 120 D. 240 E. NOTA

Solution

18. C Since n® —5m® +4n = (n — 2)(n — 1)(n)(n + 1)(n + 2), we know the product is divisible
by 3, 5, and 8. (Note that for n = 3, our product equals 120.)

[
Open Number Theory MAB National Convention 2015
21) Find the largest integer that evenly divides n° — 5n2 + 4n for all integers n.
A) 24 B) 60 C) 120 D) 240 E) NOTA
Solution
21. C:Sincen® — 5n% 4+ 4n = n(n — 2)(n — 1)(n + 1)(n + 2), the product will be divisible by 3,5,
and 8.
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Open Number Theory MAB National Convention 2015

27) Forintegers B and C, if (B + 2)(C + 3) is even, then 4BC must be divisible by:

A) 4 B) 8 c) 9 D) 12 E) NOTA
Solution
27. A: Since (B + 2)(C + 3) is even, either (B + 2) is even, which implies B is even, or

(C + 3) is even, which implies C is odd. If B is even, then the product 4BC is divisible by

atleast 8. If Cis odd (and assuming B is odd as well}, then the only factors of 2 in the product
4BC would come from 4. Thus, 4 is the only factor that must be a factor of 4BC

What is the largest integer that divides n® — n?, for all integers n.
Solution

n—n?=n*(n*-1)=n*(N*’-1"?*+1) =n*(n—-1DMn+ 1>+ 1).
We first notice that 2 is a divisor of n® — n? for all n because the two successive numbers (n —
1) and n both divide n® — n?2.
Then we notice that 3 is a divisor for all n because the three successive numbers (n — 1), n and
(n + 1) each divide n® — n2.
Also 4 is a divisor for all n because 2 divides n(n — 1) and 2 divides n(n + 1). Therefore, 4
dividesn(n—1) -n(n+1) =n’(n—1n +1).

From Fermat’s Theorem we know that for all prime p + n, n?~! = 1 (modp). This means that
p|(nP~1 — 1) for all prime p t n.

Therefore 5|(n* — 1) for all n such that 5 4 n. But n® — n? = n?(n* — 1) and hence it follows
that 5|(n® — n?) for all n such that 5 t n.

But what is 5|n? Thatis, n = 5k for some integer k. In this case
ns —n? = n?(n* — 1) = (5k)* ((5k)* - 1)

which is divisible by 5. So 5|(n® — n?) for all n.
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We have shown that 3,4 and 5 all divide n® — n? for all n. Therefore 3 X 4 x 5 = 60 divides
n® — n? for all n.

What is the largest integer which must evenly divide all integers of the form n® — n?
https://math.stackexchange.com/questions/1622741/what-is-the-largest-integer-which-must-
evenly-divide-all-integers-of-the-form-n

Find the largest natural number m such that n® — n is divisible by m for all n.
https://math.stackexchange.com/questions/948511/find-the-largest-natural-number-m-such-
that-n3-n-is-divisible-by-m-for-all-n

Find the largest number that n(n? — 1)(5n + 2) is always divisible by.
https://math.stackexchange.com/questions/4185314/find-the-largest-number-that-nn2-15n2-
is-always-divisible-by

Prove that 2730 divides n'3 — n for all integers n.
https://math.stackexchange.com/questions/1387239/prove-that-2730-divides-n13-n-for-all-
integers-n

Problem 1 (Homework) Prove that in every Pythagorean triple (a,b, c) at least one
of the numbers a, b, ¢ is divisible by 5.

All the conjectures formulated above are true for all primitive Pythagorean triples.
The reader is invited to prove them all.

Exactly one of x, y is divisible by 3.

Exactly one of x, y is divisible by 4.

Exactly one of x, y, z is divisible by 5.

The largest number that always divides xyz is 60.

Saint Mary’s College Mathematics Contest Problems

48. Take any number in base 5. Rearrange the digits and find the difference between the
original number and the rearranged number. What is the largest integer that ALWAYS divides
the difference?

Solution
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Niven

13. Prove that n? — n is divisible by 2 for every integer n; that n> — n is
divisible by 6; that n° — n is divisible by 30.
14. Prove that if n is odd, n? — 1 is divisible by 8.

Theorem 1.21 The product of any k consecutive integers is divisible by k!.

26. Show that the product of three consecutive integers is divisible by 504
if the middle one is a cube.

2. (a) It 1 1s added to a product of twin primes, prove that a perfect square 1s always
obtained.
(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided that p > 3.

Total Gadha’s Complete Book of

NUMBER SYSTEM

If n is an odd natural number, what is the highest number that always divides n x (n? - 1)?

Answer: n x (n? - 1) = (n - 1) x n x (n + 1), which is a product of three consecutive numbers. Since n is
odd, the numbers (n - 1) and (n + 1) are both even. As they are two consecutive even numbers one of
these numbers will be a multiple of 2 and the other will be a multiple of 4. Hence, their product is.a.multiple
of 8. Since one out of every three consecutive numbers is a multiple of 3, one of the three numbers will be a
multiple of three. Hence, the product of three numbers will be a multiple of 8 x 3 = 24.

Hence, the highest number that always divides n x (n? - 1) is 24.
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For every natural number n, the highest number that n x (n? - 1) (5n + 2)is-always divisible by is
(a) 6 (b) 24 (c) 36 (d) 48

Answer:
Case 1: If nis odd, n x (n? - 1) is divisible by 24 as proved in the earlier question.

Case 2: If nis even, both (n = 1) and (n + 1) are odd. Since product of three consecutive natural numbers
is always a multiple of 3 and n is even, the product n x (n? - 1) is divisible by 6. Since n is even 5n is even.
If n is a multiple of 2, 5n is a multiple of 2 and hence 5n + 2is a multiple of 4. If n is a multiple of 4, 5n + 2
is @ multiple of 2. Hence, the product n x (5n + 2) is'a multiple of 8.

Hence, the product n x (n? = 1) x (5n + 2) is a multiple of 24.

Five Hundred Mathematical Challenges, Barbeau, Klamkin, Moser, Problem #333
Prove that, for all natural numbers n, 22" + 24n — 10 is divisible by 18.
Solution

Second solution (direct). The quantity is obvi-
ously divisible by 2. Computing modulo 9 we have

2" 4 2n—10=(3-1)"+6n-1
=(-2n-3+1)+6n-1=0.

and hence

9" +24n —10=0 (mod 18).

2n
(3 — 1)2n — ; (Zln) 3i(_1)2n—i
= ("3 + ()3 -7+ Z (313 =1y
= (") 3o+ ()31t + 92 (*1) 32

=1+ (-32n)) + 9i (21”) 3i-2(—1)2ni
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2n

1 _ 2N\ 4i-2 __1\2n-i
=1 6n+92(i)3 (-1)
i=2

2008 Mu Alpha Theta National Convention Open Number Theory

22. How many positive values of k satisfy the following condition?
For any integer x, at least one of x,x* —1.x* +1 must be divisible by k.

A.0 B. 1 C.2 D. 4 E. NOTA

Solution

22. D. First of all, it is trivially true that they are all divisible by 1. Then, since ¥ =1=(x-D(x+1),
(x=D1(x* =1) and since x and (x —1) are consecutive, at least one must be divisible by 2. Similar
argument for 3: x—1,x,x+1. Finally, since x(x*=D(x*+1)=x"—x and x=x"mod 5, that
product must be divisible by 5, and since 5 is prime, at least one of the 3 terms must be divisible by
B. So there are 4 values of k: 1,2, 3, 5.

Fermat’s Theorem

If p is a prime and a is a positive integer with p t a, then a?~! = 1 (mod p).

Because 5 is prime, it follows from Fermat’s Theorem that x* = 1 (mod 5) for all x } 5.
Therefore, x> = x (mod 5) for x 5 But we can also see that x> = x (mod 5) when x|5
because they both sides equal 0 (mod 5).

So, it isimmediate from Fermat’s Theorem that a? = a (mod p) for all positive integer a and all
D prime.

Consequently, p|(aP — a) for all positive integer a and all p prime.

5.4 Last Digits Problems

The last 3 digits of (456789)>432 are the same as the last 3 digits of (789)°432 because
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(456789)5%32 mod(1000) = (456000 + 789)5%2 mod(1000)
5432
= Z (54].32) (456 - 103)/(789)5432-1 | mod(1000)
=0
5432

=y ((54].32) (456 - 10%)) (789)5432-) mod(1000)>

j=0
_ (5432

0
5432

+ Z ((54].32) (456 - 103)/(789)5432~J mOd(1000)>

j=1

) (456 - 103)°(789)5432-0 mod(1000)

= (789)%*32 mod(1000)
5432

+ ; <(54j32> (456)7(10%)/-1(789)%432~J - 1000 - mod(1000)>

5432
= (789)°*32 mod(1000) + Z (0) = (789)>*32 mod(1000).
j=1

(TTO12)

2. If (2137)°* is multiplied out, what will be the units digit in the final product?

Solution
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For Hhose who know modular arthmehe
153 953 ’
(213177 = 7 med 10

\8%
=(7%)7 7 = (2401) 07
= 1'% 7 2 7 mod 10
Otherwise

753

[2.['3 (10) + ']] expanded '-'*,Y the binomiad thm
753 52

2[213000] ¢ 153[213¢10)) 07 +o -

S 3

= 75

+ 153[ 213000} 7 & 7

All but the last term end n O, so we crnljr
need 4o worry abeud 7153 and as above

Y
775.3 = (E4oi)tgs- 7 which ends w1277

Example

Find the ten’s digit t and the unit’s digit u for the number 7°° when written in standard
notation. (Source: MSHSML 1t024)

Solution

The problem of finding the last digit(s) of a number of the form a” comes up regularly. A
general approach is to look for a pattern in the final digits in the initial cases al, a?, a3, a%, ....

In this problem notice that 71 = 7,7% = 49,73 = 343,7* = 2301, ....

We could continue but the result 7* = 2301 looks “special” because it ends in the last two
digits “01”. Why is this special? Because (---01) X (---01) ends with (:-- 01) again. Why?
Consider ---dcba01 X --- dcba01.

--dcba01 X ---dcba01 = (---dcba00 + 1) X (+--dcba00 + 1)
= (---dcba)? - 10* + 2(--- dcba) - 102 + 1
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= ((--+dcba)? - 10* + 2(--dcba)) - 102 + 1

It follows that the last two digits of (74)* are “01” for every k = 1,2,3, ....
Furthermore, by the same sort of argument the last two digits of (--01) X (:-- ab) are “ab”.
Therefore,

755 = (7)1 .73 = (---01) X (+--43) = (---43).

Therefore, the last two digits of 7°° are “43”. Thatist = 4 and u = 3.

2.5.1 Application of Fermat’s Little Theorem to Finding the Last
Digit of a”

If you remember, we found the last digits in Section 2.4, but we did it empirically.
Here we will apply Fermat’s Little Theorem to finding the last digit or the last two

digits of “big” numbers.

Problem 99

What is the last digit of 2!9%°?

Problem 102 |

Find the remainder of 27 divided by 352.

Solution. This problem can be rewritten using congruence as

27" = x(mod352), 0 < x< 352. (2.37)
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2.6.1 Application of the Euler’s Formula to Finding the Last Digits
of a’

Problem 103)

What are the last two digits of 220997

Solution. First we will find the last digits of the numbers using Theorem 13:

2*=1 (mod 5)
(2*2 =1 (mod5)
2!'=2 (mod 5)

22009 =2 (mod 5).

Hence, the last digit of 220%? is 2.

(1T844)
Find the last two integers of 19831984,
Solution

Much work <can be aveided B}' those whe hnow a litte medular arithmetic :

983 = 83 med 100
Euler's Theorem says 83¢“°°)= 8340= | med 100
1983)2%% = (1963%°)*° (1983)* = (23%°)*® (83)™ = 63T mad 100
Now use (83)7‘ = 68689 = 89 mod too s:mi\mlj, 89% = 2| mod 100;
Lz.ﬂz = 41 mod 100 41¥ = 21 med l0O

Then 83%% = (8321 ={89%1° =[21%]% = 417 = 21 med 00O

(1T855)

85
5., Find the last two digits of 19 .,

Solution
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Those who know Euler's Theorem will

write |3¢(I°°) = | med i00. Since.

@ (ioo) = IOO(I-%)(l--'s-) = 40, we see Hat
198 = 15'%.19%°. 19% 2 19 med 100

(a) 197% =36l = 6l mod 00

(L) 195=19%.19% 19 = 6161 19=99 mod 100
These Slﬂ-ﬁl 'H’\mush life without- modalan
arithmetic 4:3& Euler will (uni‘i('uﬂey romdy
this de&d’) hase. t© make mulbiple cmpd'dtm
of e form om lmes (a} and (b)

(TI854)
1. What are the last two digits of (1983)1962 ?
Solution
@(ico)

1983 =83 mod 100, Smce 83 is prime, 83 =l mad (00

#(100) = oo (i-3 Y- % =IOO(%)(%)=40.

(83)'%°2 =[[8:3)*°]*°. (83)=(53) “mod l00

= 89 mod (oo
m

(5D084)

4. Let k=27 +2009>. Compute the units digit (ones’ place) of k™" +2009".

Solution

The units digit of the powers of 2 repeat in the cycle 2, 4, 8, 6, ... Since2009 = 1mod 4,
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5.5 Modular Exponentiation

Modular Exponentiation

Modular exponentiation is a less efficient method for determining the remain-
der when b" is divided by m. It is based on the binary representation of n =

(Pgng—1 ... N1NY)wo, SUuccessive squaring, the least residue of 5", where 0 <i <k,
and Theorems 4.4 and 4.5:
b = bnk2k+nk_|2k_'+-~-+n() = bnkzk . bllk_lzk_l ... pl0 (mod m)

The following example illustrates this method.
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EXAMPLE 4.10 Compute the remainder when 3247 is divided by 25.

SOLUTION
First, notice that 247 = 11110111y,. Now find the least residues of 32 and its suc-
cessive squares modulo 25:

32 =9 (mod 25) 34 =92 =6 (mod 25)
33 =62 =11 (mod25) 316 =112 =21 (mod 25)
332 =212 = 16 (mod 25) 3% = 162 = 6 (mod 25)

3128 =62 =11 (mod 25)

(128 is the largest power of 2 contained in 247.)
Then

3247 _ 3128+64+32+16+4+2+1
— 3128 364 332 316 34 32 3l
=11-6-16-21-6-9-3 (mod 25)
=11-(6-16)-21-(6-9)-3 (mod 25)
=[11-(—-4)]-[(—4)-4]-3=6-9-3=(6-9) -3 (mod 25)
=4-3=12 (mod 25)

Thus, 12 is the desired remainder. =

The amount of work in such a problem can be greatly reduced if we introduce
negative residues, as the following example shows.
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EXAMPLE 4.11 Find the remainder when 3!3! is divided by 17.

SOLUTION
We have

32 =9 (mod 17) 3* = —4 (mod 17) 3% =—1(mod 17)
31 =1 (mod 17) 332 =1 (mod 17) 3% =1 (mod 17)
3128 =1 (mod 17)

Therefore:
3181 _ 3128 332 316 34 3l
=1-1-1-13-3 (mod 17)
=5 (mod 17)
Thus, the desired remainder is 5. |

Find the least positive residue of 123%° in mod 35.
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Method 1: Brute-Force Attack

Without any sophisticated mathematical machinery, the conceptually-easiest approach is just
to calculate the powers of 12 — incrementally — until we get to 12345 Sounds easy enough?
Let'sjumpin and giveit a try!

122 = 144 = 144 — 4(35) = 4 (mod 35)
123 = (12%)12 = (4)12 = 48 = 13 (mod 35)

124 = (122)° = 42 = 16 (mod 35)

12° = (12%)12%? = (13)4 =52 = 17 (mod 35)

125 = (122)(12%)(12%) = (4)(4)(4) = 64 = —6 (mod 35)
127 = (126)12 = (—6)12 = —72 = —2 (mod 35)

Ouf... Finally we get some small numbers! Can we do better though? Yes! In fact, we can
prove that in this case, we will eventually get to 1 (this is due to the fact that because 12 is
coprime with the modulus 35). However, there is a catch — we actually don’t know when that
will happen! We can, of course, proceed with computations and just pray for its prompt
occurrence:

12° = (12")12 = (—2)12 = —24 =11 (mod 35)

12° = (127)(12?) = (-2)(4) = —8 (mod 35)

1219 = (127)(12%) = (—2)(13) = —26 = 9 (mod 35)
121 = (12")(12*) = (—2)(16) = —32 = 3 (mod 35)
1212 = (12")12 = (3)12=36 = 1 (mod 35)
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Thank goodness! Looks like that we are lucky this time! By the way, there is a reason why we
didn’t skip the exponents (for example, we could have calculated 12° from 12* directly quite
easily), but let’s solve our original question first shall we?

12345 = 121208)+9 = (1212)*129 = (1)28(—8) = —8 = 27 (mod 35)

See... if we skipped the exponents, would we have known that 12° = —8?

]
Saint Mary’s College Mathematics Contest Problems
284. What powers of 2 give a remainder of 15 when divided by 17 ?
Solution

]

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem #
24

For how many positive integers m less than 1000 is m3™°~3° — 1 by 310?
Solution

24. B Clearly no m which are multiples of 3 can have powers which are only | more than a
multiple of 3!1°. For other m, we use Euler’s generalization of Fermat’s Theorem since (m, 31%) = 1

m?3') = 1 (mod 3')
Since ¢(3'9) = 31°(1 — 1/3) = 319 — 3% we have
m*’ = = (mod 3')

for all m < 1000 which are not divisible by three. There are 2/3(999) = 666 such integers.

5.6 Towers of Powers Modulo m

Towers of Powers Modulo m

The technique of finding remainders using congruences can be extended to numbers
with exponents, which are towers of powers, as the following example demonstrates.
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EXAMPLE 4.12

81999

Find the last digit in the decimal value of 1997'%

SOLUTION
First, notice that a” = a®. Let N denote the given number. The last digit in N
equals the least residue of N modulo 10.

Since 1997 =7 (mod 10), let us study the various powers of 7: 7' =7 (mod 10),
72 =9 (mod 10), 7° =3 (mod 10), 7* = 1 (mod 10), 7° =7 (mod 10) and clearly a
pattern emerges:
1 (mod 10) ifa=0 (mod 4)
7 (mod 10) ifa=1 (mod 4)
9 (mod 10) ifa=2 (mod 4)
3 (mod 10) ifa=23 (mod4)
Now let us look at 1998. Since 1998 =2 (mod 4), 1998" =2" (mod 4), so if n > 2,
then 1998" = 0 (mod 4). Thus, since 1999 > 2, 1998!%° =0 (mod 4), so N=1
(mod 10). In other words, the last digit in the decimal value of N is 1. [ |

7=

Towers of Powers Modulo m (see article in The College Mathematics Journal)

EXAMPLE 4.8

Frozen Digits
I was studying
k — 1 digits of
more). Why is

Find the remainder when 163 is divided by 7.

SOLUTION
First, reduce the base to its least residue: 16 =2 (mod 7). So, by Theorem 4.5,
16°* = 23 (mod 7). Now express a suitable power of 2 congruent modulo 7 to a
number less than 7: 23 = 1 (mod 7). Therefore,

=174 (mod 7)

=4 (mod 7)

S0 16> =4 (mod 7), by the transitive property. Thus, when 16 is divided by 7, the
remainder is 4. u

tetrations, or "power towers", and I found a decently well-known fact. The last

3
k3 =3 (k threes) remain constant, for all numbers 3 with a > k (see here for

this true? The link shows an ad-hoc proof for the last two digits, but how can we

tackle larger cases? For example, how can we prove that the last 10 digits of 7 3 remain
constant forall T > 11°?
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EXAMPLE 4.9 Find the remainder when 3%*7 is divided by 17.

SOLUTION

Once again, we let the congruence do the job for us. We have

33 =27=10 (mod 17)
Squaring both sides,

3% =100 (mod 17)
= —2 (mod 17)

Raise both sides to the fourth power:

3% = (—=2)* (mod 17)
= —1 (mod 17)
Now apply the division algorithm with 24 as the divisor:
3247 _ 3241047 _ (32410 36 3
= (=" (=2)-3 (mod 17)
= —6 (mod 17)
Change —6 to its least residue:

=11 (mod 17)

Thus, the remainder is 11. (Once again, appreciate the power of congruences.)

5.7 Digital Sum
2009 AMC 10A Problem # 5

What is the sum of the digits of the square of 1111111117
Solution
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We see that 1117 can be written as 111(100 4+ 10 + 1) = 11100 + 1110 + 111 = 12321
We can apply this strategy to find 111, 111, 1112 as seen below.

1111111112 = 111111111(100000000 + 10000000 - - - + 10 + 1)
=11111111100000000 4+ 1111111110000000 + - -- 4111111111

=12, 345, 678,987,654, 321

The digit sum is thus
14+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=81(E)]

[

AMC 1975 Problem #10
2
The sum of the digits in base ten of (104"2+8 + 1) , Where n is a positive integer, is
| (A) 4 | (B) 4n [(©2+2n  [(D)4n? [(E)n*+n+2
Solution
For any nonnegative integer a we have
(10 +1)2 =10%¢+2-10%+ 1
and the sum of the digits in all cases equals 4.
|

Let n be a natural number. We define the digit sum for base b > 1 F}, : N — N to be the following:

Bl

Fn) =S d

i

Il
o
S

where k = |log, n| + 1 is the number of digits in the number in base b, and
n mod ! — n mod b’
bi

is the value of each digit of the number.

d; =

For example, in base 10, the digit sum of 84001 is F7(84001) =8 +4+0+0+1 = 13.

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem #
25

25. *What is the sum of the digits of the sum of the digits of the sum of the digits of 444444147
A. 25 B. 16 C. 11 D. 7 E. NOTA

Solution
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25. D Let S(n) be the sum of the digits of n. Thus, we seek S(S(S(4444*44))).  Since
444414 < 10000%°°°, and 10000°°% is 1 followed by 4 - 5000 = 20000 zeroes,

5(4444MM1%) < §(999 - - 999) = 9 % 20000 = 180000,
N—— —
20000 9s

. Since S(4444%4) < 180000, S(S(4444*41)) < §(99999) — 45 because 99999 has the largest sum
of digits of numbers less than 180000. Finally, S{S(S(4444%11))) < §(39) = 12 because 39 has the

largest sum of digits among numbers less than 45. Hence our answer is less than 12. To find the
answer, we observe that S(n) =n (mod 9) for all n, (prove this by noting that 10 =1 (mod 9)).
Hence,

S(S(S(4444M4y)) = 4444 (mod 9) = 7M.

The powers of 7 cycle 7,4,1, 7.4, 1... (mod 9) and 4444 = 1 (mod 3), so 7% =7 (mod 9). Since
7 is the only positive number less than 12 which is congruent to 7 mod 9,

S(S(S(4444M4y)) = 7.

5.7.1 Digital Sumin Base b

Mu Alpha Theta National Convention, 2001, Number Theory Test, Theta Division, Problem #
13

What is the sum of the digits of the base 9 representation of 2001?
Solution

13. 2001/9 = 222 remainder 3. 3 is the last digit. 222/9 = 24 remainder 6. 6 is the second to
last digit. 24/9 =2 remainder 6. 2 and 6 are the first two digits. 2+ 6+ 6+ 3=17.

(_see file:_Sum of the Digits in Base b notation)

Solution by Stanley Rabinowitz, Far Rockaway, N. Y. Suppose N = »_2_, azb*.

Then
N N 7
W[ 2]
_ bI 5:.'+1

What is the sum of the digits of the base 9 representation of 2001?

ay = lZOOlJ _g lZOOlJ

990 91
= 2001 —9(222)
= 2001 — 1998
=3
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--—(b—-lz
Jj=1

2001_(8)(l2001J l2001J l2001J l2001J )

- o252 [,

=2001—-8(222+24+2) =17

2001 001 001
5o J‘

5.8 Digital Roots

Let n be a positive integer and let s(n) be the sum of the digits of n. Then s(s(n)) equals the
sum of the digits of the sum of the digits of n.

For example, letn = 529. Then s(529) =5+4+2+9 = 16 and 5(5(529)) =s(16) = 7.

We can continue to iterate on this process, s (s(s(--- ))) Every starting positive integer n will

terminate in a finite number of steps to an integer between 1 and 9. This process will always
converge because s(n) < nforalln > 10 and s(n) =nforalln € {1,2,...,9}.

LetS(n) =s (s(s(m ))) where the iteration continues until s (s(s(-~- ))) €{1,2,..,9}.

S(n) is called the digital root of the positive integer n.

Digital roots have many interesting properties. The following are the mostly commonly cited.
For all positive integers a and b

(1) S(a) = a — 9n for that unique nonnegative integer n such that a — 9n € {1,2, ...,9}
(2) S9a) =9
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) s {amod(‘)) 9ta
a) =

9 9a
(4) S(a+b) =S(S(a) +S(b))
(5) S(a-b)=S(S(a)-Sb))

(6) S =s((S(@)")-

http://applet-magic.com/DigitSum.htm

(They use the term “digit sum” to refer to “digital root”.)

DigitSum(Polynomial(a)) = DigitSum(Polynomial(DigitSum(a))

Example: Let Polynomial(a) = a>+a. Then Polynomial(11)=121+11=132 and thus DigitSum(Polynomial(11))=6. DigitSum(11)=2 so
Polynomial(DigitSum(11))=4+2=6.

Division by single digit numbers other than multiples of 3 is equivalent to multiplication by a specific digit for that divisor. For example,
division by 2 is equivalent to multiplication by 5. Thus DigitSum(32/2) = DigitSum(32+*5) = DigitSum(160) = 7. which is the same as
DigitSum(16). Division by 4 is equivalent to multiplication by 7 so DigitSum(20/4) = DigitSum(20*7) = DigitSum(140) = 5, which is correct.

The rule is DigitSum(a/b) = DigitSum(DigitSum(a)*Equivalent(DigitSum(b))) providing that DigitSum(b) is not a multiple of 3.

We will prove property (1) below. We simply note that property (2) follows from (1) with n =
a — 1. Property (3) is a consequence of properties (1) and (2) and the definition of the modulus
function. Properties (4), (5) and (6) are consequences of modular addition and modular
multiplication and property (3).

Proof of Property (1)

Suppose a = a,10" + a,_;10""* +--- + a; 10" + a, where a; € {0,1, ...,9} forall j and a, # 0
and recall that for all positive integers n

10" -1 = (10— 1)(10™* + 10™ 2 + --- + 10 + 10°)
=9.-(10" 1+ 10"2 4+ -+ 10" 4+ 10°).

It then follows that

a=a10"+a,_;10"" 1 + -+ ;10 + q,
=(a,+a,_;++a)+a (10" -1 +a,_,(10"* =1) + -+ a,(10* — 1)
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= (a, + a,_, + -+ ay) + 9k, where k, is some nonnegative integer
= b + 9k,, where b = s(a).

Ifb=a,+a_;+ - +ag € {1,2,..,9} then the iterations stop and S(a) = s(a). In this case
we see that S(a) has the form

S(a) =s(a)=b=a—-9k, €{1,2,...,9}
as we were required to show.

Ifb=a,+a,_;+:+ay¢€{1,2,..,9} then we repeat the process starting with the integer
b = s(a) instead of a. In this case suppose that
b = btlot + bt_llot_l + -+ b1101 + bo
where b; € {0,1, ...,9} for all j and b, # 0. Following the same line of reasoning as in the
previous iteration we then have
b = btlot + bt_ll()t_l + -+ b1101 + bo
= (by + b;_q + -+ + by) + 9k,, where k, is some nonnegative integer
= ¢ + 9k,, where c = s(b) = s(s(a)).

Ifs(s(a)) =b; + bi_y + -+ by € {1,2, ...,9} then the iterations stop and S(a) = s(b) =
s(s(a)). In this case we see that S(a) has the form

S(a) = s(s(a)) = ¢ = b — 9%k, = (a — k) — 9k, = a — 9(k, + k;) € {1,2,...,9}
as we were required to show.

If s(s(a)) =b;+ b_, + -+ by & {1,2,...,9} then we repeat the process starting integer ¢ =
s(b) = s(s(a)). In this case suppose that
c=¢,10" 4+ ¢, 10" 1 + - + ;101 + ¢
where ¢; € {0,1, ...,9} forall j and ¢, # 0. As before we find
c=c,10" 4+ ¢,_110"" 1 + - + ¢, 10 + ¢,

= (¢, + Cp_q + -+ o) + 9k3, where k4 is some nonnegative integer

=d + 9k3, whered = s(c) = s(s(b)) =s (s(s(a))).

If s (s(s(a))) =c,+cy_1 + -+ ¢y €1{1,2,..,9} then the iterations stop and S(a) = d =
s(c) = s(s(b)) =s (s(s(a))). In this case we see that S(a) has the form

S(a) =s (s(s(a))) =c—9k;=a—9(k,+ k, + k3) €{1,2,...,9}
as we were required to show.

Ifs (s(s(a))) =c,+cy_q1+ -+ ¢y € {1,2,...,9} then the process continues. How do we
know that this process will eventually end?
Notice that a > s(a), that is

a, 10" +a,_;10"  + -+ a;10 '+ aqy > a, + a4 + -+ a; +ag
unlessa = s(a) = a4 € {1,2, ...,9}. But s(a) € {1,2,...,9} means the process ends.
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Similarly, s(a) > s(s(a)). That is,
S(a) = b = btlot + bt_llot_l + -+ b1101 + bo
> b+ bi_qy + -+ by =s(b) = s(s(a))

unless b = s(b) = b,y € {1,2, ...,9}. Buts(b) € {1,2, ...,9} means the process ends.
In general,

a>s(a) >s(s(a)) >s (s(s(a))) > ..
as long as the process continues. But a is finite, hence s ( s (s(s(a)))) must eventually

belong to {1,2, ...,9} which means the process cannot go on forever.

15.2 Digital root

Given a positive integer n, let d(n) be the sum of the digits of n. If the
operation d is repeated indefinitely, it stabilizes after a finite number of
steps and yield a number between 1 and 9, which we call the digital root
of n, denoted D(n). See [Dudeny, Amusements, p.157].

Theorem 15.1. 1. D(m +n) = D(D(m) + D(n)).
2. D(mn) = D(D(m)D(n)).

3. D(

4. D(D(n)) = D(n).
5. D(

6

Proof. (5)D(n+9) =D(D(n)+D(9)) = D(D(n)+9) = D(n) since
D(n) is a single-digit number.
(6) D(9n) = D(9D(n)) = 9 since D(n) has one single digit. O

National Mu Alpha Theta 2002, Number Theory Test, Alpha Division, Problem # 13

13. A digital root is the value of the sum of the digits of a number until only one digit remains.
For example, for the number 625, first add 6+2+5 = 13. Now since 13 has 2 digits, add
those digits; that is, 1+3=4. So the digital root of 625 is 4. What is the digital root is of 6°?

(Hint: Consider the first 5 terms of the sequence of 6™ powers and their digital roots.)
a) 0 b) 1 c) 6 d) 9

Solution
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6.
/:-.(“?I ¢b:¢ogngqq10ql

L= Gt = (0 —> A
2 9 = /S? [7=S (0 -2
2 =724 51 59 /3625 =

Pl [1],9, 4,1, 9

amod(9) 9ta
S(a) ={
9 9|a

6'mod(9) =6
62 mod(9) =0
Therefore
6% mod(9) = 0 forall k > 2.

Therefore 9|6° which by definition means S$(6°) = 9.

Jim Totten’s Problems of the Week

(171) Problem. One and only one of the following numbers is a perfect
square. Which is it? Why? Do not compute the square roots. In
fact, do not use calculators or computers at all.

3,669,517,136,205,224
1,898,732,825,398,318
4,715,006,864,295,101
5,901,643,220,186,100
7,538,062,944,751,882
2,512,339,789,576,516
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Solution. Let us suppose that the integer a is the square root of
the number we wish to identify. Then a can be written as 100+ c,
where b is some natural number and c is a digit between 0 and 9,
inclusive. Then

a? = (10b+ ¢)? = 100b? + 20bc + ¢* = 10(10b? + 2bc) + 2.

Thus, the units digit of a? is affected only by the units digit of 2.
Since the units digit of ¢ can only be one of 0, 1, 4, 5, 6, or 9, we
have eliminated two of the possibilities.

Now let us write a in the form 9d + e, where d is a natural number
and e is a digit between 0 and 8, inclusive. Then

a? = (9d + e)? = 81d* + 18de + e = 9(9d? + 2de) + €.

Thus, on division by 9 the number we are seeking must leave a
remainder of e? (actually e? reduced by some multiple of 9 in order
to get a remainder in the proper range from 0 to 8, inclusive). Now
e2, on division by 9, leaves a remainder which is one of 0, 1, 4, or 7.

Consequently, a?> must leave a remainder of 0, 1, 4, or 7 on division

by 9. But we know that the remainder on dividing a number by 9
is the same as the remainder on dividing the sum of its digits
by 9. Of the four remaining candidates, the sum of the digits has a
remainder in the set {0,1,4,7} only for 2,512,339,789,576,516. (It
is, in fact, the square of 50,123,246.)

see file “Digital Roots, Rings and Clock Arithmetic”
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Thus we obtain the digital root of any positive number N we simply divide
by 9 and take the remainder—except that if N is a multiple of 9 we set
d.r.(N) = 9 (rather than 0). Hence ‘calculating with digital roots (base 10)’ is
exactly the same as ‘working modulo 9°.

Mu Alpha Theta Florida State Convention 2005, Number Theory Test, Problem #24
A perfect number is a positive integer whose positive integral factors (not including itself) add
up to that number. For example, 6 is the smallest perfect number because 6 =1 + 2 + 3.
What is the digital root of the 2nd smallest perfect number?
Solution
Theorem — the digital root of all perfect numbers larger than 6 is 1.
Verfication for this particular case. The 2nd smallest perfect number is 28 and
dr(28) =dr(2+8) =dr(10) =dr(1+0) = 1.

Mu Alpha Theta Florida State Convention 2005, Number Theory Test, Problem #25

If p is a prime greater than 2005, which of the following cannot be its digital root?

Solution

25. C If the digital root of a number is divisible by 3, so is the original number.
No primes greater than 3 can have a digital root of a multiple of 3.

Property 2. The difference between n and B(n) is a multiple of 9; i.e.,
n — B(n) = 9k for some non-negative integer k.

Corollary: The difference between n and B(n) is a multiple of 3.

Property 5. A prime number exceeding 3 cannot have a digital root equal to 3, 6 or 9.

For, since 7 — B(#n) is a multiple of 3, if B(n) is a multiple of 3, then so must be 7; and the
only prime number which is a multiple of 3 is 3 itself.

5.8.1 Digital Roots in Base b

mathcloset.com 206



n—1

dry(n) =n—(b—1) 37

Let s,(n) equal the sum of the digits of the base 7 equivalent of the base 10 number n. For
exampleifn =n, 7" + n,_, 7771 4+ -+ n; 7' + ng where n; € {0,1, ...,6} for all j and n,. # 0,
thens,(n) =n, + n,_, + -+ ny + n,.

Note we are adding ngy, n4, ..., n; in base 10.

a=a7"+a,_,77 + -+ a,7* + a,
=q, (7" -D+a_ (7T =D+ +a (7' -1+ (a, +a,_; + -+ ap)
=6k, +(a,+a,_;+--+ ao)
= 6k, + b, where b = s,(a)

Now suppose that
b=b7"+b._17" 1 +---+ b, 7t + by.
Then
b=b7"+b_;7" 1+ -+ b, 7" + by
= 6k, + (by + be—q + -+ + by)
= 6k, + ¢, where ¢ = s,(b) = s,(s,(a))

Now suppose that
c=c,7" +cp_ 17"+ 4 17+ ¢

Then
c=c,7 "+ 7V o+ 7 +
= 6ks + (¢, + cpoq + -+ co)
= 6k; + d, where d = s,(c) = s,(s,(b)) = s, (57(57(a))).
a =6k, +b = 6k, + 6k, + ¢ = 6k; + 6k, + 6ks + d.
That is

@ = 6k, + 6k, + 6k; + 57 (57(57(a)))
=6(ky +ky +k3) + s, (57(57(61)))
=6m+s, (57(57(61)))

= 6k1 + (bt7t + bt_17t_1 + -+ b171 + bo)
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= 6k; + (6ky + (by + by_y + - + by))
= 6k1 + 6k2 + (bt + bt—l + -+ bo)

6k2 + (bt + bt—l + + bo)
b = bt7t + bt_17t_1 + + b171 + bo = 6k2 + (bt + bt—l + + bO)

=9k, + 9k, + ¢, withc = s(b) = s(s(a))
= 9k, + 9k, + 9k; + d, withd = s(c) = s(s(b)) =5 (s(s(a)))

= =9k; + 9k, + -+ 9k, +s (s (s(S(a))))
=9n + S(a)

Therefore,
S(a) =a—9n.
amod(9) = bmod(9)

s(a)=a, +a,_, +-+a,

7P —1=7 -7+ 7024+ 74 70)

324115, =37 +2x7*+ 473+ 172+ 1% 71 + 5% 7% = 56656,

56656 mod(6) = 4

dr(324115,)
3+2+4+1+145=22,

16,0 =2-71+2-79 =22,

22,
24+2=4
410 =4,
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324115mod(6) = 1

43612,
44+3+6+1+2=164
164 = 22,
2+2 =44
410 = 4,

43612 mod(6) = 4

2134
24143 =64
n—1

324115-1

324115—(7—1)[ T

J = 324115 — (7 — 1)(54019)

54019

5.9 Missing Digit Puzzle Problems

1. The integer 1287xy6 is a multiple of 72. Find the number xy. (Mathematics
Teacher, 1986)

1287xy6 is a multiple of 8 and 9
1287xy6 = 0 (mod9) AND 1287xy6 = 0 (mod 8)

Now recall that a number is divisible by 9 if and only if the sum of the digits is a multiple of 9.
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Thatis(1+2+8+7)+(x+y+6)=209)+(x+y+6)=0(mod9)
< 2(9) (mod9) + (x + y + 6) (mod9) = 0 (mod9)
< x+y+6=0(mod9)

If 1287xy6 is divisible by 8 then it is also divisible by 4. And it is divisible by 4 if and only if the
number formed by the last two digits is divisible by 4. That s, if 10y + 6 = 0 (mod 4).
10y + 6 = 0 (mod4) & 10 (mod4) - y + 6 (mod 4) = 0 (mod 4)
< 2y + 2 =0 (mod4).
But recall that ca = c¢cb (modm) if and only if a = b (mod m/(c,m)). So

2y+2=0(mod4) ©y+1=0 (mod4/(2,4))
©y+1=0 (mod4/2)
< y+1=0 (mod?2).
But this is equivalent to saying that y is odd.

We also know that 1287xy6 is divisible by 8 if and only if the number formed by the last three
digits is divisible by 8. Thatis, 100x + 10y + 6 = 0 (mod 8). But
100x + 10y + 6 = 0 (mod 8)
< 4x+ 2y + 6 =0 (mod8)
& 2x+y+3=0(mod8/(8,2))
S 2x+y+3=0(mod8/2)
& 2x+y+ 3 =0 (mod4).

|
Koshy
Supplementary Exercises (p. 243)
1. Because 1287xy6 =0 (mod 72),
1287xy6 =0 (mod 8) and (1)
1287xy6 = 0 (mod 9) (2)

Congruence (1) implies y4 1 =0 (mod 2), so yis odd. Thus, y=1, 3,5, 7, or 9. The two
congruences yield

2x+y+3=0(mod4) and (3)
Xx+y+6=0 (mod9) 4)

If y=1, then 2x +4 =0 (mod 4); that is, x =0, 2, 4, 6, or 8, of which only 2 satisfies (4),
so (2, 1) is a solution. If y =3, then 2x + 6 = 0 (mod 4) by (3), so x + 1 =0 (mod 2).
Thus, x =1, 3, 5,7, or 9, of which only x = 9 satisfies (4). The corresponding solution is
(9, 3). Similarly, we get one more solution, (5, 7). Thus, there are three solutions: (2, 1),
(5,7), and (9, 3).
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Problem (PUMaC 2009 Number Theory.)

If 17! = 355687ab8096000, where a and b are two missing digits,
find a and b.

@ 17! is divisible both by 9 and by 11, so:
e 34+5+---+a+b+---=0 (mod9),soa+b=6 (mod9).
e 3—5+---4+a—b—---=0 (mod 11), soa— b =2 (mod 11).

This means a=4 and b = 2.

(5A081)
1. The six-digit number 217 X 8 5, when divided by 9, leaves a remainder of 2.

What is the value of the obscured digit, X ?

Solution

must be divisible by 9, and the sum of its digits must also be divisible by 9.
2+1+7+X+8+3=21+X, which is only divisible by 9 1f X = 6.

(TA044)

4. Find all pairs of integers (M,N) for which the four digit integer MMD5N is divisible
by 12.

Solution
50 + N must be divisible by 4 & 48 + 2 + N is divisible by 4 < N € {2,6}
M + M + 5 + N must be divisible by 3
Case N =2
2M +7 =3k,M € {1,4,7}
Case N =6
2M + 11 =3k, M € {2,5,8}
So we have the cases

(M,N) €{(12),(42),(7,2),(2,6),(5,6), (8,6)}
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(TC884) The number N;, is a multiple of 7. Its base two representation is
N, =11101000111011abc101

where each of the missing digits a, b, and ¢ must be either 0 or 1. Find the ordered triple
(a, b, ) of integers.

Solution
Rewrite N;, as an integer in base eight.
Ng = 16473 75.

In base eight, Ng is divisible by 7 if and only if the sum of its digits equals 7k for some
nonnegative integer k. (This theorem is an analog of “casting out nines”.)

1+6+4+7+3+2+5=26+2 =7k
where 0 < ? < 8. Itfollows that ? =25 = 010,. Thatis, (a, b, c) = (0,1,0).
[Note: Need to elaborate on how and why
11101000111011abc101, = 16473 ? 54.]
Example
Find the missing digit a in the base 5 number n = (420a1332)s if n is even and divisible by 3.
Solution

For n to be divisible by 2 in an odd numbered base (b = 5) means that the number of odd
digits in n must be an even number.

Not considering a there are three odd digits in n (1,3 and 3). Therefore a must be odd if n is
even (has an even number of odd digits). But the only odd digits in base 5 are 1 and 3. So a
must be 1 or 3.

For n to be divisible by 3, n mod(3) = 0.

nmod(3)
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=(4-57+2-5°4+0-5°+ (a)-5*+1-5*+3-52+3-5"+2-5°) mod(3)
=(4- D7 +2-(-1D°+0-(-1D)°+ (@) - (-D*+1- (D3 +3-(-1)?+3-(-D' +2
- (=1)°) mod(3)
=(-4+2+(@)—1+3-3+2)mod(3)
= (a—1) mod(3)

This implies that a must be 1 or 4.

Hence for n to be divisible by both 2 and 3, a = 1.

Mu Alpha Theta, Florida State Convention, 1992-1993, Number Theory Topic Test, Number 1
The mathematics department bought a pack of 72 pencils. The ink on the receipt got smudged
and all that could be made out was $ x 9.4 x (before any sales tax). How much did the
department pay per pencil?

Solution

Representing $ x 9.4 x as the four digit integer a94b, we can apply the divisibility rule for 8 to
see that 940 + a must be divisible by 8. 940 = 117(8) + 4. So a = 4.

By the divisibility rule for 9, we know b + 9 + 4 4+ 4 = 17 4+ b must be divisible by 9. Sob = 1.

Therefore,

$19.44 27¢
72

AMC 2019 10B Problem #14

The base-ten representation for 19!1s 121,675,100,40M, 832, HOO, where T, M, and H denote
digits that are not given. WhatisT + M + H?

[(A)3 [(8)8 [(©)12 [(D)14 [(E)17

Solution

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Tie Breaker
#2
If 792 divides the integer 13xy45z, find the digits x, y, and z.
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Solution
First note that 792 = 23 - 32 - 11 so we can apply the divisibility tests for 8,9 and 11.

() The divisibility test for 8 tells us that the last three digits must be divisible by 8.
450 mod8 =2 = 456 mod8=0=z = 6.
(i)  The divisibility test for 9 tells us that the sum of the digits must be divisible by 9.
1+3+x+y+4+5+6)mod9=0=x+y € {817}
(iii)  The divisibility test for 11 tells us that the alternating sum of the digits must be divisible
by 11.
(1-34+x—y+4—-5+6)mod11=0=(x—y)mod11 =38
= x—ye€{-38}
Solving the generic simultaneous equations x + y = mand x —y = n gives us
x=(m+n)/2 and y = (m —n)/2.

This tells us that m and n have to both be even or both be odd. This just leaves two
possibilities: (m,n) = (8,8) or (m,n) = (17,-3).
We can see that (m,n) = (17,—3) = (x,y) = (7,10) which is impossible because y < 9.
Finally, (m,n) = (8,8) = (x,y) = (8,0), which is the only possible pair.

Therefore, (x,y,z) = (8,0,6) and as a check we note that 1380456 = 792 - 1743 which
confirms our answer.

British Mathematical Olympiad Round 1, 2002-2003, Problem 1.
Given that

34! = 295 232 799 cd9 604 140 847 618 609 643 5ab 000 000,
determine the digits a, b, c and d.
Solution
Finding b.
The prime factorization of 34! is easily found to be

34! =23%2.31%.57.74.11%3.132.172-19-23-29 - 31.

The 232 and 57 prime factors tell us that 34! ends with seven 0’s. Therefore b = 0.

Finding a.
Likewise, the prime factorization of
34!
107 = 29523 2799cd 960 414 084 761 860 964 35a,
is
34!
WzZZS-315-74-113-132-172-19-23-29-31

and hence is divisible by 8. Therefore, the three digit number 35a must be divisible by 8.
We note that 350 (mod 8) = 6, hence 352 (mod8) = 0 and a = 2.

Finding c and d.

We also know that 34! is divisible by both 9 and 11. Hence
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24+94+5+2+34+2+74+94+94+c+d+9+6+0+4
<+1+4+0+8+4+7+6+1+8+6+0+9+6+4+3>mmd%
+5+24+04+404+04+404+04+0+0
=(c+d+141)(mod9) =(c+d+6)(mod9) =0
and
2—-94+5-24+3-24+47-949—-c+d—-94+6—-0+4
(—1+4—0+8—4+7—6+1—8+6—0+9—6+4—3)mmdNJ
4+5—-24+0-04+0-04+0—-0+0
=(d-c+19)(mod11) =(d —c+8)(mod11) = 0.

Therefore, (c + d) € {3,12}and (d — ¢) € {—8,3}. So, we have four cases to consider.

Solving c + d = m and d — ¢ = n simultaneously, we have

m-—-n dd_m+n
> an =5

Consider the value of (c,d) at each of the four cases

(m,n) € {(3,-8),(3,3),(12,-8), (12,3)}
We can eliminate (3, —8) and (12,3) because they return nonintegral values for c and d. We
can eliminate (12, —8) because it returns a value for ¢ > 9. So (m,n) = (3,3) is the only
possible solutions. This returns

Cc =

3—33+3
(cd) = (=) = 03
Thatis, c = 0 and d = 3. Therefore, (a,b, c,d) = (2,0,0,3).
Note the answer 2,0,0,3 is a partial clue that you have the correct answer because it is often
the case in math contest problems that the solution is related to the year the test was given (in
this case, the year was 2003).

5.10 Extra Modular Arithmetic Problems
AMC 1970 Problem #34

The greatest integer that will divide 13,511, 13,903 and 14,589 and leave the same remainder
is

(A) 28 | (B) 49 | (C)98 |
(D) an odd multiple of 7 greater than 49
(E) an even multiple of 7 greater than 98

Solution
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AMC 1971 Problem #12

For each integer N > 1, there is a mathematical system in which two or more integers are
defined to be congruent if they leave the same non-negative remainder when divided by N. If
69, 90, and 125 are congruent in one such system, then in that same system, 81 is congruent
to

[(A)3 [(B) 4 [(©5 [(D)7 [(£)8

Solution

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 16
If b is a positive integer and b = 2 (mod 3) and b = 7 (mod 3), what is the remainder when b
is divided by 12?

Solution

16. First not that B=-1 (mod 3) and B =-1 (mod 8) => B=-1 (mod 24). Thus B =-1 (mod
12) => B=11 (mod 12).

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 19
If 40a = 1 (mod 7), what is 162a congruent to (mod 7)?
Solution

19. 42a + 3(40a) = 0 + 3(1) (mod 7). Thus 162a = 3 (mod 7).

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 24
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How many whole numbers are there less than 10,000 which have units and tens digits of 1
when expressed in bases 4,5, and 6°?
Solution
24. We are hunting for integers, N, such that N =5 (mod 16), N = 6 (mod 25),and N=7
(mod 36). From the first of these relations, we know that N = 1 (mod 4), but that
contradicts the third relation which shows that N = 3 (mod 4). Thus there are no such
integers.

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 27

What is the second smallest positive integer x such that x = 2 (mod 4),x = 3 (mod9), and

x =5 (mod 25)?

Solution

27. Given x =2 (mod 4), we can say x = 4a -2 for some positive integer, a. Then from the

second equation, 4a -2 =3 (mod 9) => 4a=5 (mod 9) => a =8 (mod 9) and thus we
can say a = 9b — 1 for some positive integer, b. Thus x =36b — 6. Finally, from the last
equation, 36b— 6 =5 (mod 25) => 36b =11 (mod 25) => b=1 (mod 25). Thus we can
say that b = 25¢ — 24 for some positive integer, c. Thus x = 900c — 870. 930 is the second
smallest positive solution.

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 37
N is a positive integer less than one hundred. If 3 = N (mod 100), what is N ?
Solution
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37. Solving this problem involves a degree of deduction taking several factors into
consideration. We can rule out even values of V. We can also note that phi(10) = 4 and
phi(100) = 40. This will help limit our search as we know that the units digit of 3"
repeats in a 4-cycle and the last pair of digits repeats in (at most) a 40-cycle. In fact,
noting that 3 x 3 x 3 x 3 =81 =(80 + 1), we can see by binomial expansion that taking 81
to the fifth power produces a number with a units digit of 1 and a tens digit of 0. Thus
3" repeats its last two digits in a 20-cycle. Now we must simply look for where 3" =0
(mod 20) and adjust N by adding/subtracting multiples of 20. We thus need only check
the first 20 positive integers (and only the 10 odd ones of those).

We can rule out most of these by comparing the 4-cycle of units digits. If N=1 (mod 4),
then the units digit of 3" will be 3. If N = 3 (mod 4), the units digit will be 7. The only N
that need be tested are thus 7 and 13. 3" =N (mod 20) for 7, but not 13. The tens digit of
37 is 8, thus 87 is the only solution such that 3" = N (mod 100).

]
Mu Alpha Theta National Convention 2001, Number Theory Test, Theta Division, Problem #
22
If 3x = 4 (mod5) and 5x = 6 (mod 7), which of the following could be x ?
(A) 19 (B) 34 (C) 53 (D) 630 (E) NOTA

Solution

22. Given that 3x = 4 (mod 5), we can say that 3x = 4+5 (mod 5), then 3x = 9 (mod 5), and
thus x = 3 (mod 5). Likewise we can find that x = 4 (mod 7). From the latter of these
relationships, we can say that x = 7y -3 for any positive integer y. Thus we know that
7y -3=3 (mod 5) => Ty =1 (mod 5) =21 (mod 5). Thus y =3 (mod 5). We can say that
y = 5z -2 for any positive integers z. From the relationship between x and y, we now
know that x = 7(5z -2) -3 =35z - 17. Thus x =-17 (mod 35) = 18 (mod 35). 53 is the
only answer which satisfies this relationship.

Mu Alpha Theta National Convention 2001, Number Theory Test, Theta Division, Problem #
40

What is the remainder when 337,500,000 is divided by 128 ?

Solution
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40. This problem can be tediously worked out by long division. There is a much simpler
way however. Find the prime factorization of the large number.

337,500,000 = (2’ )( 3°)(5°). Divide both this number and 128 by 32. Now take the
remaining portion of the large number and find its remainder when divided by 4 (which is
128/32): (3°)(5%)= (-1)°(1%) (mod 4) = -1 (mod 4) = 3 (mod 4). Multiplying both sides
back by 32 tells the solver that the original number is congruent to 96 (mod 128).

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #9
When M is divided by 9 the remainder is 6. When N is divided by 27 the remainder is 9. What
is the remainder when the product MN is divided by 27 ?

Solution
M =9k +6 =33k+2)
N=27k+9=93k+1)
MN =273k +2)(3k+1)
Therefore,

MN = 0 mod(27).
]

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #29
M and N are positive integers such that 3M + 8N = 5 (mod 17). Find the remainder when
9M + 7N is divided by 17.
Solution
In general, if a = b (mod m) then ac = bc (modm). Applying this result we know that

3(3M + 8N) = 3(5) (mod17) = 9M + 24N = 15 (mod 17).
But we also know that

(OM + 24N)(mod 17) = (9M + 7N + 17N)(mod 17)

= (9M + 7N)(mod 17).

Therefore
9M + 7N = 15 (mod 17).

That is, 15 is the remainder when 9M + 7N is divided by 17.
]

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #28
The remainder when N is divided by 18 is 16. Given that N is a multiple of 28, what integers
between 0 and 18 could be the remainder when N /4 is divided by 18 ?

Solution

We are given that N = 28m for some integer m and that N = 16 (mod 18). This tells us that
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N =16 (mod18) and N = 28m = 28m = 16 (mod 18)

18
m=4 _—
= m (mOd (gcd(4,18)))
= 7m = 4 (mod 9).

The question is to find the remainder r when N /4 is divided by 18. That is find N/4 (mod 18).

N_28m_7
4" "2 ™M

So, the question is to find 7m (mod 18) given that 7m = 4 (mod 9).

But we know that if 7m = ¢ (mod 18) then 7m = ¢ (mod 9). That s,
7m —c¢ = 18k = 9(2k) = 7m = ¢ (mod 9).
However, we know that 7m = 4 (mod 9). So the only possible values for ¢ are 4 and any
number congruent to 4 (mod 9), such as 13.
It follows that the only integers between 0 and 18 could be the remainder when N /4 is divided
by 18 are the integers 4 and 13.
]

Mu Alpha Theta Florida State Convention 2005, Number Theory Test, Problem #3
Given that x = 7 (mod 360), what are the possible nonnegative integer values less than 420
forx = 7 (mod 420)?
Solution
In general, ifa = b (modm) and d|m, d > 0, then a = b (mod d). From this property we can
see that
x =7 (mod360) = x = 7 (mod 60).
Now suppose x = ¢ (mod 420). Then from this same property we have
x = ¢ (mod420) = x = ¢ (mod 60).
So, the only possible nonnegative integer values for c less than 420 are values consistent with
the fact that x = 7 (mod 60).
Thatis, c € {7,67,127,187,247,307,367}.

2016 Lehigh University High School Math Contest, Problem #16

How many 3 element subsets of {1,2,3,4,5,6,7,8,9,10,11} are there for which the sum of the
elements in the subset is a multiple of 3?

Solution

To start you need to remember that by definition of a set (or subset) the order of the elements
in the set (or subset) is irrelevant (i.e. {4,7,10} and {7,10,4} are not distinct solutions) and by
definition all elements of the set (or subset) must be distinct (i.e. {5,5,8} is not a solution even
though the sum is a multiple of 3).
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Let {a,,a,, a3} be a subset of {1,2,3,4,5,6,7,8,9,10,11}. Saying that the sum is a multiple of 3 is
the same as requiring that (a; + a, + a3) mod(3) = 0 mod(3).
We can restate the problem as
a, mod(3) + a, mod(3) + a; mod(3) = 0 mod(3).
Now let b; = a; mod(3), b; € {0,1,2}. Then we can partition the problem into just three cases:
{by,by,b3}|b; + b, + b3 =0
{by,by,b3}|by + b, + b3 = 3
{by, by, b3}|b; + b, + b; = 6.
There is only one subset in the first case, namely {0,0,0} mod(3). There are two subsets in the
second case, {1,1,1} mod(3) and {0,1,2} mod(3). And there is just one subset in the third case,
namely, {2,2,2} mod(3).
Now we need to separate the numbers {1,2,3,4,5,6,7,8,9,10,11} according to their mod(3)
value.
{3,6,9} mod(3) =0
{1,4,7,10} mod(3) =1
{2,5,8,11} mod(3) = 2.

In the case {0,0,0} mod(3) we need to select 3 of the 3 elements in {3,6,9} without
replacement and where the order of selection is not important to us. This is the definition of

combinations and equals (g) = 1.

In the case {1,1,1} mod(3) we need to select 3 of the 4 elementsin {1,4,7,10} without
replacement and where the order of selection is not important to us. This is the definition of
combinations and equals (g) =4,

In the case {0,1,2} mod(3) we need to select 1 of the 3 elements in {3,6,9}, select 1 of the four

elementsin {1,4,7,10} and 1 of the four elements in {2,5,8,11}. There are (i) (Lll) (‘1}) =48

ways we can do this.
Finally in the case {2,2,2} mod(3) we need to select 3 of the 4 elements in {2,5,8,11} without
replacement and where the order of selection is not important to us. This is the definition of

combinations and equals (g) =4,

In total thereare 1 + 4 + 48 + 4 = 57 ways to select the three numbers from
{1,2,3,4,5,6,7,8,9,10,11}, without replacement and order not important, such that the sum of
the three numbers selected is a multiple of 3.

2007 Lehigh University High School Math Contest, Problem #17
For how many primes p is h(p) = p? + 3p — 1 also prime?
Solution
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We begin by considering the special cases of p = 2and p = 3.

h(2) =9. Composite.
h(3) = 17. Prime.

We have previous established that for all prime p > 3, p? — 1 is divisible by 24 and hence is a
multiple of 3. Therefore,

h(p) =p*+3p—-1=(@P* -1 +3p
is a multiple of 3 for all p > 3 and hence cannot be prime.

Therefore h(p) = p? + 3p — 1is only prime in the single case of the prime p = 3.
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Chapter 6. Factorials

6.1 Sum of Factorials mod k
The general approach is revealed in the following example.

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Problem # 6

45

IfA = k!, then what is the remainder when A is divided by 240?
k=3

Solution

First note that

240=2*-3-5 and 6! =2%-32.5=240-3.
It follows that

k! = 6! - my, for some integer m; forallk > 6

=240 -3 - m,.
For example, 9! = 6! - (9 - 8- 7). Therefore,

45 45
A=Zk!=3!+4!+5!+2k!
k=3 k=6

45
=3!+4!+5!+240<32mk)

k=6

45
= 150 + 240 (3 Z mk)

k=6
= 150 + 240n for some integer n.

Hence,

45

Amod(240) = (Z k!) mod(240) = (150 + 240n) mod(240) = 150.
k=3
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NATIONAL MU ALPHA THETA CONVENTION 1991
NUMBER THEORY TOPIC TEST

13. Find the remainder when 1! + 2! + 3! + ... + 91! is divided
by 15.

A. 3 B. § c. 7 D. ¢ E. 11

Solution

| + 10« +1:2.3 4 2.3,
133y 4.3 Y5 o0+ 904
b+ 2+ 6 r2yg + 15(F+..)

F34+ 08 (F+..)
3+ 15(2t&+...)

> M,&g3

6.2 Factorial Base Representation of Positive Integers
6.2.1 Definition and Properties

The factorial base representation of the nonnegative integer n (also called the factoradic of n)
is an expression for n of the form

n=a, m+a,, - m=-—D'+-4+a,-21+a; 1!
for some positive integer m with a; € {0,1, ..., j} for each coefficient a; and a,, # 0. In this
situation, the notation adopted is

n = (Ay, A1, ) A1)1-

That is, the coefficient vector (a,,, @;,_1, ..., @, ) followed by the factorial symbol ! as a
subscript.
For example, we could have
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5=2-214+1-1! =(2,1),

11=1-31+2-21+1-1! =(1,2,1),

28=1-4!'+0-3!4+2-2140-1! =(1,0,2,0),
and

4700=6-6!+3-5!+0-41+3-31+1-2!1+0-1!=(6,3,0,3,1,0)..

Theorem (Existence and Uniqueness)
There exists a unique factorial base representation (i.e. factoradic) for every nonnegative

integer n.

A proof by induction of this theorem is straightforward once you establish the following identity
as a Lemma.
Lemma

(1-1!+2-2!+---+(n—1)-(n—1)!)+1=n!.

To understand why this lemma is critical to the theorem, think about the largest number you
can generate with the form
Ap1-M—D'+a,_, - n—=2)'+-+a, -2!+a; -1
The largest number occurs when each coefficient a;, is maximized. That is, by taking a; = k. In
this case we get
m-1D-n—-D'+(n-2)- n=2)'+--+2-21+1-10

This lemma states that the next integer above the largest possible number of the form
Ay M—Dl+a, - (n=2)4++4a, 21 +a;-1!
is the integer
nl=1-n4+0-n—-D'+0-(n—-2)!'+--+0-2!1+0-1!
which is the smallest possible number of the form
a, n'+a, - m—D!'+-4+a, - 214+a, 1!
subject to the constraint the leading coefficient a,, # 0.

You should note that this lemma is the factorial base analogy to how in base 10 the next
integer after largest possible integer of the form
Ap_q-10" 14+ q,_,-10"2 4+ -+ qa; - 101 + q,10°
is the smallest possible integer of the form
a, - 10"+ a,_,-10" 1+ -+ qa; - 10! + a,10°
subject to the constraint the leading coefficient a,, # 0.
For example, the next integer after
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999 =9-102+9-10*+9-10°
1000 =1-10>+0-102+0-10*+ 0 - 10°.

This lemma can be used repeatedly in an induction argument to show that the factorial base
number system does not repeat or skip any of the positive integers. We will not reproduce all
the steps of that argument here but will simply note that the necessary steps can be matched
one by one with the steps necessary to show that the base 10 numeration system does not
repeat or skip any of the positive integers.

But we will verify that this lemma is true as it can be a useful result in a variety of other
situations.

Proof (of Lemma)
(1-1!+2-2!+---+(n—1)-(n—1)!)

=(1 142 204+ -1 -1+ (4204 + (1))
— (14204 (= 1)1)

=((1-1!+1!)+(2-2!+2!)+---+((n—l)-(n—l)!+(n—1)!)>
— (4204 (= 11)

=((2-1!)+(3-2!)+---+(n-(n—1)!)>
— (1204 (= 11)

= (204314 +n) = (V4204 + (- 1))

=n!-—1.
Therefore,

(-1 42 204+ (-1 -(a—1)! ) +1=n

6.2.2 Converting from a Factorial Base to Base 10
Example

Find the base 10 representation of (3,2,0,6); .
Solution

(3,2,0,6); = 34D + 23N+ 02D + 1(1)
=3(24)+2(6)+0(2) + 1(1)
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=72+12+0+1
= 85.

That is, (3,2,0,6); = 85, = 85.

6.2.3 Converting from Base 10 to a Factorial Base: Standard Method

Example

Find the factorial base representation of 1073.
Answer

1073 =1(6) +2(5D +44) +2@H +22H +1(1) =(1,2,4,2,2,1),.
Solution

Start by finding the largest integer n for which n! < 1073. We note that 6! = 720 but 7! =
5040. Son = 6.

Divide 1073 by 6! with remainder.

1073 =1-6!+ 353.
Divide the remainder 353 by 5! with remainder.

353 =2-5'+113.
Divide the remainder 113 by 4! with remainder.

113 =4-41+17
Divide the remainder 17 by 3! with remainder.
17=2-31+5

Divide the remainder 5 by 2! with remainder.

5=2-21+1
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Divide the remainder 1 by 1! with remainder.
1=1-1.
This shows that

1073 =1- 6! + 353
=1-6!+2-5+113
=1-6!42-51+4-41+17
=1-6!4+2-5'+4-41+2-3145
=1-6/42-51+4-41+2-31+2-21+1
=1-6/+2-51+4-41+2-314+2-21+1-1!
=(1,2,4,2,2, .

6.2.4 Converting from Base 10 to a Factorial Base: Bottom Up “Short Cut” Method

The bottom up method for converting from base 10 to a factorial base has some similarities to

the bottom up method for converting from base 10 to base b.
Step 1: Solve for a,

The first step is to divide n by 2 with remainder. That is, express nintheformn=2-d; +nry
where r; € {0,1}.

| claim that

Am M+ ap_-(Mm=1D!++a, 2!
d1: 2 .

To see this, note that each of the terms in the numerator a,, - m! + a,,_; - (m — 1! + -+ +

a, - 2! are divisible by 2. Therefore d; is an integer and we can see that
n= 2 . dl + al
where a; € {0,1}. Thatis, a; equals the remainder when we divide n by 2 with remainder.

Step 2: Solve for a,
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Now divide d; by 3 with remainder. That is, express d; inthe formd, = 3 -d, + r, wherer, €
{0,1,2}.

| claim that

Am-m!+apy_ - (m—1)!+ -+ az- 3!
d2= 2.3 .

To see this, note that each of the terms in the numerator a,,, - m! + @, - (m — D! + -+ +

as - 3! are divisible by 2 and 3. Therefore d, is an integer and we can see that

a2'2!
d1=3'd2+

=3'd2+a2

where a, € {0,1,2}. Thatis, a, equals the remainder when we divide d; by 3 with remainder.

Step 3: Solve for a;

Now divide d, by 4 with remainder. That is, express d, in the form d, = 4 - d; + 3 where ;3 €
{0,1,2,3}.

| claim that

A M+ ap_q - (M= + -+ ay - 4!
2:3-4 '

d3:

To see this, note that each of the terms in the numerator a,, - m! + a,,_; - (m — 1! + -+ +

a, - 4! are divisible by 2, 3 and 4. Therefore d is an integer and we can see that

a3'3!

2-3

d2:4"d3+ :4"d3+a3

where a3 € {0,1,2,3}. Thatis, a; equals the remainder when we divide d, by 4 with

remainder.

Steps 4,5, ... (continue)
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We can continue in this same way to find each of the remaining coefficients a,, as, ....

Example

We will now illustrate this “bottom up” method for n = 1073 and we will note that we get the

same set of coefficients a4, a,, ... as we found using the “standard” approach.

We start by dividingn = 1073 by 2 with remainder.
n=2-dy+r =20536)+1=a, =1 =1
Now divide d; = 536 by 3 with remainder.
dy=3-d,+1r,=3(178)+2=a,=1, =2.
Now divide d, = 178 by 4 with remainder.
d,=4-d3+r;,=444)+2 = a3 =13 = 2.
Now divide d; = 44 by 5 with remainder.
d;=5-d,+1,=58)+4=>a, =1 =4
Now divide d, = 8 by 6 with remainder.
dy,=6-ds+rs=6(1)+2=as =15 = 2.
Now divide ds = 1 by 7 with remainder.
ds=7-de+1,=70)+1=as=1,=1.

The process stops now because continuing will just verify that a;, = ag = --- = 0.

So, using the bottom up method we have determined that
1073 = (a6l a5l a4l a3l a2l al)! = (1:2:4;2;2:1)!

which is the same answer we found using the standard method in the previous section.
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AMC 1961 Problem #35
The number 695 is to be written with a factorial base of numeration, that is,
695=a,+a, -2!+a3-3'+--+a, n
where a4, a,, ..., a, are integers such that 0 < a;, < k,andn! meansn(n—1)(n—2) -2 - 1.
Find a,.
[(a)0 [(8)1 [(€)2 [(D)3 [(E)4 |

Solution
Factorial Base of Numeration

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #24
24)  In base-factorial you express a positive integer, b, as b=a,a, ,..a,a, if
b=a, -k\+a, ,-(k—1)+. +a,-2+a, -1 where a, are integers and 0<a, <(n+1)! for

all 1<n<k.
Find 4155 in base-factorial.
A)498011 B)S37411  C€)523111  D)543011  E)NOTA

Solution

24)4155=5-6H+4-54+3-414+0-3+1-21+1-11 543011 D

6.3 Factorial Base Representation of Rational Numbers

6.3.1 Definitions and Properties

a
b
The factorial base representation of the rational number % is an expression of the form
a d, d; dn

Let % be a rational number in reduced form with 0 < — < 1, (i.e. in the open unit interval).

R + 4+ e+
b 2! 3! m!
for some positive integer m with dj € {0,1, ...,j — 1} for each coefficient dj.

Terminating and Nonterminating Factorial Base Representations of a Rational Number
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Lemma
Forallm € {1,2,3, ...} we have

L2 ()

1=m
Proof
1 _ 1 +( 1 4 1 4 1 4 )
m!” m! \(m+1! (m+2)! (m+3)!
( R )
(m+ 1) (m+2) (m+3)!
_531 531 i: 1 1
- a a7 — 1) il
i=m L i=m+1 L i=m+1 (l 1)' i=m+1 L
- Y (D 2 G- > ()
- YT A an0) T 1
i=m (l 1) ' i=m+1 e L i=m+1 L
-3 (s
(i+1)!
=m
[
For example,

1_5+6+7+8+
51760 718 9l

The left-hand side of this expression is called the terminating factorial base representation of

1 1
the rational number 120 = & and the right-hand side is called the nonterminating expression.

For another example, consider the rational number 2/3.

R Terminating F
37 20 3l erminating Form
2_1+0+3+4+5+6+ Nonterminating F
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Theorem (Existence and Uniqueness)

There exists a unique, terminating form factorial base representation for every rational
numberin (0,1).

Theorem
If
_ dz d3 dm

TR TR

S Q

is the unique terminating form factorial base representation of the rational number %then
m will equal the smallest integer such that m! is divisible by b, the denominator of the

. a.
rational number zin reduced form.

For example ...

m = 3 for the rational number % because 3! is divisible by b = 6 but 2! is not.

m = 4 for the rational number % because 4! is divisible by b = 4 but neither 2! nor 3! are.

m = 4 for the rational number % because 4! is divisible by b = 8 but neither 2! nor 3! are.

m = 7 for the rational number % because 7! is divisible by b = 7 but none of 2!, 3!,4!,5!, 6! are
divisible by 7.

6.3.2 Converting from Base 10 to a Factorial Base: Standard (or Greedy) Method

. . 1 . .
d, equals the largest integer number of times that 5; will go into a

2! b
d . f ti 1 . . a dz
3 equals the largest integer number of times that 31 will gointo 520
. . 1 . . a dz d3
d, equals the largest integer number of times that o will gointo 5o T3
.. etc.
Example

. . . 5
Find the factorial base representation of 5
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Answer

1 0 3
217 31 ar

Solution

Step 1. Find m.

m = 4 for the rational number £ = g because 4! is divisible by b = 8 but neither 2! nor 3! are.

b
So we need to find d,, d; and d, such that

5 d, ds d,

8 2! + 3! T
with d, € {0,1}, d; € {0,1,2} and d, € {0,1,2,3}.

Step 2. Find d,.

a—

. . 1 . .
d, equals the largest integer number of times that 51 will gointo b

integer such that

%
A

| vl

A straightforward way to find this is to divide 5 - 2! by 8 with remainder. Now
5:-2!'=d,-8+1r,=1-8+2
Sod, = 1andr, = 2. But we can also read off % - %from this calculation. It follows from
the result
a-2l=d,-b+rm

that

a
b 2! 21.p 2-8

d, 7 2 1
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Note: As we follow through with the next few steps it will become obvious that this result
generalizes to

a d, ds dy T
b 2! 3 k! " k!-b
Step 3. Find d3.
. . 1 . . a dy 1) 1 .
d; equals the largest integer number of times that 31 will gointo 52 =288 That is, ds
is the largest integer such that
d 1
=<=
3178

Proceeding as in the previous step we will divide 1 - 3! by 8 with remainder.

d d
Sod; = 0andr; = 6. We can read off% - 2—% - 3—?from this calculation. It follows from the
result
13'=d38+7”3
that

T3:13'_d38

Step 4. Find d,.

. . 1 . .
d, equals the largest integer number of times that o will gointo

a d, ds T3 6

1
b 20 31 3.8 3.8 §
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Continuing in the same manner we will divide 1 - 4! by 8 with remainder.

Sody, =3andr, =0.

The process stops now because we have a remainder of 0. Note that the process stopped with

d, (i.e. m = 4) as was predicted.

5 d, d3 d, 1 0 3

R TR R TR TR

and as a check we note that

6.3.3 Converting from Base 10 to a Factorial Base: Bottom Up “Short Cut” Method

d2 d3 m
Sttt

S| Q

Step 1: Solve for d,,,

We start by multiplying both sides of the defining equation given above by m!.

a d, d; dm-1
“ml = 2 e
bm. (Z!m.+3!m.+ +(m_1)!m.>+dm
d; ds dm-1
— Lm=1"+—=(m =1+t —""1 o — 1)
m(z! (m—1D!+ T m-1)'+-+ - 1! (m 1).) +d,,

=mq, +d,,

Recall that m equals the smallest integer such that m! is divisible by b. It follows that
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236



is an integer. We can see that

(m—1)!

_dz N d( 1)1 dn,
ql—ﬁ(m— ).+—m— + - +W

is an integer. So it follows from the relationship
—m!=mq, +dp,
That d,,, is the remainder and g, is the integer quotient when we divide the integer% -m!bym

with remainder.

Step 2: Solve ford,,,_4

d
Now subtract ?",l from % and repeat the process.

a dy d, dy dppq
b m o2 3t T o

Now if we multiply both sides by (m — 1)! we find

(%—%)(m—l)' (i,+%+---+%)(m !
:(d—(m—l)'+—(‘m—1)+ +%(m ))+dm—1

=(m—1)(%(m—2)!+%(m—2)!+---+ (m— 2))+dm_1

dm
(m 2)'
=(m—-1)q; +dpy
Following the reasoning as in the previous step we can see that d,,,_; is the remainder and g, is

the integer quotient when we divide the integer (% - %) (m — 1)! by m — 1 with remainder.

But we don’t need to recalculate
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because

(%—%)(m—l)!= (%+%+---+%)(m—l)!

m-—1

d, d
=E(m—1)!+3—7(m—1)!+---+m

(m—1!=q,.

That iS, q1 = (m - 1)q2 + dm—l-

Hence to find d,,_; we simply need to read off the remainder when we divide the previous

quotient g, by (m — 1) with remainder.

The process continues in the same way. We will find g, = (m — 2)q; + d,,,_, and so we can

find d,,,_, by reading off the remainder when we divide g, by (m — 2) with remainder.

.. etc.

Example
. . g . . 5 . . “
We will again find the factorial base representation of 3 but this time we will use the “bottom
up” process.
Solution

Step 1. Find m.

m = 4 for the rational number % = g because 4! is divisible by b = 8 but neither 2! nor 3! are.

So we need to find d,, d; and d, such that
5 dy ds3 d,

8 21 31 4!
with d, € {0,1}, d5 € {0,1,2}and d, € {0,1,2,3}.

Step 2. Find d,.

We have shown that d,, = d, is the remainder when we divide g - 4! by 4 with remainder.
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5
3 H=4q+1n=4(3)+3.

Therefored, = r; = 3 and g, = 3.

Step 3. Find d;.

We have shown that d,,,_; = d; is the remainder when we divide the previous quotient g, by 3
with remainder.

q1=3=3q2+7'2=3(1)+0

Therefored; =1, = 0and g, = 1.

Step 3. Find d,.

We have shown that d, is the remainder when we divide the previous quotient g, by 2 with

remainder.

q2=1=2q3+7”3=2(0)+1

Therefored, = 1r; = 1and g, = 0.

So we have verified that

dy dy dy 1 0 3

5
sttty

using the “bottom up” method.

(5D974)
4. There are unique integers az, 23, a4, @3, ag, a7 such that

5_&2 a3 a4 ag ag arg
AR TR TR T R T

where 0 € g; <ifor:=2,3,...,7. Find a3 + a3 + ¢4 + as + ag + ar.

Solution
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de: B 2.8 . g » 2 ks & - A .
One bogroachy = Z 4> Lo ®te L-C2 2102 - 5 ?J_:&-_l“,a.f—\
Aood 0 Ge > O B . 5 G = Y- L o A -
(LR 120 S P8 Fwe 2s0 ’ 6 ' 25200 Sew > S1- %
Gat Gz b bas Hirany tklslros G2 = K
< {
Qe comd bperonche  Muliiply aads sile fy Pr aqaiion S, T2 s 9iK

2Usb—GqT 1-6 S w3a,t L SRy F LSk el se F IS kg, egels Side

. 3 - B e——g & g_,_i’\u_ e
Livesdle Ly ) and shran 3600 Tl R QA e pRPNE

;’:«:}C Gq> 2. Now divida 2edn ¢ode d/h\:o—eﬁ&s"\\:«"-a S
s Sl —g = 65 3a 4 (S e, + C€q, + Cég. Thoo rg™r s: < .
&;v\'s‘-u" Q-)_G ) e~ Sl = FSC + F , s %% = & rvfﬂtk_ each. SuakL; N,:
wede L =5 TS ~ag = S:H-3q, + S Yay ~Sqy PR VO 5.1‘ ag=0. Beotide
l,.x S M-q,= $-3a, + ¥4y - 54:‘ ¢, = I. D?vrdx'ma ¢ 4 %.;t Ce_qs: 3aa

'{-b’b‘* a_s‘_ilﬂ-'\"( szl'

AMC 1999 Problem #25

There are unique integers a,, as, a,, as, aq, a; such that

7 2030 4 516l 7
whose 0 < a; <ifori=23,..,7. Finda, + az + a, + as + ag + a;.

[(A)8 [(8)9 [(c)10 [(D)11 [(E) 12

5 a a a a a a
2 3 4 5 6 7

Solution
Multiply out the T!to get
56! =(3-4---T)as+ (4---Naz+ (5-6-T)ay +42as + Tag + a;.

By Wilson's Theorem (or by straightforward division), az + 7(ag + 6as +---) =5-6! = —5 =2 (mod 7), so a7 = 2. Then we move as to
the left and divide through by 7 to obtain

5.6!—2

=514 = 3600.2 + 120&3 + 30&4 - 6&5 + ag.

We then repeat this procedure (mod 6), from which it follows that ag = 514 = 4 (mod 6), and so forth. Continuing, we find the unique solution
to be (a2, as, as, as, as, a7) = (1,1,1,0, 4, 2) (uniqueness is assured by the Division Theorem). The answer is 9 => (B).

https://oeis.org/wiki/Factorial numeral system
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The factoradic representation of a rational number + 5 (considered in reduced form) in the open unit interval, i.e.
0 < § <1, is defined asl®]

- —Z(Hl 0<d; <i,

where d;, 0 < d; < 1, is the "factoradic digit" for place-value ,and N is the number of "factoradic digits"

1
(i+1)!
after the "factoradic point" (IV is the smallest integer such that (N + 1)! is divisible by the denominator of %,

considered in reduced form).
Note that d; can't be equal to 4 + 1 since

i+1 1
G+1)! 4l

By using only the terminating form for rationals (see factoradic representation of real numbers for the non-
terminating form), we get a unique factoradic representation for any rational number by adding the integer part to
the fractional part (i.e. within the open unit interval).

You can go backwards instead. Take a non-negative rational p/q. Let k! be the smallest factorial that is
divisible by q. then k!p/q is an integer. Define ay, to be the remainder of this number after division by k.
Subtract aj. and divide by k. Define a1 to be the remainder of the result after division by k — 1 ...
Eventually you only need to divide by 1, at that point just take a; to be equal to the integer that remains.
Uniqueness comes from the uniqueness of the Euclidean division. — user545963 Apr 3, 2018 at 17:42

6.4 Highest Power of p that divides n!

Let p be any prime and n any positive integer. If p/|n and p/*1kn, we say that p’ exactly
divides n and write p/|n.

Legendre’s Theorem

If n is a positive integer and p is a prime, then p®lin!, where

=il

and 7 is determined by n by the inequality p” < n < p"*1.

mathcloset.com 241



Alternatively,

If pis prime and if
n=ay+ap+ap*+-+ap”
with a,, # 0 and 0 < a; < p for each i, and if p®|In!, then

n—(ag+a,+-+a,)
p—1 '

e =

The second theorem sounds especially remarkable for p = 2:

The greatest power of 2 dividing n! is 2"~" where r is the number of 1s in the binary
expansion of n.

Also see article “Factoring Factorials”

The number theory texts giving a proof of formula (1) which are listed in the

bibliography are [1], [2], [3], [8], [12], [13], [14]. The following exercise can be solved
using the formula.

Exercise 1. What are the last 49 digits of 200!? (Finding the last 50 is tougher!)

The computation of g, can be shortened by using the relation [x/m] = [[x]/m]

for x a real number and m a positive integer. Substituting x = n/p’/ and m = p we
obtain, for 1 < j< k-1,

This is especially useful for large values of »n. For example, we compute g,, for
2000!.

This is especially useful for large values of #n. For example, we compute g,, for

2000!.
|1=[2000] [181] [—lé] 198. (*)

18] 6 l
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Alternate Method

Take a close look at computation (*). The work is quite similar to that done in
calculating the digits of the base 11 representation of 2000. (To perform the latter
calculation, we take the remainder rather than the quotient after each division in
(*).) This suggests that there may be a close relationship between the base
representation of an integer n and the computation of
French mathematician Adrien Legendre (1752-1833) [11], who found an alternative
method of obtaining the exponent & To derive Legendre’s method, first write out
the base p representation of the posmve integer n. Suppose this is given by

= k k-1
n=nmup-+m_,p + -

where p¥ < n, p**'>nand 0 < m, < p—1, each i (0 < i< k). Then, for 1 <r

< k;

k k=1 =1
mp-+m._,p +”'+mrpr+mr—lp’ i ok

¥ +m|p+m0,

g,- This was shown by the

+mp+ my,

n
P’ P
Since

m_p T mptm <(p—1Yp T

=Pr_l<Pr"

we see that

Thus
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B
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e+ mypt+ myp + my
"+m3p+m2

'+m3

p
+p+1)=(p—1)-
p+l)=(p )p_
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Adding these and using formula (1), we obtain
g=m(l+p+ - - +p* Ntm_(1+p+ - - +p*H+ ...
+my(1+p+ p?) + my(l + p) + m,

(. k-1 _
”_1'+mk_1-”—_,—1+---
P P

=mk.

3 2
I i), . Bl . =)
+ my 5= +m, P_l + m, P_l

((mkpk+ mk_lpk_] + -0 m3p3+ m2p2+ mlp + mo)

_(mk+mk_]+"' +m3+m2+ml+m0))
p—1
n-—s,
p—1’
where 5, = m, + - - - + my is the sum of the digits of » to the base p.

Using the formula

=g

. i

5= 51’ ©)

we obtain the prime factorization of 20! as follows:
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P Base p representation of 20 5 p—1 =&
B 10100, 2 20-2=18
3 202, 4 %—:i‘l _3
5 40, 4 %_—_]4 -
L 19y, 10 —ZTOI;—I—IQ - |
2 175 8 % ],
17 13,4 4 %E_fll -]
= [y 2 %—g-%% =1

This gives us 20!=2'"%.3%.54.72. 111 13! . 17" - 19",

The references listed in the bibliography giving formula (2) are [2], [3], [12], [13].
Formula (2) can be used to solve the following exercises.

Exercise 2. Show that the exponent of the greatest power of p dividing (p* — 1)! is

gr=p= Tily=]
p—1 '

Exercise 3. Find an integer n > 1 such that the exponent of the greatest power of 3
dividing n! is 50. (Hint: Since s, is at least 1, begin by considering the equation
(n—=1)/2=150)

As a special case of formula (2), take p =2. Thenp—1=1and so g, =n — s,
or n = g, + s,. That is, any integer » is the sum of the greatest power of 2 dividing
n! and the sum of its digits to the base 2. (See [9].) For example, the base 2
representation of 17 is 10001,. Hence 5,=1+0+0+0+ 1 =2. As we already
showed, g, =15 for 17!. Thus g, + s, = 15+ 2 = 17. Notice that, in general, the
eqkuation g, = n — s, implies that the exponent of the greatest power of 2 dividing
@+ 1)!is 2k —1.

We have remarked that formula (1) with shortcut () is easily computed with a
calculator. Formula (2), on the other hand, requires a conversion to base p, which
takes time. Which is faster? In order to find out, I timed myself using both methods
on the prime factorizations of 20!, 50! and 100!. In each case the former method
took about half as long as the latter to yield the prime factorization.
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Number Theory

Naoki Sato <sato@artofproblemsolving.com>

The number of factors of the prime p in (7{1) is

- -5

where 7 is the largest integer such that p* < k and p®* <m — k.

1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Problem #22

131) — 151 Find the largest prime divisor of m.

Suppose m is an integer such that m = ( = 1az19r"

Solution
n
n| (k) whenever gcd(k,n) = 1. Note this is a sufficient condition but not a necessary one. For

19) = 210 but ged(10,4) # 1.

example, 10| ( 4

It is a classical result that p| (Z) for all k whenever p is prime.

In the above problem we simply need to note that 151 is prime. Therefore, the largest prime
- 151\ .
divisor of( 9 ) is 151.

https://math.stackexchange.com/questions/545962/when-is-binomnk-divisible-by-n

Example
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Letn = 28 andletp = 3. Then
—[28J+[28J+[28]—9+3+1—13
=B el T 27l T =
and hence by Theorem 2.29,

p13)128!

Pg. 65

By Theorem 2.28,
_n_
-

p* p

so, we can simplify this algorithm a bit to

w |G
e==ng—F lgj +—-€;— + oo

In particular,

LI
o~ [ o B [ s

The preceding computation of the exponent of 3 in the canonical representation of 28! bears a
marked resemblance to the calculation of the digits in the positional representation of 28 to
base 3. That this resemblance is more than superficial is shown by the following theorem.

Pg. 66, Theorem 2.30
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If pis prime and if
n=ay+ap+ap*+-+ap’

with a,, # 0 and 0 < a; < p for each i, and if p®|In!, then

_n—(agta; ++a)

e p—l

Example

Note that 28,, = 10015. Therefore, using the formula of Theorem 2.30, we again obtain

28— (140+0+1)

1
3—-1 3

e

as the exponent of 3 such that 3¢||28!
Theorem

51+ 52l # lgsl + -+ g

zeros are there at the end of n! where k is that integer such that 5% < n < 5k*+1,

Example
How many zeros are there at the end of 1000!?

Solution

There are llOSOOJ + llggOJ + l1102050] + l1602050 = 249 zeros at the end of 1000!

The following problem is an interesting twist on the problem of counting the number of zeros at
the end of n!.
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Exercise (Source: 2005 Lehigh University High School Math Contest, Problem #25)
How many 0’s occur at the end of the decimal expansion of 1001°° — 100!?
Solution

100! has

L0 ¢ 90 4 [229] 4 = 2040 = 24
5 52 53 B B

terminal zeros. In contrast, 1001°° = 102°° has 200 terminal zeros.
It follows that
100100 - 100' = 1 . 10200 + + C241024 + C231023 + + C1101 + C0100

_1-10*°°40-10" 440 -10"+-++ 0 -10**+0-10** +--+0-10' +0-10°
a, 10"+ -+ az, -102*+0-1023 +--+0-101 +0 - 10°

for some nonzero base 10 digits a,- and a,,. Written in this form we can see that ¢;, = 10 —

Ayy * 0 Wh||e Crz3 = Cypp =+ =(C =Cy = 0.

That is 1001°° — 100! has the same number of terminal zeros as 100!, namely 24.

[
Exercise
Pg. 68, Ex. 9
Find the exponent e such that 3¢||91!
Solution
[
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Exercise

Pg. 68, Ex. 10

Prove that 3 does not divide the binomial coefficient (2(1))

Solution

Exercise
Pg. 68, Ex. 11

Find the highest power of 10 that divides 91!

Solution

Exercise

14. Let n be a positive integer. Show that the power of the prime p occurring in the prime-

power factorization of n! is
[ p ] [ p ] [ 14 ]
2 3 :

Solution
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Exercise

15. Use Exercise 14 to find the prime-power factorization of 20!.
Solution

The largest prime in 20!is 19. So

20! = 2923%35%579711%1113%1317%719%0

where
20 20 20
= [?]* [?]* [F]+”"
]
Exercise
16. How many zeros are there at the end of 1000! in decimal notation? How many in base
eight notation?
_ [1000]+[1000]+ [1000]+ [1000
=75 25 125 625
Solution
]
Source: MSHSML 4T046
6. Find the largest integer n for which 7" will divide 600! (That's 600 factorial.)

Solution
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The factors

t2--[7-- a1l ... '594.[357]-._.
contribnte 85 7%,

The facters

bpees Le4q]--- [i2eaq].. .
contribure an additonad
2. 75

The 'Pac.*l'ur- [73_] cantri
butes | more 7,

S+t +] = 98

|
(3T815)
Meet 3, 1981-82 Team Event
5. By definition, n! =nn - 1@ - 2) -— (2) (1); thus, 5! = 120, 6l = 720, etc.
What is the highest power of 3 that will divide 100! ?
Solution
llOOJ + llOOJ + llOOJ + l100 =33+11+3+1=48
3 9 27 81] e
|

6.5 Highest Power of p that divides n! in Base b
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6.6 Number of Terminal Zeroes in n! Base 10

(4C002)
2. If written out as an integer, the number 50! would terminate in a series of zeroes.

How many?

Solution
There are more thanw 25 fockors of 2, plenty ‘o par with  available 5%, Ccunf-5}
50! = t2.. 56 9@ (35eis__ (4-5).___ (58 __ €5 _ __. (9:5).__ (255

There are 4twelve facors of s, hence twelve 05'

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #12

12)  Find the number of zeros at the end of (2007!)2 :
A) 499 B) 500 C) 999 D) 1,000 E) NOTA

Solution
12) The number of zeros in 2007! 1s found by dividing 2007 by powers of 5:
|2007/5]=401,[2007/25 |=80,[2007/125|=16,|2007/625 |=3; 401+80+16+3 = 500.
When raising a number to a power, we multiply the power by the number of zeros to get the total
number of zeros: 500-2 =1000 D

|
6.7 Number of Terminal Zeroes in n! Base b
https://math.stackexchange.com/questions/1563986/factorials-in-different-base
Suppose that b = pflpécz --~pft.
Let
1 /|n n n
m= gl * o) * o)+ )

Then the number of trailing zeros of n! in base b will be

miin([mij).

253
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(not yet positive about this but I’'m starting to believe it)

How do I find the number of trailing zeroes of N factorial in
Base B?

If B is prime, search for the exponent of B in the prime factorization of N!,

o= [+ ]

(keep adding terms until you obtain zero, i.e, until B¥ > n). expyp is the number of trailing
zeroes.

If B is not prime, but is the product of prime factors to the first power, choose the greater of

them (say p) and perform the above calculation for it. €XP, will be the number we're
searching for.

If there are repeated prime factors, be more careful. For example, if B = 12 = 92 3,
calculate exp, and e€xp3, and then compare |[exp, /2| with exps. The least of them will
work. For example, if n = 8, exp, = 7 and exp; = 2, hence |exp, /2] = 3 > exp;, but if
n=29,exp, =7, and expy = 4, then the relation is reverted.

This doesn't mean we need to calculate every exponent, for example if B = 60 = 9%:3:5,
exp3 will be ever less than €Xps, therefore there is no need to calculate €xp3. On the other
hand, exps is always less or equal to €xp, /2, and hence the only exponent we need is €Xps .

For 10 we check the largest prime factor powers(powers of 5) of 10. So in any
base we should find the number of largest prime factor exponent of 10(in that
base). For example in base 26, it's 13.

(unsure about this)

(TD864) When written in base three, a positive integer p has two terminal zeroes. When
written in base four or five, the integer p has one terminal zero. In how many positive integral
bases greater than one, other than those already mentioned, must the representation of p
have at least one terminal zero?

Solution
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a base b
fpio =Cr-b" + c,_1b"" 1 + -+ + ¢, b + ¢, where b is an integer greater than or equal to 2
and¢; € {0,1,2,...,b — 1} foreach j = 0,1, ..., 7, then we write p;, = a;, where

ab frd (C_T'CT'—I eee ﬁ@).
For example, we write

893110 = 350167
because

8931,,=8931=3-7*+5-73+0-72+1-7' +6-7°.
Terminal Zeroes in Base b
Suppose p1g = (c_r Croq " Ck 00 --- 00) withr > k. That is suppose

k zeroes 7 p

Pio=Cr b +crb" M+ b +0- b+ 40 b +0.

k zeroes
In this case we can factor out b*.

Pio =Cp - b" 4+ cp_ b1 + - + ¢ bF
=bk(c, b K+ TR 4+ 4 ).
This shows that

P10 = <C_rcr—1 ¢ 00 - 00> & b*|pso.

k zeroes / p

Recall that b*|p;, means that b* divides p;, or equivalently b* is a factor of p;,. We need this
result to solve this problem.

In this problem we are given the information that the base 3 representation of p (base 10) has
(at least) 2 terminal zeroes and when p is represented in base four or five, the integer p has (at
least) one terminal zero.

From our above result this tells us that

Base3 p=x*--x00 = 32|p
Base4 p =x--*x0= 4lp
Base5 p=*-*x0 = 5!|p.

From here it follows that
p=32-41.51.m=3%2.22.5'.m
where m is an arbitrary integer.
Now we come back to the original question. For what positive integral bases greater than one,
other than bases 3, 4 and 5, must the representation of p have at least one terminal zero?
What about base 6? Can we be sure that 61|p? We can see that it does because
p=32-22.5'.m=61-31.21.51.m,
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It is clear that every base number b of the form b = 235" with r; € {0,1,2}, , € {0,1,2},
and r3 € {0,1} will divide p = 32 - 22 - 51 - m.

This leads to the enumeration problem where there are 3 choices for r;, 3 choices for r, and 2
choices for r3. Combined this leads to a total of 3 X 3 X 2 = 18 base numbers — except that
this includes b = 1,3,4,5 which we were told to not include in the final count.

Hence there are 18 — 4 = 14 additional base numbers where p expressed in that base must
have at least one terminal zero.

[
] @ Find the highest power of 2 December 1992
How many consecutive 0’s are at the that divides 28!
end of 28! when written in base eight? 98-9 18-92' 8-9°
26-2' 16-2' 6-2
24-2° 14-2' 4-2°
2-2' 12-22 2-2
20-2"  10-2'
Thus 2% is the highest power of
2 that divides 28! Since 8° =
(2% =2 8 divides 28! eight
times and so 8 zeros result at the
end of 28! (base eight).
AMC 1965 Problem #33
If the number 15!, thatis, 1514 - 13 -:- 1, ends with k zeros when given to the base 12 and
ends with h zeros when give to the base 10, then k + h equals:
[(A)5 [(B)6 [(Q7 [(D)8 [(E)9 |
Solution
[
AMC 1970 Problem #23
The number 10! (10 is written in base 10), when written in the base 12 system, ends with
exactly k zeros. The value of k is
[(A)1 [(B) 2 [(©)3 [ (D) 4 [(E)5
Solution
[
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1999 Mu Alpha Theta National Convention, Number Theory Test, Alpha Division, Problem #26
How many zeros are at the end of (22!)? when it’s written in base 4?

Solution

Suppose my, = n,. Thatis, the base 10 m equals the base b integer n. Then the number of
zeros at the end of n;, equals the largest positive integer k such that b*|m,.

So, in this problem we are looking for the largest k such that 4%|(22!)2.

From Legendre’s Theorem we know that if n is a positive integer and p is a prime, then p®lin!,

R

and r is determined by n by the inequality p” < n < p"*+1.

This problem comes with two “twists”. First the base 10 number of interest is (22!)? instead of
just 22!, (i.e. Legendre’s Theorem does not directly apply.)

The second “twist” we want to find the highest power of 4 that divides our number of interest
and 4 is not a prime number. (i.e. we have a second reason why Legendre’s Theorem does not
directly apply.)

However, if p*||n for some prime p, then (p?)¥*||n%. Applying this result to our problem, if
2k||22! then 4F||(221)2.

But Legendre’s Theorem applies directly to finding the value of k such that 2¥||22!. From
Legendre’s Theorem we see that

k—l22J+l22J+l22J+l22J—11+5+2+1—19
L2 4 8 16] oo

Therefore, the largest k such that 4%(|(22!)% must be 19.

Note: We could have also used the result:
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If pis prime and if
n=ay+ap+ayp*+--+ap’

with a,, # 0 and 0 < a; < p for each i, and if p¢||n!, then

_n—(agta; ++a)

e p—l

6.8 Sum of Factorials Mod n

(Koshy, page 242)
Find the remainder when

20. 114 2!+ ---+ 100! is divided by 11.
21. 11420+ -+ 300! is divided by 13.

EXAMPLE 4.4 Find the remainder when 1! 42! 4- ...+ 100! is divided by 15.

SOLUTION
Notice that when k > 5, k! =0 (mod 15) (why?). Therefore,

H+204--+ 1000 =114+ 2!4+3'4+4! 40+ - - + 0 (mod 15)
=14+2+6+24 (mod 15)
=1+2+40 (mod 15)
= 3 (mod 15)

Thus, when the given sum is divided by 15, the remainder is 3. [ |

6.9 Extra Factorial Problems

Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #10
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10)  Find the largest positive integer, n, such that #! is NOT congruent to O(mod 200).
A) 10 B) 50 C) 100 D) 200 E) NOTA

Solution
10) 200 = 2° - 5% In order for 7! to not be congruent to 0(mod 200), then it cannot contain all of

the factors of 200. 10!=2*.3*.5%.7 which is congruent to0(mod 200) and 91=27.3*.5.7
which is not congruent. Thus the largest value is 9 E

AMC 1965

33. If the number 151, that is, 15-14+13 +++ 1, ends with & zeros when given

to the base 12 and ends with & zeros when given to the base 10, then
k + k equals:

(A)Ss (B)6 (C)7 (D)8 (E)9

Solution

mathcloset.com 259



Chapter 7. Linear Congruence Equations

Develop more before launching into systems

Theorem

Ifa,b,cyi,cy,...,cqp € Zandif ¢y, Cy, ..., cpy are pairwise relatively prime, then

a =bmodc;
a = b mod c,
a=bmod (¢ ¢y cp) & :
a=bmodc,_4
a = b mod ¢,

1 Find the smallest number that

when divided by each of the in-
tegers 2,3,4,5,6,7, 8, 9, and 10 will give
a remainder that is 1 less than the
divisor.

January 1989
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Let x be the number. Then
xmod(2) =1= (x+1)mod(2) =0

xmod(3) =2 = (x + 1)mod(3) = 0 % + 1 is divisible by 2,3,4,5,6,7,8,9 and 10.

xmod(4) =3 = (x + 1)mod(4) =0 The LCM(2,3,4,5,6,7,8,9,10) is the smallest

xmod(5) =4 = (x+1)mod(5) =0 integer divisible by all these numbers.
xmod(6) =5 = (x+1)mod(6) =0 x +1=LCM(2,3,4,5,6,7,8,9,10)
xmod(7) =6 = (x+1)mod(7) =0 x = LCM(2,3,4,5,6,7,8,9,10) — 1
xmod(8) =7= (x+1)mod(8) =0 x=.2520 =1 = 2519.

xmod(9) =8 = (x+1)mod(9) =0
xmod(10) =9 = (x + 1) mod(10) =0

2.2 Linear congruences in one variable

Theorem 2.7 (Solutions of linear congruences in one variable). Let a,b € Z and m € N, and
consider the congruence

(2:1) ax = b mod m.

Let d = (a,m).

(i) (Exzistence of a solution) The congruence (2.1) has a solution x € Z if and only if d | b.

(ii) (Number of solutions) Suppose d | b. Then ax = b mod m has exactly d pairwise incongru-
ent solutions x modulo m. The solutions are of the form x = xo+km/d, k =0,1,...,d—1,
where xg is a particular solution.

(iii) (Construction of a solution) Suppose d | b. Then a particular solution can be constructed
as follows: Apply the Euclidean algorithm to compute d = (a,m), and, working backwards,
obtain a representation of d as a linear combination of a and m. Multiply the resulting
equation through with (b/d). The new equation can be interpreted as a congruence of the
desired type, (2.1), and reading off the coefficient of a gives a particular solution.
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Corollary 2.8. Let a € Z and m € N. If (a,m) = 1, the congruence
(2.2) ar =1 mod m

has a unique solution x modulo m; if (a,m) # 1, the congruence has no solution.

Definition 2.9 (Modular inverses). A solution x to the congruence (2.2), if it exists, is called
a modular inverse of a (with respect to the modulus m) and denoted by a.

Remark. Note that @ is not uniquely defined. The definition depends implicitly on the modulus
m. In addition, for a given modulus m, @ is only unique modulo m; i.e., any * € Z with
x =a mod m is also a a modular inverse of m.

7.1 Chinese Remainder Theorem
Theorem 2.10 (Chinese Remainder Theorem). Let ay,...,a, € Z and let my,ma, ..., m, € N
be given such that (m;,m;) =1 fori# j. Then the system
(2.3) x = a; mod m; (4 =1; 2057)
has a unique solution x modulo my ---m,.

Corollary 2.11 (Structure of residue systems modulo my ---m,.). Let my,...,m, € N with
(mi,mj) = 1 for i # j be given and let m = my---m,. There exists a 1-1 correspondence
between complete systems of residues modulo m and r-tupels of complete systems of residues
modulo my, ..., m,. More precisely, if, for each i, a; runs through a complete system of residues
modulo m;, then the corresponding solution x to the simultaneous congruence (2.3) runs through
a complete system of residues modulo m.

Theorem

Let a,, a, ..., a, € Z (set of integers) and let m;, m,, ..., m,- € N (set of positive integers) with
(mi,mj) = 1fori # j be given. Let M = m, - m, ---m,. Let M\; = M /m;. Then the single
congruence equation

r

T
ZML- X EZML-aL- (mod M)
i=1

i=1
has the same unique solution (mod M) as the system of equations

x = a; (modm,)
a, (modm,)

x = a, (modm,).
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Systems of Linear Congruences

A general system of simultaneous linear
congruences

a,x = b (modn,)
ayX = by(modn,)

a,x=b,.(modn,)
can be simplified to the form

x=¢ (modm,)
x=cy(modmy)

x=c,(modm,)

by dividing each congruence through by (a;,n;),

then multiplying by the inverse mod m; = (a:;i) of

the coefficient m%T The simplified system may or
may not be solvable, but in any case, it must have
the same set of solutions as the original system.

Theorem 1. If (a,m) = 1, then the congruence axr = b mod m phas exactly one solution
modulo m.

Theorem 2. Consider the congruence ax = b (mod m).
1. The congruence has a solution if and only if (a,m) | b.

2. If ug is any particular solution, then a complete set of solutions is:
m 2m (g—1)m
Ug,Up + —, U T ——, ..., U T~

g g g

where g = (a,m). Thus there are g solutions.
3. A particular solution ug can be obtained by solving the congruence
a b m
—r=—- (mod —)
g g g

This is possible since (E, E) = 1. (See last theorem.)
g9
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Generalization to non-coprime moduli |edit]

The Chinese remainder theorem can be generalized to non-coprime moduli. Let m, n, a, b be any integers, let
g= gcd(m, n) and consider the system of congruences:

z=a (mod m)

z=b (mod n),
lfa=b (mod g),then this system of equations has a unique solution modulo lem(m, n) = mn/g. Otherwise, it has
no solutions.
If we use Bézout's identity to write g = um + wvn, then the solution is
avn + bum

g

This defines an integer, as g divides both m and n. Otherwise, the proof is very similar to that for coprime moduli.

https://forthright48.com/chinese-remainder-theorem-part-2-non-coprime-moduli/

To prove this, we begin by observing a general principle: if a and b are
relatively prime, then two simultaneous congruences of the form

x=«a (moda), x=p (modb>b) (7)

are precisely equivalent to one congruence to the modulus ab. For the first

Example lllustrating the Chinese Remainder Theorem

Find the least nonnegative solution of the system of linear congruences

x =1 mod 2
x =2 mod 3
x=1mod5
x = 5mod 7.
Answer: 131.
Proof:

By the Chinese remainder theorem, provided the moduli (m; = 2,m, = 3, m3 = 5,and m, = 7) are
pairwise relatively prime, there will be a unique solution x’ (moduloM = m; -m, -mg-my =2-3-5-
7 = 210) of the form

x’ = blMlxl + szzxz + b3M3X3 + b4_M4_X4_
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where b; = 1,b, =2,b; = 1,and b, = 5, M; = M/m; and x; is the unique solution to M;x = 1 mod
m;.

Clearly, the moduli 2,3,5 and 7 are pairwise relatively prime so we can proceed to find x’ via the CRT
(Chinese remainder theorem).

First, we need to find the M; = M/m,;.
M, =210/2 = 105
M, = 210/3 = 70
M; = 210/5 = 42
M, = 210/7 = 30.

The next step is find the x;, the solutions to the linear congruences M;x = 1 mod m,;. That s, solve

105 x; = 1 mod 2
70 x, = 1 mod 3
42 x; =1mod5
30 x, = 1 mod 7.

(Remember that part of the proof of the CRT was to show that the x; will exist and will be unique
modulo m;.)

We have already learned how we can work back up through the Euclidean algorithm or by using
Blankinship’s algorithm to solve the general linear congruence ax = b mod m (Section 2.2).

However, for moduli this small it is probably easier to find the solutions by brute force.
We know that the unique solution (modulo 2) to
105 x; = 1 mod 2

must be 0 or 1. So simply check both possibilities and see which one works!

We see that

105 (0) = 0 mod 2
but

105 (1) = 1 mod 2.
Sox; =1.

We know that the unique solution (modulo 3) to

70 x, = 1 mod 3
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must be 0,1 or 2. So simply check all three possibilities and see which one works!

We see that
70 (0) = 0 mod 3
70 (1) = 1mod 3
70 (2) = 2 mod 3.
Sox, =1.

We know that the unique solution (modulo 5) to
42 x; = 1mod 5

must be 0,1,2,3 or 4. So simply check all five possibilities and see which one works!

We see that
42 (0) =0mod 5
42 (1) =2mod 5
42 (2) =4 mod 5
42 (3) =1mod5
42 (4) = 3mod 5.
So x3 = 3.

Finally, we know that the unique solution (modulo 7) to
30 x, = 1 mod 7

must be 0, 1,2,3,4,5,6 or 7. So simply check all seven possibilities and see which one works!

We see that
30(0) =0mod 7
30(1) =2mod 7
30(2) =4mod7
30(3) = 6mod?7
30 (4) =1 mod7
30(5) =3 mod?7
30(6) =5mod 7

So x4 = 4.
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Therefore the desired unique solution moduloM =2-3-5-7 =210 s

= b1M1x1 + szzXz + b3M3x3 + b4M4_X4_
= (1-105-1) +(2-70-1) + (1-42-3) + (5-30 - 4)
= 971.

However, we can find a smaller nonnegative solution! We see that
971 =4-210 + 131.
Therefore, 131 = 971 mod 210. We also note that 0 < 131 < 210 which tells us that 131 is the least

nonnegative solution.
[

TAO54

What is the smallest integer such that division by n leaves a remainder of n-1 for
n=23, ..., 10; thatis, division by n =2 leaves a remainder of 1, division by

n =3leaves a remainder of 2, etc., through n = 107

17943

Find the smallest positive integer k having the properties
(a) itis divisible by 13
(b) it has a remainder of 1 when divided by any of the numbers 2, 3, ...,12.

1A104
A certain positive integer is three greater than a multiple of 5, five greater than a multiple of 8,
and eight greater than a multiple of 13. Determine the value of the least such integer.

Solution
Let x be the integer we are looking for. Then

x is three greater than a multiple of 5 & x = 3 mod(5) (1)
x is five greater than a multiple of 8 & x = 5 mod(8) (2)
x is eight greater than a multiple of 13 < x = 8 mod(13). (3)

By the Chinese Remainder Theorem the value of x is uniqgue mod(5 - 8 - 13) = mod(520).
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Chinese Remainder Theorem: Let m;, m>, ..., m, be pairwise relatively prime positive
integers greater than one and a,, a5, ... , a, arbitrary integers. Then the system
x=a,(modm,)

x=a,(modm,)

x=a,(modm,)
has a unique solution modulo m = m; m> ... m, That is, there is a unique solution
0 = x <m, and all other solutions are congruent modulo m to this solution.

From (Eg. 1) we know that x is three greater than a multiple of 5 & x = 5k + 3 for some
integer k. Consider both sides of (Eq. 1) mod(8).
x mod(8) = (5k + 3) mod(8).
But from (Eq. 2) we also know that
x = 5mod(8).
Therefore
xmod(8) = (5k + 3) mod(8) = 5mod(8)
or
(5k + 3) = 5mod(8)
which implies
5k =5 —3 = 2mod(8).

What does the statement 5k = 2 mod(8) really mean? Because we are working mod(8) we

must have k € {0,1,2,3,4,5,6,7}. So we are looking for that value of k € {0,1,2,3,4,5,6,7} such
that 5k has a remainder of 2 when divided by 8. We can see by inspection that k = 2 satisfies
this requirement because 5k = 5(2) = 10 has a remainder of 2 when divided by 8.

But if we were working mod(488) then k € {0,1,2,3, ...,486,487} and it may take you forever
to find k “by inspection”. We need a systematic approach.

7.2 Euler’s Systematic Reduction Method

Find k such that 5k = 2 mod(8) using Euler’s Systematic Reduction Method.
5k = 2mod(8)
& 5k = 8a + 2 for some integer a
< 5kmod(5) = (8a + 2) mod(5)
< 0= (3a+ 2)mod(5)
< 3a + 2 = 5b for some integer b
< (3a + 2) mod(3) = 5hb mod(3)
< 3amod(3) + 2mod(3) = 5h mod(3)
< 2mod(3) = 5h mod(3)
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< 2 = 2bmod(3)
& 2b = 3c + 2 for some integer ¢
< 2bmod(2) = (3¢ + 2) mod(2)
< 0 = cmod(2).
So, we have systematically reduced the problem of finding k € {0,1,2,3,4,5,6,7} such that 5k =
2 mod(8) to the easier problem of find ¢ € {0,1} such that ¢ = 0 mod(2). Now we can
immediately see that ¢ = 0 satisfies ¢ = 0 mod(2).
Now work your way back up the if and only if (i.e. &) statements
c=0
2b=3c+2=2h=2<=b=1
3a+2=5b=3a+2=5o3a=3=a=1
S5k=8a+2=5%=8+25%k=10=k =2.

So k = 2, which is the same answer we got “by inspection”. More specifically,
5k = 2mod(8) & k = 2 mod(8).
Thatis, k € {2,10,18,26,34,42,50,58,66,74, ... }.

Now consider both sides of (Eq. 1) mod(13).
xmod(13) = (5k + 3) mod(13).
But from (Eg. 3) we also know that
x = 8mod(13).
Therefore
xmod(13) = (5k + 3) mod(13) = 8 mod(13)
or
(5k + 3) = 8 mod(13)
which implies
5k =8 — 3 = 5mod(13).

Now we want to find that value of k € {0,1,2,3,4, ...,11,12} such that 5k has a remainder of 5
when divided by 13. We can see by inspection that k = 1 satisfies this requirement because
5k = 5(1) = 5 has a remainder of 5 when divided by 13.

5k = 5mod(13) © k = 1 mod(13).
Thatis, k € {1,14,27,40,53,66,79,92,105, ... }.

The smallest positive value of k that is in both lists is k = 66. Therefore,
x =5k + 3 =5(66) + 3 = 333mod(520).

(TA054)
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4. What is the smallest integer such that division by n leaves a remainder of -1 for
n=23,...,10; thatis, division by n =2 leaves a remainder of 1, division by
n = 3leaves a remainder of 2, etc., through n = 107

Solution

Let the numben be M. Then

(for m5+vmce) M‘=3K+8-; H+l=3(k+l)
Vo M+ has 3 for a divisor; and
so on for n=2,4,5,---, 10,

2

Mél = lem §2,3,4, .-, 1o}

Mt = 23. 3% 5.7 =2520
M =259

7.3 Extra Linear Congruence Problems

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 9
What is the smallest positive prime number that leaves a remainder of one when divided by
both 3 and 11?

Solution

9. There is a simple theorem in modular arithmetic that says that when we are looking for
a set of number s with the same congruence in two different mods, then we are looking
for the set of numbers that has that same congruence in the LCM of the two previous
mods. The LCM of 3 and 11 is 33. We are looking for the smallest prime with a
congruence of 1 (mod 33). A quick search reveals 67 as the answer.

3|(x—1)and 11|(x — 1) = 33|(x — 1)
(x —1) € {33,66,99, ...}
x € {34,67,100, ...}
Smallest prime value of x is 67.

mathcloset.com 270



Mu Alpha Theta National Convention 2007, Mu Division, Number Theory Test, Problem #29
29)  Given that x is a positive integer less than 100, find the sum of all possible values of x
such that 28x =2 (mod54).
A) 58 B) 96 C) 144 D) 170 E) NOTA

Solution
29) 28x = 2(m0d 54) is the same thing as saying: find an integer solution to 28x+54y =2, a
linear Diophantine equation. This is equivalent to 14x+ 27y =1. Using the Euclidian
algorithm, an initial solution 1s x, =2 and y, = —1. All possible solutions are in the form
x=2+27t and y =—1-14¢. The integer values of x less than 100 are 2, 29, 56, and 83. D
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Chapter 8. Fibonacci Numbers

8.1 Definition

The Fibonacci sequence F,, F,, F5, ... is defined by the recurrence relation F,, .1 = F, + F,,_1.
F; and F, need to be specified in order to initiate the recurrence. The standard set of initial

values are F; = 1 and F, = 1. But for some problems it is sufficient to state that F; = a and

F, = b without assigning particular values to a and b.

In the standard model with F; = 1 and F, = 1, the first five numbers in the sequence are

F1=1 F2=1 F3=2 F4=3 F5=5

In some textbooks the Fibonacci sequence starts at F; instead of F;. Notice that taking the
initial values F, = 0 and F; = 1 with the recurrence F,,,; = F,, + F,,_; leads to the same value
for F,, n = 1,2,3, ... as the “standard” model. That is, with this alternative definition we get

8.2 gcd(F; F;)

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #14
The Fibonacci sequence is defined such that the first two numbers in the sequence are both 1
and each successive number is the sum of the two previous numbers in the sequence. The first
5 numbers in the sequence are 1,1,2,3, and 5. What is the greatest common divisor of the 23rd
and 24th numbers in the Fibonacci sequence?
Solution
The two important results to remember are
@) Fpyr =B+ Fyq
(ii) gcd(a,b) = ged(a+ b, b).
Repeatedly using these two results we can see why gcd(F,, F,,_;) = 1 for all n.
gcd(Fz4, Fa3) = ged(Fa3 + Fap, Fa3) = ged(Fpy, Fas)
gcd(Fy3, Fyp) = ged(Fyp + Fay, Fap) = ged(Fyyq, Faz)
gcd(Fy, F>1) = ged(Fpq + Fag, F21) = ged(Fyo, Fa1)

gcd(F,, F;) = ged(1,1) = 1.
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Theorem

ng(fm' fn) = fgcd(m,n)

min  flfa
Proof

Use the identity 9,41 = ®m-19n +PmPn+1- Based on this, we can prove k | n =
@k | ¢, by induction on n/k. For the converse and the claim concerning the gcd,
verify that a = bq + r implies (¢4, ¢p) = (¢p, @,). An alternative method: Show
that for every m, the indices of the Fibonacci numbers divisible by m are just the
multiples of the index of the smallest Fibonacci number with this property.

8.3 Fibonacci Numbers Mod m
Let Fppy = F, + Fy_1andlet F; = aandlet F, = b. Let hy,,, = F, mod(m). Then

F, ., mod(m) = (F, + F,,_,) mod(m) = (E, mod(m) + F,_; mod(m)) mod(m).

That is,
hnsim = (hn,m + hn—l,m) mod(m).

The sequence hy , hy 1, Rz, ... is periodic.

In mathematics, a periodic sequence (sometimes called a cyclelctationneededly s 5 sequence for
which the same terms are repeated over and over:

ai, a, ..., dp, ai, a, ..., ap, ai, ay, ..., ap, ...[caton needed]

Py es

The number p of repeated terms is called the period (period).!

A (purely) periodic sequence (with period p), or a p-periodic sequence, is a sequence ai, a,
as, ... satisfying One size fits all

a.n+p = adn
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[2 for all values of n IHEIAIBIEL |f 5 sequence is regarded as a function whose domain is the set of
natural numbers, then a periodic sequence is simply a special type of periodic function,ctation
needed] The smallest p for which a periodic sequence is p-periodic is called its least period2ld or
exact period_[ﬂ[verification needed]

A periodic sequence is one that repeats itself. The period, p, of a periodic sequence is the
number of terms in each repetition.

In number theory, the nth Pisano period, written as rt(n), is the period with which the sequence
of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo
Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers
was noted by Joseph Louis Lagrange in 1774.2121

So the study of Pisano periods may be further reduced to that of Pisano periods of primes. In this regard, two primes are anomalous. The prime
2 has an odd Pisano period, and the prime 5 has period that is relatively much larger than the Pisano period of any other prime. The periods of
powers of these primes are as follows:

.ok
o 1fn=2 thenz(n) =321 =3Z = 3.

« if n=5K then z(n) = 20-5+1 = 225 = 4,

From these it follows that if n = 2- 5% then 7(n) = 6n.

Lemma 6.3.9: The Fibonacci sequence (mod m) is periodic.
Proof (from [28])
Modulo m a term will be equivalent to some value from 0 to m — 1, or one of m possible
values
Therefore, when adding two terms (mod m) we can have m? possible outcomes.
Since this is a finite number of outcomes, we can guarantee that at some point the pairs will

repeat and the sequence will start over again.

https://sites.math.rutgers.edu/~zeilberg/essays683/renault

http://webspace.ship.edu/msrenault/fibonacci/fib.htm

3. Corollary 2. If m has prime factorization m = p{'p5* -+ py", then z(m) = [z(p'), #(p3’), ..., 2(py")].

4. Given a prime p, let 7 be the largest integer such that z(p") = z(p). Then z(p®) = p*'z(p) for all
e=1

= For example, 7(3') = 8, but z(3?) = 24. Thus for the prime 3, = 1 and we have the formula
7(3¢) = 3¢7! . 8. Similarly, we find that z(7) = 16, but z(7%) # 16. Thus, z(7¢) = 7°~" - 16.
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Definition The period of the Fibonacci sequence modulo a positive integer j is the
smallest positive integer m such that F,, =0 (mod j) and F,,,;; =1 (mod j).

Let FTL+1 == FTL + Fn—l and Iet F1 - FZ - 1 F|nd F324 m0d(4).
Solution
Let by, . = F, mod(m). It follows from the Fibonacci recurrence that

F, ., mod(m) = (E, + F,_;) mod(m)

= (E, mod(m) + F,_; mod(m)) mod(m)
That is,

bn+1,m = (bn,m + bn—l,m) mod(m)

Mu Alpha Theta National Convention 2001, Number Theory Test, Alpha Division, Problem #
39

Let F,,y1 = E, + F,_1 andlet F; = F, = 1. Find the smallest positive integer m such that
Fpim = E, (mod 7) for all integers n.

(A) 8 (B) 12 (C) 16 (D) 24 (E) NOTA

Solution

39. The Fibonacci numbers will always be cyclical in any mod because a term is defined by
its predecessors and there are a limited number of possible combinations for a pair of
predecessors which would then produce the same cyclical pattern each time that pair
occurs. The trick is just to write down the modular residues of the Fibonacci numbers
(mod 7) until the cycle is found: 1, 1, 2,3,5,1,6,0,6,6,5,4,2,6,1,0, 1, 1, etc. The 1st
pair of terms (1, 1) reappeared as the 7™ pair. The cycle is thus a 16-cycle, thus m =
16.

8.4 Fibonacci Number Identities

https://www.cut-the-knot.org/arithmetic/algebra/FibonacciGCD.shtml

(see file “Fibonacci HW #2")
fitfat+ o+ fono1 = fon
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f1=1;f2=1;f3=2,...
fn+m — fn—lfm + fnfm_|_1.

Any two consecutive Fibonacci numbers are coprime.

8.5 Extra Problems for Fibonacci Numbers

AMC 1992 Problem #18
The increasing sequence of positive integers a4, a,, as, ... has the property that
Apinz = Ay + ayyq forall n > 1.
If a; = 120, then ag is
| (A) 128 | (B) 168 | (C) 193 | (D) 194 | (E) 210 \

Solution

18. (D) If a; = a and as = b then (a3, a4, as, ag, ar, ag) =

(a+b, a+2b, 2a+3b, 3a+5b, 5a+8b, 8a+13D).

Therefore 5a+8b = ay = 120. Since 5a = 8(15—0b) and 8 is relatively
prime to 5, a must be a multiple of 8. Similarly, b must be a multiple
of 5. Let @ = 8j and b = 5k to obtain 40;5 + 40k = 120, which
has two solutions in positive integers, (7, k) = (1,2) and (2, 1). When
(j,k) =2,1), (a,b) = (16, 5), which is impossible since the sequence
is increasing, so (j, k) = (1,2) and (a,b) = (8,10). Consequently,
ag = 8a + 13b = 194.

Note. This sequence begins with the eight terms

8,10, 18, 28, 46, 74,120, 194.

a3:a1+a2
a4:a2+a3:a2+a1+a2:a1+2a2

mathcloset.com 276



as = as + a, = (a; + a,) + (a; + 2a,) = 2a, + 3a,
ag = a, + as = 3a, + 5a,
a; = as + ag = 5a4 + 8a,
ag = 8a; +13a,

5a1+8a2 = 120, 1 Sal < a,

3a,
a1+a2 +T=24‘

120 = 5a; + 8a, = 5a, + 40p

5a, =120 —40p
a, =24 —-8p,a, =5p

The only positive solutions for both a; and a, happen whenp = land p = 2
a, =16,a, =5
a, = 8,a, = 10.
Buta; <a,soa; =8anda, = 10.
Therefore,
ag = 8a, + 13a, = 8(8) + 13(10) = 64 + 130 = 194.

Mu Alpha Theta National Convention 2001, Number Theory Test, Alpha Division, Problem #

39
Let Fy.q = F, + F,,_y and let F; = F, = 1. Find the smallest positive integer m such that
F,+m = F, (mod 7) for all integers n.

(A) 8 (B) 12 (C) 16 (D) 24 (E) NOTA

Solution
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39. The Fibonacci numbers will always be cyclical in any mod because a term is defined by
its predecessors and there are a limited number of possible combinations for a pair of
predecessors which would then produce the same cyclical pattern each time that pair
occurs. The trick is just to write down the modular residues of the Fibonacci numbers
(mod 7) until the cycle is found: 1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1, 1, etc. The 1st
pair of terms (1, 1) reappeared as the 7™ pair. The cycle is thus a 16-cycle, thus m =
16.

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 10
How many of the first 400 Fibonacci numbers are multiples of 3? (Let the first two Fibonacci
numbers both be 1.)

Solution

10. Rewriting the Fibonacci numbers in (mod 3) reveals a pattern which repeats in cycles of
4 with only one of the numbers in that cycle being congruent to 0 (mod 3). Thus exactly
100 of the first 400 Fibonacci’s are multiples of 3.

2008 Mu Alpha Theta National Convention Open Number Theory
27. How many of the first 120 elements of the Fibonacci sequence starting with 1,1,... are
divisible by 4?

A. 10 B. 20 C. 30 D. 40 E. NOTA

Solution
27. B. Writing out the first few terms of that sequence mod4 gives 1,1,2,3,1,0,11,... which means it has
a period of 6 and is divisible by 4 once in each period, so 20 times in the first 120.

| am still hoping to find a set of results about the
Fibonacci sequence modulo m.

Fibonacci Series Modulo m
Author(s): D. D. Wall

TuEOREM 1. f, (mod m) forms a simply periodic series. That is, the series is
periodic and repeats by returning to its starting values.
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THEOREM 2. If m has the prime factorization m= [[p% and if h; denotes the
length of the period of f, (mod p5), then h=Ilcm [h;], the least common multiple of

the h;.

Mu Alpha Theta National Convention 2007, Alpha Division, Number Theory Test, Problem #16

16. The Fibonacci Numbers F(n), where n is a natural number, are defined as F(1) =1, F(2) =1,
and for n > 2, defined recursively by F(n) = F(n — 1) + F(n — 2). Let x be the sum of the ten
smallest Fibonacci numbers. What is the remainder when x is divided by 3?

Solution

16. (B). The ten smallest Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 59. The sum
of these 1s 143, which has a remainder of 2 upon division by 3. As an alternative to
adding up these numbers, we could use the fact that the sum of the first n Fibonacci
numbers is F(n + 2) — 1. Since in this problem n = 10, we have F(12) -1 =144 -1 =
143, producing the same result.
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Chapter 9. Pythagorean Triples

If x,y, and z are positive integers such that x? + y? = z2 then we call the triple (x,y, z) a
Pythagorean Triple.

Pg. 60, Definition (Primitive Pythagorean Triples)
If x,y, and z are relatively prime positive integers such that x? + y? = z2 then we call the triple
(x,y, z) a Primitive Pythagorean Triple.

Note: Recall that x, y, z are relatively prime provided (x,y,z) = 1.

Pg. 60, Theorem 2.26 (Pythagorean Triples)

The integers x, y, and z with x even form a primitive Pythagorean triple if and only if there
exists integers s and t, with s < t, with (s,t) = 1 and with one of s and t even and the other
odd, such that x = 2st,y = t? — s?,and z = t% + s2.

Theorem 2.1.1. Every primitive Pythagorean triple (a,b, c) with b even is given by
the formula (u? — v?, 2uv, u? + v?) with u and v relatively prime natural numbers of
different parity and u > v.

n
every Pythagorean triple has the property that
one of the legs is divisible by 3.

Problem 1 (Homework) Prove that in every Pythagorean triple (a,b, c) at least one
of the numbers a, b, ¢ is divisible by 5.

All the conjectures formulated above are true for all primitive Pythagorean triples.
The reader is invited to prove them all.

Exactly one of x, y is divisible by 3.

Exactly one of x, y is divisible by 4.

Exactly one of x, y, z is divisible by 5.

The largest number that always divides xyz is 60.
Z is odd
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All prime factors of z are primes of the form 4n 4 1. Therefore, z is of the form 4n + 1.

9.1 Longest Leg and Hypotenuse Differ By Exactly One

https://en.wikipedia.org/wiki/Pythagorean triple

There exist infinitely many Pythagorean triples in which the hypotenuse and the longest leg
differ by exactly one. Such triples are necessarily primitive and have the form (2n + 1,2n% +
2n,2n% + 2n + 1). This results from Euclid’s formula by remarking that the condition implies
that the triple is primitive and must verify (m? + n?) — 2mn = 1. This implies (m — n)? = 1,

and thus m = n + 1. The above form of the triples results thus of substituting m forn + 1in
Euclid’s formula.

There exist infinitely many Pythagorean triples in which the hypothenuse and the longest leg
differ by exactly two. They are all primitive and are obtained by putting n = 1 in Euclid’s
formula.

More generally, for every integer k > 0, there exist infinitely many primitive Pythagorean
triples in which the hypothenuse and the odd leg differ by 2k?. They are obtained by putting
n = k in Euclid’s formula.

9.2 Legs Differ By Exactly One

Before we find a general parametrization of all primitive Pythagorean triples
let us look also at the case b = a+ 1. The equation becomes a® +a*+2a+1 = ¢? or
2¢* — (2a+1)? = 1. We will see in the last section of this Chapter that this equation
leads to the so called Pell’s equation. We know that there are at least two particular
solutions for this equation: ¢ =5, a = 4 and ¢ = 29, a = 20. One can check that
the following recurrence gives an infinite sequence of solutions:

(py1 = 3a, + 2¢, + 1, and ¢,p1 = 4a, +3c,+2, co=1, ag =0, n € N.

The fact that these formulae generate Pythagorean triples of the form (a,a + 1, ¢),
reduces to a simple algebra calculation and an induction argument. The first ten
such triples that are generated this way are: (3,4,5), (20,21,29), (119,120, 169),
(696,697,985), (4059,4060,5741), (23660,23661,33461), (137903, 137904, 195025),
(803760, 803761, 1136689), (4684659, 4684660, 6625109) and
(27304196, 27304197, 38613965). Is this method generating all of such triples? We
will show that this is indeed the case.

9.3 How do I find all primitive Pythagorean triples with one given number?

Let the given number be denoted by b.
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We invoke the property that all primitive Pythagorean triple can be expressed in the form
(m? — n?,2mn,m? + n?)

with integers m > n > 0 where exactly one of m and n is odd and where gcd(m,n) = 1.

Case 1. bis even.

It must be that b = 2mn because 2mn is the only even number in a primitive Pythagorean
triple.

So, we need to find integers m and n (subject to the above restrictions) such that b = 2mn.
Case 2. bisodd and b = m? — n?.
In this case, b = m? —n? = (m — n)(m + n).

So, we need to find integers m and n (subject to the above restrictions) such that b =
(m —n)(m + n).

Case 3. bisodd and b = m? + n?2.

In this case, b = m? + n?.

Mathematics Teacher, May 1986

One leg of a right triangle has a
length of 48, and the other two
sides have integral lengths. Find
the lengths of the other two
sides.
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Let c represent the length of

the hypotenuse, and let 48
and a represent the lengths of the
legs of the given triangle. Then

(48)% = ¢* — a?,
or
(48)% = (¢ + a)(c — a).

If we divide (48)? into two positive
factors in all possible ways, set

¢ + a equal to the larger factor, set
¢ — a equal to the smaller factor,
and then solve the resulting pairs
of simultaneous equations, the re-
quired solutions will be included
among them,

Since (48)% = 2832, the 27 terms
of the product

(1+2+2242° 4. 429
(1+3+3%

give all its factors, Only even fac-
tors may be chosen for ¢ + a and
¢ — a, since, if one were odd, the
other would have to be even. The
sum of ¢ + a and ¢ — a, that is, 2¢c,
would then have to be the sum of
an odd and an even number, but
this is impossible. We are thus re-
duced to ten possibilities:
c+a=27-3%,27.3;27; 26.32;

26.3; 26: 25.32: 25.3;

24 % 32; 23 o 32
c—a=2,2:3;2-3%;2%.2.83:

9258259398 . 49409

The solutions of these taken in
pairs are

(e, @) = (577, 575), (195, 189),
(73, 55), (290, 286), (102, 90),
(50, 14), (148, 140), (60, 36),
(80, 64), and (52, 20).
(Source: Beiler, Albert H. Rec-
reations in the Theory of Numbers.

New York: Dover Publications,
1964,)

Mu Alpha Theta 1996 National Convention, Open Division, Number Theory, Problem 13

(adapted)
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Let (a, b, c) be a Pythagorean triple such that a, b and c are positive integers witha < b < ¢
and a® + b% = c2. If b = 1996, find a and c.

Solution
b? =c?—a?=(c—a)(c+a).

We note that the sum of these two factors is even. Thatis (c — a) + (¢ + a) = 2c. Also the
difference of these two factors is even. Thatis (¢ + a) — (¢ — a) = 2a.

Therefore, either (¢ — a) and (¢ + a) are both odd or both even. But we are given that their
product (¢ — a)(c + a) = b?> = 19962 is an even number. Therefore (¢ — a) and (¢ + a)
must both be even numbers.

We note that 19962 = 2* - 4992 with 499 a prime number. Therefore,
(c—a,c+a)= {(2,234992), (22,224992),(23,214992), (214991, 234991)}

in order that b?> = (¢ — a)(c + a) = 19962. We ruled out the two possibilities
(224991,224991) and (234991,214991) because ¢ + a > ¢ — a. We also ruled out all

possibilities where either (¢ — a) or (¢ + a) is an odd number.

Now suppose we take c — a = d and ¢ + a = e. Solving for a and ¢ we find

e—d q _e+d
5 and ¢ = >

Now notice that when we solve for a in each of the first three cases listed above for
(c—a,c+a) =(d,e),wefindthata > b = 1996.

In particular,
234992 — 21
a=———>1996=0»b
2
224992 — 22
a=———>1996=5»
2
214992 — 23
a= — > 1996 = b.
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By elimination we have that
(c —a,c+a)=(2%499%,234991),
Solving for a and ¢ we find

234991 — 214991
a= >

= 1497

and

_ 234991 + 214991

= = 2495,
c 5 95

So, the Pythagorean triple in this problemis (a, b, ¢) = (1497,1996,2495). As a check we note
that

14972 + 19962 = 2241009 + 3984016 = 6225025 = 24952,

(3A934)
4. Find two distinct pairs of positive integers (a,b) and {c,d), (c,d)(b,a), so that each
pair is a solution to x* +y* = 625.
Solution
Rtwsmtmg 625=25" and recallmJ thet
31'1-41:51, we casilj obtain
25% = (51)*= 5*(3*+4*) = 5*+ 20
If you recall that 7,245
(s a Pythagorsan triple, 2

es
Secomd solukiom is o bvious, /‘17

Otherwise, obtam it from 24
25*=(3*+aM) = 3%+ 23747+ 47

= 34234+ 4% 4 4.3%4°

= (3% 47 )2+ (2.3.4) = T+24
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(TT932)
2. Find two distinct pairs of positive integers (a,b) and (c,d), {c,d)#(b,a), so that each
pair is a solution to x* + y* =169°.

Solution
Recall that 5%#12%=13% =(eq,
1 2 n *
(";Cn :(511'12.1} = (5'1)-]- Z-SEIZ" +(|1t]
TN L
=¥ -2 5 ) + 4. 5%
=(|:'."-5'-‘-)?‘ F(2.502) = 1R+ 120

Clnd
l6q” = 13?'(5‘+ 12t) = (t3-5‘)1+ (IE-IZ)-L

(T19312)

12. Letp, g, and r be a Pythagorean triple with p<g<r. Find, in terms of p, g, and 1,
two distinct pairs of positive integers (a,b) and (c,d), (c,d)#(b,a), so that each pair is
a solution to x*+y? =r*.

Solution

r= r*(p*+q2} = (pﬂai-(qr-)?'
and

re = ( °|1'- P")z + (qu)?_

(This jencrqhzes Event 34 ¥4

and Tourn. leam Event F2)

9.4 Congruent Number Problem

see file “The Congruent Number Problem” Resonance

A positive integer n is called a congruent number if there exists a right-angled triangle whose
sides are rational numbers and whose area is the given number n.
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PROPOSITION A number n is congruent if and only if there exists a rational number a such that
a? + n and a? — n are both squares of rational numbers.

9.5 Extra Pythagorean Triple Problems

(TA163) There is one three-digit integer A B C with the following property: remove the first

2
digit to form the one-digit number A and the two-digit number B C. Then (QQ) —A%isa
perfect square. Form the two-digit number B C and the one-digit number C. Both of these
numbers are perfect squares. Determine the number ABC.

Solution

A and BC are part of a Pythagorean Triple since (.Qg)2 — A? is a perfect square. There are only a few

possibilities that will work. They are 5-12-13, 6-8-10, 7-24-25, 8-15-17, and 9-40-41. These form the numbers
513,610,810, 725,817, and 941. The only one that satisfies the second criterion is 810 with 81 and 0.

]
(1T146) In Figure 6, segments ﬁ and RS intersect at T. All seven line segments in the figure

have integer side lengths. If PS = 37, determine exactly the largest possible length %
P

37

Figure 6
Solution
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The only Pythagorean triple with hypotenuse 37 is 12/35/37. The figure may not be to scale; i.e, we don’t know whether
SR > PR or vice versa. If PR = 35, then APRT causes us to seek Pythagorean triples with one leg of length 35 and the other
leg RT < 12 and as short as possible (so that PQ will be as long as possible). Unfortunately, such a triple would have to be of
the form x/35/36, and does not exist. So PR =12 and SR = 35. Now in APRT, we need triples with one leg of length 12, and
the other leg RT < 35 and as short as possible. Hopefully 5/12/13 comes to mind, so that RT = 5, ST = 30, and PT = 13.
Finally, in ASTQ, we seek the triple with short leg 30 and longest possible hypotenuse: 30/72/78 => PT +TQ= ?

(1T104) Hexagon HEXGON can be dissected into right triangles, as shown in Figure 4. The nine
line segments in the diagram all have different integer lengths, and GO has the shortest length
of these all those segments. Calculate the smallest possible value for the perimeter of
HEXAGON.

Figure 4
Solution
The smallest Pythagorean triples are (3,4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8,15,17), ... Begin by
choosing the smallest value in each triple as the length of GO. GO =3 fails because GH =4, and AXGH

cannot be another 3-4-5 triangle. GO = 5 works, but then HO = 13, forcing ON = 84 and HN = 85, which
will make for a very large hexagon perimeter. The key will be to make hypotenuse HO as small as
possible so that AHON uses a “small” Pythagorean triple. This is accomplished by setting GO = 6

and labeling the diagram as shown. The perimeter of the resulting hexagon is .

G
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Source: National Mathematics Magazine, Vol. 15, No. 3 (Dec., 1940), pp. 145-153
5525 hypotenuse of 22 Pythagorean triangles

No. 350. Proposed by D. L. MacKay, Evander Childs High School,
New York.

Show that 5525 is the hypotenuse of twenty-two integral right
triangles. Find them.

Solution by G. W. Wishard, Norwood, Ohio.
We need two well-known propositions from the theory of numbers:

(a) The sides of every integral right triangle are given by the
formulas:

a=2kxy, b=k(x*—3?), c=k(x2+y?),
where x and y have no common factor, one of them is even, and x >y.

(b) A product P=LM can be represented as a sum of two squares
if each factor can, viz.

(1) (r24-5%) (u?+0%) = (re+s0)2 4 (10 — su)>.

Conversely every representation of P as a sum of two squares can be
obtained from representations for L and M by use of (1).*

Now 5525=52-13-17=k(x%4y?), 5=22412, 52=32442,
13=2%243%, 17=4%2412,

whence various factorizations of 5525 and repeated application of (1)
give the required twenty-two sets as follows:

*See, for example, Carmichal, Diophantine Analysis, pp. 10, 24, ff.
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k

1105
425
325
221

85

65
25

17

x2 __|_y2

5)
13
17
25
65

85
221

325

X

O ~JO0 = ixw

ok
HOUITOON R R WRF DN -

a

4420
5100
2600
5304
1360
4760
2340
5460
5500
3500
3468

612

b

3315
2125
4875
1547
5355
2805
5005

845

525
4275
4301
5491

k x2+y* «x

13 425

5 1105

1 5525

16
19
32
31
33
24
74
73
71
62

y
13

12
23
14

22
41

a

5408
3952
2880
3720
1320
5520
1036
2044
3124
5084

b

1131
3861
4715
4085
5365

235
5427
5133
4557
2163

Also solved by C. C. Chaudoir, Edwin Comfort, Dewey C. Duncan,
Frank H. Mehrhoff, C. W. Trigg, and the Proposer.
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Chapter 10. Continued Fractions

6 Continued fractions

6.1 Definitions and notations

Definition 6.1 (Continued fractions). A finite or infinite expression of the form

1
(6.1) ao + — T
a + ————
as + ...
where the a; are real numbers, with ay,az,--- > 0, is called a continued fraction (c.f.). The

numbers a; are called the partial quotients of the c.f.

The continued fraction (6.1) is called stmple if the partial quotients a; are all integers. It is
called finite if it terminates, i.e., if it is of the form

1
(6.2) ap + "
a1 +

Gt oo o —

and infinite otherwise.

Notation (Bracket notation for continued fractions). The continued fractions (6.1) and (6.2)

are denoted by [ag,a1,as,...| and [ag, a1, as, ..., ay,|, respectively. In particular,
1 1
[ao] = a0, [ao, 1] = a0+ - [ao, a1, as] = ao + T
al +—
as

Remarks. (i) Note that the first term, ag, is allowed to be negative or 0, but all subsequent terms
a; must be positive. This requirement ensures that there are no zero denominators and that any
finite c.f. (6.2), and all of its convergents, are well-defined.

(ii) In the sequel we will focus on the case of simple c.f.’s, i.e., c.f.’s where all partial quotients
are integers.
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Definition 6.2 (Convergents). The convergents of a (finite or infinite) c.f. |ag,a1,as9,...| are
defined as
Co = [ao], C1 = [ag,a1], Cp = [ap,ay,az],. ..
If the c.f. is simple, its convergents C; represent rational numbers, denoted by
Pi
Ci =
qi

where p;/q; is in reduced form.

To simplify a finite continued fraction (as in the example below) start at the bottom and work

up.

To simplify an infinite continued fraction, identified as x in the example below, look for a way to
rewrite a “smaller” part of the fraction in terms of the same x. Then solve for x.

3 3 3
X = — = =
24 33 2+x
2+ —3 3
2+ - 2+ 3
- 2+ —3
2+
That is,
3
x=m=>x(2+x)=3:>x2+2x—3=0=>(x+3)(x—1)=0.
So,x = —3and x = 1. But x = —3is an extraneous solution (a false solution that satisfies the
final step of the derivation but does not satisfy the original problem) so it does not count as a
solution. (i.e.toss out x = —3 because x is clearly positive)
So,
3 1
x = =
2+ 3 3
2+ —3
2+
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10.1 Expand a number into continued fraction form

Example 30.

37
The fraction 13 can be written in the form 2 + — 1 where x, y
X+—
+ —_
YTz

and z are positive integers. Find the values of (x,y, z).
Solution
Step 1. Express 37/13 in the form g + r/13 where q and r are positive integersand r < 13

(i.e. integer quotient with remainder form). A result called the remainder theorem says that
there will always be a g and r as described above.

37_2+11
13 13

Step 2. Rewrite the fraction r/13 as 1/(13/7).

11 1
TER
11

Step 3. It follows by our requirement that r < 13 that 13/r > 1. So we can carry out Step 1 on
13/r.

13—1+
11 11

Summarizing our work up to this point we have

37—2+11—2+ ! =2+
13 13~ 13 142
1 11
Step 4. Continue in this pattern.
1 1
1111 ., 1
7 °*3
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37 1 1 1
=2t =2+ —— =2+ ————

13 1+(%) 1 1+—1.

Final step. Compare and identify (x,y, z).

37—2+ 1 =2+ 1
13 X+L1 1+L1
y+§ 5+i

So (x,y,z) = (1,5,2). Note that the process stops when we reach a remainder of 1.

Example 31.

The fraction 1— can be written in the form 2 — —1where X,y and z are positive
1 X+——
Yoz
integers. Find the values of (x,y, z).

Solution

The new twist is the presence of minus (=) signs in the above form. Similar to our first step in
the last example we now need to 18/11 in the form g — /11 where q and r are positive
integers and r < 11 (i.e. integer quotient with remainder form). The remainder theorem
mentioned above also guarantees that this is always possible.

18_2 3
11 7 11
Step 2. Continue as in Example 1.
18_2 3_2 1_2 1 1 —> 1
1“1 T, 2 T, 17 1
3 3+§ 3+§ 3+2j
2 2

So (x,v,z) = (3,2,2).
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10.2 Summary Result

In general, if we want a plus (+) sign we can construct

a r
5= q-+ 5 for some integers a.b,q and r

withr < b < a.

And if we want a minus (—) sign we can construct

a

r
5 =q-— 3 for some (different) integers a, b,q and r
withr < b < a.

10.3 Extra Continued Fraction Problems

37
(1T124) The fraction ’h can be written in the form

) 1
S
X+—7
+ —_
YTz
where x, y, and z are positive integers. Find the values of (x,y, z).
[Original source: Australian M.C., 1981]

Solution

The problem is asking you to express 37/13 in finite simple continued fraction form.

Step 1. Express 37/13 in the form q + /13 where q and r are positive integersand r < 13

(i.e. integer quotient with remainder form). A result called the remainder theorem says that

there will always be a g and r as described above.

11 1
BT
11
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Step 3. It follows by our requirement that r < 13 that 13/r > 1. So, we can carry out Step 1

on 13/r.
13

Summarizing our work up to this point we have

SLAP S SR
137713 7 18", 2
11 11
Step 4. Continue in this pattern.
_1_ 1
11 11 — 1
7 °t2
SLAP SV S SO S S
137 () Sy 1
+\11 1 Tt
1+ -1 5+§
5+§
Final step. Compare and identify (x,y, z).
S S S
13 1 1
x+—+1 1+—5+l
YTz 2

So (x,y,z) = (1,5,2). Note that the process stops when we reach a remainder of 1.

[An alternative approach.]

1 37 ) 11
S Sy R
1 13 13

1 13
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+ 1+2 1 1 2
=>Sx+——= — = x = S —
1 11 ’ 11
+E y+=
11
[
(TA922)
lve f ! _1
Solve for x: 1——1—5.
2= T
3_
4 —x
Solution
1
Approach 1. Expand 3 into finite simple continued fraction form.
=1 2—1 1—1 ! =1 !
3° 7 3 3 170, 1
2 2 3_1
1

we see that 4 — x = 1 which means that x = 3.

Approach 2. (Their approach: Go inside out.)
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| 4 - X

First note that 3—_——-.—“— = m
4 ~x
I - I-3x
Then 3057 T Zz-ox- (@
IN-3x
The qiven equation thus takes the 'R:rm
| — H= 3x - L or z H=-3x
18 ~5x 3 > 18 ~Sx

236 — 10 = 33 —9u so A =X

(1A132) The expression

2 [ —
can be simplified and written as a single rational number. Determine exactly that rational
number.

Solution
Working from the inside and going out is your best approach.

then working from outside and going in is the best approach (in my opinion, at least).
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(TT892)
2. The fraction %7 can be written in the form 2 + ——1—1— where x, ¥, and z
are positive integers. Find (x,y,Z). £ y + 1
z
Solution
317 no_ 1 \
" L+ T
i l
=2+ ‘ =2+
1+ — L
< A /5 iy
e
|
(TA164) Letn = 200. If
1
X =
n+ I 711 —3
n—2+ pray
n—4+ =
m-n+2)+(n—n+1)
the continued fraction until n — k = 1, determine exactly the value of x.
Solution
The last three values in this fraction are 1 = 1.If we work our way up the fraction, we obtain —=1. This
4+
2+1
. . n-1 ' 1 1
pattern continues and we notice =1. This meansx = ——=——.
n-3 n+1 201
n-2+——
n-5
n—4+—
|

(1T046)

Give a numeric value for the continued fraction
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Solution

To simplify an infinite continued fraction that we will label as x, look for a way to rewrite a “smaller” part
of the fraction in terms of the same x. Then solve for x.

3 3 3
x = = =
24 3 - 2+x
2+ 3 2+ _3
2+ - 3
- 2+ —3
2+ o
That is,
3
x=m=>x(2+x)=3=>x2+2x—3=0$(x+3)(x—1)=0.
So, x = —3 and x = 1. But x = —3 is an extraneous solution (a false solution that satisfies the final step

of the derivation but does not satisfy the original problem) so it does not count as a solution. (i.e. toss
out x = —3 because x is clearly positive)

So,
X = 3 =1
24— 2
24+ —>
243
[ ]
(1T034)
. . . ) 6
4. (Give a numeric value for the continued fraction 3
1+
1+ 6
| 6
TT%
I +

Solution
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Let the given expression be x. Then

X = © xtdx -6 =0

| + % -

Q‘.-—a\(x-}—?ﬂ;cj‘; X =2 or x=-23

But  clearly X220 Sso x =22,
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Chapter 11. Representations as a Difference or Sum of Two
Squares

2.3 Representations as sums of two squares

The first result that we need is the fact that we can solve a quadratic congruency
modulo a prime only in the trivial way:

Theorem 2.3.1. Let p be a prime number. Then the quadratic equation % = 1
(mod p) has only “two” solutions: x = x1 (mod p).

Theorem 2.3.3. Consider a prime number p. The equation x*> = —1 (mod p) has
solutions if and only if p=2 orp=1 (mod 4).

If p is an odd prime, then the congruence
x? = -1 (modp)

has the solutions
-1
x=+ lpTJ ' (modp)

if p =1 (mod4) and has no solution if p = 3 (mod 4).

If pis an odd prime, p|(a® + b?), and (a,b) = 1, the p = 1 (mod 4).

Theorem 2.3.4. (Fermat) Let p be a prime such that p = 1 (mod 4) or p = 2.
Then there is a representation of p as sum of two perfect squares: p = x? + y2 with
r,y € N and r < y. This representation is unique.

Lemma 2.13 If p is a prime number and p = 1(mod 4), then there exist
positive integers a and b such that a®> + b* = p.

mathcloset.com 304



Lemma 2.14 Let q be a prime factor of a* + b>. If g = 3(mod 4) then qla
and q|b.

Theorem 2.15 Fermat. Write the canonical factorization of n in the form

n=2T1 p? T1 q¢".

p=H4y g=34)

Then n can be expressed as a sum of two squares of integers if and only if all
the exponents y are even.

2008 Lehigh University High School Math Contest, Problem #29

29. How many integers between 1 and 1000 cannot be expressed as the difference of squares
of integers?

Solution
29. 250. [20,14] It is all numbers of the form 4k + 2 from 2 to 998. To see this, first note
that if n = 2 — y? = (z — y)(z + ), then n is the product of two even numbers or

of two odd numbers, and hence n cannot be of the form 4k + 2. On the other hand,
2k+1=(k+1)2—k? and 4(m+1) = (m + 2)? — m?.

This question comes from Saylor course MA111 which took the question from the
2011 Mathcounts national competition.

How many positive integers less than 2011 cannot be expressed as the difference
of the squares of two positive integers?

Solution
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Only numbers of the form 4k + 2 cannot be expressed as difference of two squares.

Because a> = 0 or I (mod 4) for all integers a, it follows that
1 @ —-b=0,1,3 (mod 4)

So,ifn = 2 (mod 4), we cannot find a and b such that n = a®> — b*.
Now, forn = 1 or3 (mod 4), then we have the following identity,

n+1 n—1
> —(

2
2 2 )

n=(
Andifn =0 (mod 4),then we have

n=(z 4D (-1
So, the given solution is wrong somehow. They should have counted the integers
of the form 4k + 2 along with the integers 1 and 4, as they want difference of
squares of "positive"” integers, which is not satisfied with 1 and 4 in the given
identities and also no two perfect squares of positive integers differ by 1 or 4
which can be easily checked by the increasing sequence of squares 1,4,9, .. ..

But the answer is 505 anyway!
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https://math.stackexchange.com/questions/934124/how-many-ways-are-there-to-write-675-
as-a-difference-of-two-squares
How many ways are there to write the number 675 as a difference of two squares?

Suppose we have to solve a*> — b* = n.

Write n = pg where p and ¢ have the same parity (p = ¢ mod 2) and assume

pP=q.

Clearly:

(p+q)2_ (P—Q’)2 =1
2 2
Now, show that if p and ¢ don't have the same parity, then a + b = p and
a — b = g cannot be solved in integers.

More information: In the case of 675 = 25 X 27 = pq, we want p and g to be
both odd. But all divisors of 675 are odd. 675 has 12 divisors (why?). now only
half of them will have p > ¢. So 675 can be written as a difference of two squares

in 6 different ways.

Now let's explicitly list these 6 ways using our observation. Notice:

675=675-1=135-5=27-25=75-9=225-3=45-15=p-q.
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The corresponding solutions usinga = ——, b =

mathcloset.com

p+gq
2

675 = 3382 — 337°.

675 = 70° — 65°.
675 = 26> — 12,
675 = 42° — 332,

675 = 114%> — 1112,

675 = 30% — 15°.

P—q
2

are:

308
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Chapter 12. Decimals, Repeating Decimals

Theorem 1
Every repeating decimal can be expressed in the form a/b where a and b are integers.

]
Theorem 2
A fraction a/b, where a and b are relatively prime integers, is terminating < the prime
factorization of b only contains 2’s and/or 5’s.

]

A pure repeating decimal is a repeating decimal in which all the digits are periodic, i.e. the
perodicity starts at the decimal point.

For any pure repeating decimal, 0.d; ...dp = ﬁ, where R=d,...dp 1s
the repetend and P is the period.
PROOF. A repeating decimal is a convergent geometric series. 0.d; ...dp is a con-

vergent geometric series whose first term is 0.d; ... dp and whose term ratio is 107". The
sum is therefore

0.di...dp  wr _ R .
1-10-F 1-10-P 10P-1°
For example, the pure repeating decimal
— 23
0.23232323--=0.23 = 39
and also
—— 4321
0.432143214321--- = 0.4321 = 9999°

In this first example, 0.23232323 - the repetend R is 23 and the period is 2. The formula

did, - d,

O.dldz"'dp = 10p_1
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is valid even if R is not the shortest possible period. For example, instead of thinking of
0.23232323 --- as a pure repeating decimal with repetend 23 and period 2 we can view this
number as a pure repeating decimal with repetend 2323 and period 4. That is,

0.23 =0.2323.

From the above result this would imply that

23 7 2323
99 =~ 9999’

Verifying this particular by cross multiplication and simplification reveals why this will always be

the case.

9999 - 23 ; 99 - 2323
(10000 —1) - 23 ; (100 —-1)-2323
230000 — 23 ; 232300 — 2323
230000 — 23 ; 232300 — 2300 — 23

v
230000 — 23 = 230000 — 23.

For 1/q with a prime denominator other than 2 or 5, all cycles n/q have the same length.
Conway, J. H. and Guy, R. K. “Fractions Cycle into Decimals." In The Book of Numbers. New
York: Springer-Verlag, pp. 157-163 and 166-171, 1996.

December, 1999, MT Calendar, Problem 13
Express 0.14+0.12+4+0.123asa repeating decimal.

Solution

0.1+0.12+0.123 1+-12+123
' ' ' 9 99 ' 999
111111 121212 123123

999999 * 999999 * 999999
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_ 355446
~ 999999

= 0.355446.

Notice that the least common multiple of the three period lengths of 1,2 and 3 is 6. This is why

it is necessary to the common denominator to have six 9’s.

]
(1A954)
Find 1.25757575 ... = 1.2575. Express your answer as the quotient of relatively prime
integers.
Solution
Let x = 1.25757575 ... = 1.2575. Then
100x = 125.75
and
10,000x = 12575.75.
Therefore,
10,000x — 100x = 12575 — 125
9900x = 12450
12450 2-3-5%2.83 83
*T79900 ~22-32.52.11 66
]
(TA094)

For certain digits A and B, the quantity x = (O.Q)(O. B25) is a non-repeating decimal.
Compute the sum of all possible values of x.
Solution

Theorem
A fraction a/b, where a and b are relatively prime integers, is terminating < the prime
factorization of b only contains 2’s and/or 5’s.
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30+A 30+A while 0.B25 = 100B+25 _ 4B+1-

99 3.3-11 1000 40
non-repeating, we need all factors of 3 and 11 to be removed from the denominator.
Consider the possibilities: 30+ A €{30,31,32,33,34,35,36,37, 38,39}

4B+1€{1,5,9,13,17,21,25,29,33,37}
If 30 + A =30, 36, or 39, each contributes at least one factor of 3, so 4B + 1 = 33 will
cancel the rest of the undesirable factors. If 30 + A = 33, then we only need 4B + 1 to
contribute a single factor of 3, so 4B +1 =9, 21, or 33.

[30 36 39}[33] [33}[ 9 21 33} ( 105 ] ( 63 J 168 7
—t—t— || = |+ = || =+t—=+—|= + = =—.
99 99 99,40 99).40 40 40 3-40 3-40) 120 5

0.3A = For their product to be

n
Example 32.
Convert 0.38427 = 0.38427427427 --- into a rational number.
Solution
Let s = 0.38427 = 0.38427427427 ...
Then,
100000s = 38427.427427427 ...
100s = 38.427427427 ...
and
100000s — 100s = 38427 — 38
99900s = 38389
So,
- 038927 = oo
s=E ~ 99900
n
12.1 Basimals

Numbers of the form (0.a,a,a3 - )19 = % + 1%22 + 1% + -+~ with a; € {0,1,2,3, ...,9} are called

decimals.
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Analogously, we define the term basimals for non-base 10 numbers of this form. That is, a

a

basimal is a number of the form (0.a,a,a;3 - ), = % + ; + % + -+ witha; € {0,1,2, ...,k —

1}.
12.1.1 Converting Basimals

Example 33.
Convert the basimal number 0.234 to a fraction in base 10.

Solution
We have

3 4
So,

2 3 4 26*)+3(6)+4 72+18+4 94
0234,=—+—+—= = = _
61 62 63 63 216 216

12.1.2 Converting a Repeating Basimal Number

Example 34.
Convert 0. 234 to a fraction in base 10.

Solution
Let x = 2344. Then 10004 - x = (1000) - (234¢) = 234.234,

Therefore,
10004 - x — x = 234.234, — 0.234, = 234,

(1000 — 1¢)x = 234,

| 234,
* =555,
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Now separately convert 234, and 555, to base 10.
234,=2-62+3-61+4-6°=72+18+4 =94,

555, =5-6245-61-5-6°=5(624+61+6%) =63 —1=216—1 =215,

Note:
s=6°+6"+6°
65 = 6% + 6% + 6!
.~ 5s=63-6°=63—-1
Therefore,
— 234, 944,
0.234, = —— = .
© 7 555, 215,
]
Example 35.
Convert 0. 315 to a fraction in base 10.
Solution
Letx = O.ﬁS. Then 1005 - x = 1005 -ﬁs = 31.55. Therefore
1005x — x = 31.315 — 0.31; = 31,
(1005 - 15)x = 315
4‘4‘5 X = 315
315 3(51) + 1(59) 165 16 2
¥ T a4, T a(5) +4(5%) 24, 24 3
]

AMC 1966, Problem #39

In base R; the expanded fraction F; becomes 0.373737 ---, and the expanded fraction F,
becomes 0.737373---. In base R, fraction F;, when expanded, becomes 0.252525 ---, while
fraction F, becomes 0.525252---. The sum of R, and R, each written in the base ten, is:

| (A) 24 | (B) 22 | (©)21 | (D) 20 | (E) 19

Solution
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12.1.3 Converting a Decimal to a Basimal Number

Example 36.

Convert% = .6 to a basimal in base 7.

Solution
In analogy to how we can express an integer in base 10 to an integer in base 7 we ask what is

the largest fraction E, k =0,1,2,3,4,5,6 that is less than or equal to %

3

4
==057<=-=6<-%=.71
7 5

| ot

So, the first digit must be 4.

Now repeat this process by finding the largest fraction %, k =0,1,2,...,6 thatis less than or

equal to % — ; = 3i =~ 0.029. We note that

1 1 2
9" 0.020 < 35~ 0.028 < 9" 0.041.

So, the second digit must be 1.

This is already getting tedious! Fortunately, there is a very simple short cut procedure.

12.1.4 Introducing a Short Cut Approach

(1) Multiple the base ten decimal by the base you want to convert to. In this case, the base is
7.
0.6-7=4.2.
The units digit is the first digit in the basimal representation in base 7.
0.4
(2) Multiple just the decimal part of the above product (i.e. the 0.2 from the product 4.2) by
7.
02-7=1.4
The units digit in this product is the second digit in the basimal representation in base 7.
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0.41
(3) Repeat
06:-7=42=04
02-7=14= 041
04-7=28=0412
08-7=5.6=0.4125

We can see that this basimal will continuously repeat the pattern 4125 after this. That s,

0.610 = 04‘1257 .

Check!
x = 0.4125,
10000, - x = 4125.4125,

10000, - x — x = 4125,
6666, - x = 4125,

_41257_4-7~’>+1-72+2-71+5-7°_1440_06
6666, 6-73+6-72+6-71+6-7° 2400

X

13
(3D134) Convert the base-ten fraction Te into a base-eight equivalent that does not involve a

quotient (fraction bar).
Solution

Since place values to the right of the radix (“basimal”) point in base-eight are based on powers of

. .13 . . . 52
8, we might start by expressing R with a denominator that is a power of 8: a Now we
; : - 48| 52 |
proceed through the base-eight place values in order: there are six eighths | — | in —, with

four sixty-fourths remaining. That equates to the decimal 0.64 .

(3T136) Find the number base n such that (%) = (0.113),.
10

Solution
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5 1 1 3 5 2 ) :
—=0.113 = —+—+—=—_ Multiply both sides by the LCD (24n ) to obtain 24n" +24n+72=5n", which
24 . n n n 24 \ :
rearranges to form 5n° —24n° =24n-72=0. Combine the Rational Roots Theorem with the fact that n must be a whole
number to obtain the factors of 72 as choices: 1,2,3,4,6,8,9,12, etc. The first three of these aren’t possible, since we are

given a basimal with 3 as a digit. Use synthetic division to evaluate the polynomial for other values, revealing that n = @ :

AMC 2019 10A Problem #18

For some positive integer k, the repeating base-k representation of the (base-ten) fraction % is

0.23; = (0.232323...);. Whatis k?
| (A) 13 | (B) 14 | (C) 15 | (D) 16 | (£) 17 |

Solution

12.2 Repetends

Example 37.

When expanded as a decimal, the fraction 1/97 has a repetend (the repeating part of the
decimal) of 96 digits that start right after the decimal point. Find the last three digits CBA of
the repetend.

Solution
We need to reverse engineer the standard long-division algorithm.

We want to determine the last three digits in the repetend so draw a three step long-division
grid with the three “dropped” 0’s in place.
0. . 2?2727
97)1.00 .. 000

d
-
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The quotient will restart its repeating pattern when the remainder is the same as the dividend.
That is, when the remainder equals 1.

0. .. 2?7

97)1.00 .. 000
v
0

0

v

0

1

The last digit in this row must be a 9 in order to leave a difference of 1 (10 — 9 = 1).
0. . 2727
97)1.00 .. 000

v
0

0

v
0
9
1

The third ? = 7 because 97 X? must end in a 9 and the only digit times 7 that endsina 9is 7
(7 X 7 = 49). Now that we have the third 7= 7 we can see that 97 Xx?= 97 X 7 = 679.

mathcloset.com 319



97)1:00 . 000

In order to leave a difference of 1 we have to subtract the 679 from 680.

0. .. 227
97)1.00 .. 000

0

v
680
679

1

The last digit in the next row up must be a 2 in order to leave a difference of 8 (10 — 2 = 8).
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97)1.00 . 000

The next ? = 6 because 97 X? must end in a 2 and the only digit times 7 that endsina 2 is 6
(7 x 6 =42). Now that we have the next ?= 2 we have 97 X?= 97 X 6 = 582.

0. .. 267
97)1.00 .. 000

ol

582y
680
679
1

In order to leave a difference of 68 we have to subtract the 582 from 650.
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0. .. 267
97)1.00 .. 000

o

650
582,
680
679

The last digit in the next row up must be a 5 in order to leave a difference of 5 (10 — 5 = 5).

0. .. 267
97)1.00 .. 000

650
582,
680
679

The first 7= 5 because 97 X? must end in a 5 and the only digit times 7 that endsina 5is 5
(7 x 5 = 35). Now that we have the next ?=5 we have 97 X?= 97 x 5 = 485.
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0. .. 567
97)1.00 .. 000

485
650
582y

680
679

Of course, we could continue to work backwards but the question only asked for the last three
digits of the repetend.

We have reversed engineered (worked backwards) the long division process to find out that the
last three digits of the repetend are 567.

(1T015)

When expanded as a decimal, the fraction 1/97 has a repetend (the repeating part of the
decimal) of 96 digits that start right after the decimal point. If the last five digits of the
repetend are BA567, find the digits A and B.

Solution

You need to reverse engineer the standard long-division algorithm.

Step 1 Step 2 Step 3 Step 4
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0. .. BA???
97)1.00 .. 00000

0. . BA???
97)1.00 .. 00000

0. .. BA???
97)1.00 .. 00000

O -+

0. .. BA??7
97)1.00 .. 00000

679
1

We want to determine the last
five digits in the repetend so
draw a five step long-division
grid with the five “dropped” 0’s
in place.

The quotient will restart its
repeating pattern when the
remainder is the same as the
dividend. That is, when the
remainder equals 1.

The last digit in this row must
be a 9in order to leave a
difference of 1 (10 — 9 = 1).

The third ? = 7 because 97 x?
must end in a 9 and the only
digit times 7 thatendsina 9is
7 (7 X 7 = 49). Now that we
have the third ? = 7 we can see
that 97 X?=97 X 7 = 679.

Step 5
0. . BA??7
97)1.00 .. 00000

v
680
679

1

Step 6
0. .. BA??7
97)1.00 .. 00000

680
679
1

Step 7
0. .. BA?67
97)1.00 ..

00000

o
5824
680
679
1

Step 8

0. .. BA?67

97)1.00 .. 00000

650}
582,
680
679
1

In order to leave a difference of
1 we have to subtract the 679
from 680.

The last digit in this row must
be a 2 in order toleavea
difference of 8 (10 — 2 = 8).

The next ? = 6 because 97 x?
must end in a 2 and the only
digit times 7 that endsina 2 is
6(7 X 6 =42). Now that we
have the next ? = 2 we have
97 X? =97 X 6 = 582.

In order to leave a difference of
68 we have to subtract the 582
from 650.

Step 9
0. .. BA?67
97)1.00 ..

00000

v

o
Sy
650!
5824
680
679
1

Step 10

97)1.00 .

650!
582y
680
679
1

Step 11
0. .. BA567
97)1.00 ..

00000

vii
550 |
485y

650!
5824
680
679
1

Step 12

97)1.00 .

680
679
1

The last digit in this next row up
must be a 5in order to leave a
difference of 5 (10 — 5 = 5).

The next ? = 5 because 97 X?
must end in a 5 and the only
digit times 7 thatendsina 5is

In order to leave a difference of
65 we have to subtract the 485
from 550.

The last digit in this next row up
must be a 5in order to leave a
difference of 5 (10 — 5 = 5).
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5(7 X 5 = 35). Now that we
have the next ?= 5 we have
97 X?=97 X 5 = 485.

Step 13 Step 14 Step 15 Step 16
0. .. B5567 0. .. B5567 0. .. B5567 0. .. 85567
97)1.00 .. 0 97)1.00 .. 00000 97)1.00 .. 00000 97)1.00 .. 00000

v
540

0::: :
485y 485y ! |
550! | 5501 |
485y | 485y
650! 650!
5824 582y
680 680
679 679
1 1

A = 5 because 97 X A must
endin a 5 and the only digit
times 7 that endsina 5is 5

In order to leave a difference of
55 we have to subtract the 485
from 540.

The last digit in this next row up
must be a 6 in order to leave a
difference of 4 (10 — 6 = 4).

B = 8 because 97 X B must
endin a 6 and the only digit
times 7 that endsina 6is 8

(7 x 8 = 56). Now that we
have B = 8 we have 97 X B =
97 X 8 = 776.

(7 x5 = 35). Now thatwe
have A =5we have 97 X A =
97 x 5 = 485.

We have determined that B = 8 and A = 5 by this reverse engineered long division.

(1T996)

Find the last seven digits of the repetend of the fraction 1/2001. That is, if we write

1/2001 =.abc ...ef ghijkabc ...ef ghijkabc ...ef ghijk ...,
find the digits ef ghijk.
Solution

You can use the following blank “reverse engineered repetend form” as an aid in keeping the
columns lined up. It might help to cut, paste and enlarge the blank form on a separate piece of

paper.
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0. ..
2001)1.00 .. 0000000

You should find that the last seven digits are 6001999.

Alternatively,
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foor = b snetghijkabe. - efy.
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9 0o o |
. 2h 2% 2y 2k © O
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LN ,j,r-'\, £=9, 2k-€, s
j\‘\'g:q )R"‘\) G\ W cwr\a" ““o’“u_
next pb.u... Nsa ar \g) so,
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so \ ¥§+8=9 o s =0, \:‘md\‘})‘z\e 2
\*e+2=] ) so e=6.

g Lo_d‘ R @\&'«os T V‘&\a..:*u.*&'.

600139919

What is the maximum number of digits possible in
the repeating block when you divide out the
rational 1/46229. How do you know this?

The maximum number of digits possible is always one less than the denominator. In this case the
maximum number of digits possible in the repetend is 46,229-1=46,228. The reason is that given any
number the number of possible remainders is always one less than the denominator or the divisor.

For example, express 4/7 as a repeating decimal. The possible remainders are 1,2,3,4,5, and 6 when you
divide by 7.

Wiki
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Fractions with prime denominators |edit]

A fraction in lowest terms with a prime denominator other than 2 or 5 (i.e. coprime to 10) always produces a repeating
decimal. The length of the repetend (period of the repeating decimal segment) of 1/p is equal to the order of 10 modulo p. If
10 is a primitive root modulo p, the repetend length is equal to p — 1; if not, the repetend length is a factor of p — 1. This

result can be deduced from Fermat's little theorem, which states that 10°~1 = 1 (mod p).
The base-10 repetend of the reciprocal of any prime number greater than 5 is divisible by 9.1

If the repetend length of 1/p for prime p is equal to p — 1 then the repetend, expressed as an integer, is called a cyclic
number.

Totient rule [edit]

For an arbitrary integer n the length A(n) of the repetend of 1/n divides ¢(n), where ¢ is the totient function. The length is
equal to ¢(n) if and only if 10 is a primitive root modulo n.[7]

In particular, it follows that /\(p) = p — lifand only if p is a prime and 10 is a primitive root modulo p. Then, the decimal
expansions of n/ipforn=1, 2, ..., p — 1, all have period p — 1 and differ only by a cyclic permutation. Such numbers p are
called full repetend primes.

Other properties of repetend lengths (et

Various properties of repetend lengths (periods) are given by Mitchelll®] and Dickson.[1°]
The period of 1/k for integer k is always < k- 1.

If p is prime, the period of 1/p divides evenly into p — 1.

If k is composite, the period of 1/k is strictly less than k - 1.

The period of ¢/k, for ¢ coprime to k, equals the period of 1/k.

If k = 2*5°n where n > 1 and n is not divisible by 2 or 5, then the length of the transient of 1/k is max(a, b), and the period
equals r, where ris the smallest integer such that 10" =1  (mod n).

Mu Alpha Theta National Convention 2005, Number Theory Test, Alpha Division, Problem #26

26. Find the smallest natural number, », such that the decimal form of l has at least 18 digits in
n

its block of repeating digits.

A) 13 B) 17 C) 19 D) 49 E) NOTA

Solution
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When evaluating the number repeating digits in a decimal expansion, we can note that 1/n has at
most n - 1 digits in its expansion. This is due to the fact that there are at most n - 1 distinct
positive remainders when dividing by n in long division. Once we have repeated a remainder, a
cycle ensues as the next remainder must have been the same as before. Note that I've made the
assumption that we stripped powers of 2 and 5 out of n, but the fact that n - 1 is the largest
number of digits in the repeating block is still valid.

We now see that n = 19 is the smallest possibility and we note that fortunately, it's the answer:

i% = (.052631578947 3684 21.

Further exploration could highlight some facts that make this solution more obvious and the
ideas here connect with Euler's Phi Function and other number theoretic ideas. Further
exploration is left to the reader both because that's the best way to learn and it could take pages
to write up.
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Chapter 13. Miscellaneous

13.1 Number of Digits
Let nd(a) represent the number of digits in the (base 10) number a. Then
nd(a) = [loglo(a)] + 1.

Proof

Suppose a = 10* for some real number x = 0. Then a consists of | x| + 1 digits. We also know

that a = 10'°810(®) Therefore, for any positive number a,

nd(a) = [logyo(a)] + 1.
|

This result is particularly useful when the number a is expressed in exponential form. Consider
the following example.

How many digits are there in the integer representation of 22001 ?

Solution
nd(22°%1) = [logy0(22°°)] + 1

= 2001 -log,,(2)] + 1

=1602.361]+ 1

=602+1

= 603.

]

(17885)

Consider the integer M = 52>,

(a) How many digits does it take to write M using ordinary base ten notation?
(b) What are the last three digits of M?

Solution
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0" < 5% <108 J

53 = (25 g 6235
625 325
Once n2 3, the last Hiree dl.ﬂ.l‘l's

oscillate behvesn 125 and 625
wrih oz!d n 3wm3 tes—

Ol; one vnay note 5;=. 125 mod 1000

so 5“-.—(|25)5= 5" =(5%)7 wed 100
Cowbinue n Hwe Wy to 391'

5%5 2 125 mod 1000,

College of Charleston

2. If m and n are two positive integers such that log,,m = 12.3... and
log;gn = 15.4..., how many digits are there in the decimal expansion of the
product m - n?

(A) 3 (B) 16 (C) 27 (D) 28 (E) 189
Solution

nd(a) = [loglo(a)J +1

nd(mn) = [loglo(mn)J +1
= llogw(m) + 10810(”)] +1
=123+ 154 +1
= [27.7] +1
=27+1=28.
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Saint Mary’s College Mathematics Contest Problems

246. How many digits are there in 55° ?

Caution: 55° is the (standard) notation for 5(5%) which is not the same as (55)5. Tetration.
Solution

55* = 53125 3125log5 =
3125 x 0.69897 = 2184.3, so
the number has 2185 digits.

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem # 6
How many digits are in 55" ?

Solution

-
E® 5 5 55 125 5:'@7( _
28W28=Logx 10T ~F

13.1.1 Number of Digits in Base b

Contest problems sometimes ask for the number of digits a base ten number would have if it
were expressed in a different base.

Let nd,, (c) represent the number of digits in the base b representation of the positive base 10
integer c. Then

nd, (c) = [logb(c)J + 1.

(Note: Be aware that this result only applies when c is a base 10 number.)

mathcloset.com 333



Before proving this result, it will be helpful to consider a very simple example to clarify what
this result tells us (and what it doesn’t).

Example
How many digits are in the base 3 representation of the base ten number 1437

Solution
nd;(143) = [log3(143) | + 1 = 4517 .| +1=4+1=5.

Let’s check by actually writing out the base 3 representation of 143,,.
143,,=1-3*4+2-33+0-32+2-314+2-3°=(12022),

This verifies the result that the base 10 number 143 has 5 digits when expressed in base 3.

Proof

For any integer b > 2, let ay, a4, a,, ..., a,_, be a sequence of integers such that 0 < a; < b

for

allj =0,1,...,7r — 1 and such that a,_; # 0. Then we can say that (a,_; - a;a,),, is a base b

number of r digits.

Let ¢ be the base 10 equivalent of (a,_; *- a;a,),. Then ¢ equals

r—1

c= Z a;bt.

i=0
Substituting the lower and upper bounds for each a; we have

r—1 r—1

r—1
;(O)bi + (Db < Z bl < ;(b ~ )b

i=0
or

r—1
brl<c< (b—1)2bi
i=0

We recognize that

Zbi_br—l
_ T bh-1
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from our understanding of geometric series. Hence

brl<c<b -1
or equivalently
br-l<c<b.

Because logarithms are increasing functions, it follows that
log, (b™™1) < log, (c) < log, (b")
(r —1)log, (b) < log,(c) <rlog,(b)
r—1<log,(c) <r
Therefore,

r—1= [Iogb(c)J
or

r = |log,(c)| + 1

Mu Alpha Theta National Convention, 2001, Number Theory Test, Mu Division, Problem # 36
A positive integer has 32 digits when expressed in base 2. How many digits are there in the
base 10 representation of that number?

Solution

36. The number in question is at least 2°' and less than 2°°. There are a couple of ways to
do the problem from here. Some students may recognize that log2 = .301. (31)(.301) =

9.331 and (32)(.301) = 9.632. Thus both 2°' and 2°° are ten digit numbers (logs
between 9 and 10). It could also be noted that 2"’ = 10° and thus 2°' = 2(10”) and is a

ten digit number (similarly for 2°*). Obviously all numbers between 2°' and 2°° are
also ten digit numbers.

13.1.2 Number of Digits in a Product

If a and b are positive integers then the number of digits in their product ab is given exactly by
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dn(ab) =
If your two numbers a and b are positive integers then the number of decimal digits in their
product is given exactly by

n = 14 [log,y(ab)| = 1+ [log,y(a)+ log;,(b)]

where |x| means the greatest integer not greater than x.

AMC 1969 Problem #20

Let P equal 3,659,893,456,789,325,678 and 342,973,489,379,256. The number of digits in P
is:

[(A) 36 [(8) 35 [ (c) 34 [(D)33 [(E)32 |

Solution

13.2 Simon’s Favorite Factoring Trick

Simon’s Favorite Factoring Trick

Now let’s get back to the magic of subtracting 10 from both sides. How did | know to do this?
On math contest sites such as AoPS ( https://artofproblemsolving.com/ ) and Math Stack
Exchange ( https://math.stackexchange.com/ ) the idea goes by the name “Simon’s Favorite
Factoring Trick” or just SFFT.

The general idea of SFFT is that if you have a Diophantine equation of the form

af (x)g(y) + abf(x) + cg(y) = d

in the variables x and y then add the constant bc to both sides. In this way the left-hand side
will factor as

(af (x) +c)(g(y) + b) = d + bc.

By writing d + bc in terms of its prime factors you can find f(x) and g(y) by considering
cases of splitting the prime factors between the two factors on the left-hand side.

The process of adding bc to both sides is called “completing the rectangle”.
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(4A113) List all possible values of xy, if x and y are integers such that xy = x +y + 1.
Solution
Method 1: xy=x+y+1 = xy—x-y=1 = xy—x—-y+1=2 = (x—l)(y—l):Z. Since x and
y are integers, (x - 1) and (y - 1) are also integers, and we consider the factorizations of 2:
WLOG, x-1=2, y—1=1 = x=3, y=2,xy=6; x-1=-2, y-1=-1 = x=-1, y=0, xy=0.
1

Method 2: xy=x+y+1 = xy—-y=x+1 = y(x—l):x+1 = y:X—+1, Use the Table

X—
feature on a calculator to find when x and y are both integers. Quickly, x=3, y=2 = xy =6

and x=-1, y=0 = xy=0 stand out, and a graph shows these as the only integral solutions.

]
(1T083)
1
3. How many ordered pairs (a,b) of positive integers exist such that l+ -S’; =3 ?
a
[Original Source Mass. Math Olympiad, 2007-2008]
Solution
zb  _ Lo
2b+|00.=ab so a = ¢7o "2'+b-lo
Since a Is an |n+e30r) b-10 divides 0.
See the table, Negahve values for b-t0
que negaﬁve vaiues er cither a or b
20
b-t0 b  a=2+3T5

| 1 2

(A Iz ie

4+ | \4 7

5 s 6

(O .0 4

20 | 30 3
Alternative Method Using SFFT
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Notice that if we try

=1<ab—-2b—10a=0

(a,b) = (3,20)
(a,b) = (4,20)
(a,b) = (6,15)
(a,b) = (7,14)

(a,b) = (12,12)
(a,b) = (22,11).

(a,b) = (—-1,-10)

5 1 2b + 10a
PR AT
& (a—-2)(b—10) =20
a-2=1 bh-10=20
a—-2=2 bh—-10=10
a—2=4 b—10=5
a—2= b—10=4
a—2=10 b-10=2
a—2=20 b-10=1
a—-2=-1 b—10= =20
a—-2=-2 b—10=—10
a—2=-4 bh—10= -5
a—2=-5 b—10= -4
a—2=-10 b—10= -2
a—2=-20 b-10=-1

(a,b) = (0,0)
(a,b) = (—2,5)
(a,b) = (—3,6)
(a,b) = (-8,8)
(a,b) = (—189)

which all fail the requirement that a and b are both positive integers. So there are a total of 6
ordered pairs for (a, b) that will satisfy the given requirements.

(5A934) or maybe (5D934)

4. Let S= {(m,n):m and n are positive integers that satisfy % +==1

(a) How many ordered pairs are there in §?
(b) Find the ordered pair in S that has the largest value of m.

Solution
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4n + 3m = mn

mn-4n=-3m +IZ =12
(m=-4)Yn-3}) =12

m-4 and n-3 must be integens,
We can tabulate all possibilities:

m-—4|n-3{m |n
\ 12 | 5 |W&$

2 ¢ |6 |9

3 4 |77

4 | 3 |8 |®

6 2 (lo]5
12 | 6 | 4

(Note: Simon’s Favorite Factoring Trick ?)

AMC 2007B Problem #23

How many non-congruent right triangles with positive integer leg lengths have areas that are
numerically equal to 3 times their perimeters?

[(A) 6 [(8) 7 [()8 [(D) 10 [(E) 12 |

Solution
Involves Simon’s Favorite Factoring Trick

National Mu Alpha Theta Convention 1991, Number Theory Topic Test, Problem #21

Find all Pythagorean triangles with the property that the area of the triangle equals the
perimeter.

Solution
Let the positive integers a, b and ¢ be the three sides of a Pythagorean triangle with
hypotenuse c¢. Then a? + b? = c2. Using this notation

1
Area A = Eab and PerimeterA=a+ b + c.

We are given the additional information that Area A = Perimeter A. With simplification we find
that
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2
ab =2a+ 2b + 2+/a? + b?
2+/a%2 + b2 =ab—2a—-2b

4(a? + b?) = (ab — 2a — 2b)?

1
—ab=a+b+c=a+b++a?+b?

4a? + 4b? = a’b? — 2a*b — 2ab? — 2a*b + 4a? + 4ab — 2ab? + 4ab + 4b?

0 = a?b? — 4a®b — 4ab? + 8ab
ab(ab — 4a — 4b + 8) = 0.

We are constrained by a, b positive integers so ab # 0. Therefore, we know

ab—4a—-4b+8=0.
Applying SFFT we see that this means
(a—4)(b—4) =8.

The set of all factors of 8 are +1,+2,+4 and +8. Considering each of these eight cases as a

value for a — 4 produces the following results.

a—4=-8 b—4=-1 & a=-4,
a—4=-4 b—-4=-2 < a=0,
a—4=-2, b—4=—-4 & a=2,
a—4=-1, b—4=-8 & a=3,
a—4=1, b—4=8 S a=35,
a—4=2, b—4=4 S a=6,
a—4 =14, b—4=2 & a =38,
a—4 =28, b—4=1 S a=12,

b=3
b=2
b=0
b=-4
b=12
b=28
b=6
b=5

We can throw out the first four answers because a and b must both be positive integers. This
leaves us with two or four solutions for (a, b, ¢), (5,12,13),(6,8,10),(8,6,10) and (12,5,13),

depending on whether we consider the two legs as distinct or not.

13.3 Mediants

In mathematics, the mediant of two fractions, generally made up of four positive integers

a b a+b
— and — s defined as .
d c+d

= The mediant inequality: An important property (also explaining its name) of the mediant is that
it lies strictly between the two fractions of which it is the mediant: If a/c < b/d and a,b,¢,d > 0

, then

a a+b b
<

< .
c c+d d

This property follows from the two relations
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atb a bc—ad d (E_E)
c+d ¢ cle+d) c+d\d ¢
and

d c+d d(c+d) T e+d

b a+b_bc—ad_ ¢ b a
d c)’

= Assume that the pair of fractions a/c and b/d satisfies the determinant relation bc — ad = 1.
Then the mediant has the property that it is the simplest fraction in the interval (a/c, b/d), in the
sense of being the fraction with the smallest denominator. More precisely, if the fraction a’ 7 c

Elementary Number Theory, Uspensky, Heaslet, Problem 2, Page 40.
m The mediant of the fractions a/c and b/d, namely,
a+b

c+d

is irreducible if |ad — bc| = 1.
Proof

Now we know that % is expressed in simplest terms if and only if gcd(a + b, ¢ + d) = 1.

But recall that, in general, the gcd(a, B) is the least positive integer that is expressible as a

integral linear combination of the integers a and £3.

So it is sufficient to find integers m, n (positive or negative) such that
m(a+b)+n(c+d) =1.

Takem = —c,n = a. Then
|(=c)(a+b) + (a)(c + d)|
= |—ac — bc + ac + ad|
= |ad — bc|
= 1 by hypothesis.
So, if

(=c)(@a+b)+ (a)(c+d)=1
then we are done. Otherwise

(=c)a+b)+ (a)(c+d)=-1
and

(c)(a+b)+ (—a)(c+d)=1.

So in all cases we have found integers m,n such that m(a + b) + n(c + d) = 1. Therefore,
gcd(a + b, c + d) = 1 which implies

a+b

c+d

is irreducible.
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https://artofproblemsolving.com/community/c4931 2005 india national olympiad
The Indian National Mathematical Olympiad (INMO) is a high school mathematics competition
held annually in India since 1989.

2005 Indian National Mathematical Olympiad, Problem #2

«
Let avand 3 be positive integers such that — < — < —. Find the minimum possible value of .
197 g 77
Solution

https://math.stackexchange.com/questions/4122009/fraction-with-the-smallest-entries

This can be done simply by a binary search using Farey mediants. The idea
is as follows: given an interval (a/b, ¢/d) containing our fractions we compare
them to the mediant "midpoint" m = (a + ¢)/(b + d). 1f they are both less then
m then we replace the upper bound c/d by m. If the are both greater then m we
replace the lower bound a/b by m. Else m lies between them, and by basic
properties of Farey sequences it is the fraction with least denominator between
them.

We start with the containing interval (0/1, 1/0) = (0, o0). Its mediant
(0+1)/(14+1) = 1/1 exceeds both so our new upper bound is 1/1. The mediant
of 0/1, 1/1 is 1/2 which still exceeds so 1/2 is our new upper bound. This
continues till we reach upper bound 1/4 which then yields a mediant
(O+1)/(14+4) = 1/5 which is smaller than both, so our new interval is (1/5, 1/4)
Continuing this way yields the sequence below, till we reach 7/32 between them.

1

0 I 3 5 43 17 1 1 <1<
1 I 0

7 2
<§<H<§<ﬁ<3—2<—<§<z<§<

P | —

Remark Note that the mediant % ® % = ;’%; can be viewed geometrically as

the slope of the diagonal of a parallelogram with sides of slope a/b and c/d
formed by the vectors (b, a) and (d, ¢), which makes its "intermediate" property
intuitively clear geometrically, i.e. the diagonal lies between the sides, as
illustrated below.
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-
-
-

’ s e
+ b+d
A1 . ;4>
b
' b+d '

]
https://math.stackexchange.com/questions/2494774/questions-concerning-smallest-fraction-
between-two-given-fractions
Find the smallest positive integer n such that there exists an integer m satisfying

0.33000 = 33 < m < 1 = 0.33333333
' 100 " n 3 '
Solution
Notice that
33 < 1 d|33(3) —100| =1
100 >3 " -
Therefore, the mediant
33+1 B 34 _m
100+3 103 n’
]

If we started with the interval (%,2) where |ad — bc| # 1 then we would have to go through

an iterative process as demonstated below.

N RO

W RN =] = A
A=

VAN

N N\
N|lRrR| RO -

Rl OR|OR| O
N\
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VAN

_P;| W N
N\

VAN
VAN

N
w] WP W| e

W RWRPWRW| =

m 33 m m 1
033 < — < - = (— < — — < =
n 3 Goo <0G <3

= (33n < 100m) A 3m < n)

and thusn = 3m + 1.

So

33n < 100m = 33C3m+ 1) < 100m
= 99m + 33 < 100m
= m >33

Taking m > 34, we find thatn =34 x3 4+ 1 =103

If ¢ = 1, then the smallest positive integer »n such that there exists an integer m
satisfying ¢ < & < é is given by

(e

https://artofproblemsolving.com/wiki/index.php/2018 AMC 12B Problems/Problem 17
2018 AMC 12B Problems/Problem 17
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Let p and g be positive integers such that

|
A
=S
A
=2 =

and g is as small as possible. What is ¢ — p?

(A)7 (B)11 (C)13 (D)17 (E) 19
Solution

Notice that |5(7) — 9(4)| = 1. Therefore, the mediant of g and %gives the answer.
p_5+4 9

g 9+7 16
g—-p=16—-9=7.

Find the smallest positive integer n such that there exists an integer m satisfying
1 m 3

3 n 4
Solution

First note that we are starting with an interval (g,g) where |ad — bc| = |1(4) —3(3)| # 1so

we have to engage in an iterative process as demonstated below.

Step 1 0<1 Start 'th(o 1) d calculate th di tO_I_l—1

ep 1. 1<0 art with { 7. 5 ] and calculate the mediant T—— = 7.
Step 2 0<1<1 ! d3 bth<1 | ! 'thl diterat

ep 2. 1<1<0 3 and7 are bo 7 soreplace o with — and iterate.
Step 3 0<1<1 1<1 d3>1 St N di tl'th

ep 3. 1<2<7 3 <7 and 7 >7. Stop. New mediant > is the answer.

S[3

1
>
13.4 Midy’s Theorem

(Midy’s Theorem.) The following was proved in 1837 by E. Midy (Dickson, 2005, p.163):
For a prime p, if the repetend of 1/p has 2n digits, then digit (n + k) = 9 —digit (k)

In 1769 Lambert noted that the number of the digits of the repetend of a repeating decimal,
1/a, divides a — 1 for a = 3 or a prime greater than 5.
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13.5 Counting Integer Solutionsof 1/x + 1/y = 1/n.
(Are these problems just examples of SFFT ?)

How many solutions are there to

1 1 1
— 4 —=—
X y n
where x,y and n are positive integers?
Solution
1 1 1
— 4 —=—
X y n
x+y_1
xy n

xy—nx—ny =20
(x—-m)(y-n)—-n*=0
(x —n)(y —n) = n?

Let m be any divisor of n%. Then
2

X—m=m —-_—n=—
Y m

S

is a solution. Therefore
n2
x=m+ny=—+n
m

is a solution for every divisor m of n?.

Suppose n? has r divisors including 1 and n%. Then there will be 7 positive integral solutions to
the above equation if we count (a, b) as distinct from (b, a) and there will be (r + 1)/2
solutions otherwise.

For example, let n = 6. How many positive integer solutions are there to
1,11,
X + y 6
Solution
Then the divisor of n? = 62 = 2232 = 36 are
{2030,2031,2032 2130 2131 21322230 2231 2232}
={1,3,9,2,6,18,4,12,36}

n2
x=m+n,y=E+n
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36
(my)=(nr+6q£~+6>nne{L&925J8AJ236}

(x,y) € {(7,42),(9,18),(15,10), (8,24),(12,12),(24,8),(10,15),(18,9), (42,7)}

I
N e NN B NN Bl

—_
©
Ne)
Nl R o ey

A total of 9 solutions. If we don’t want to count

1 N 1
a b
as separate from

4 1
b a
then there are 5 solutions.

Let p be a prime. What are the integer solutions (x, y) of %+ % =1 ?

p
Solution

x+y

1
xy p
xy—xp—yp=1
(x—p)(y—p)—p*>=1 (SFFT)
(x —p)(y —p) =p?

(@-p). & -p) €{0p), . p), @* D}
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(x,y) € {(1+p,p> + 1), 2p,2p), 0 + p, 1 +p)}

Mu Alpha Theta National Convention 2002, Number Theory Test, Alpha Division, Problem #

21

L . 1 1 1
How many pairs of integers (m, n) satisfy the equation — + =1 ?

Solution

21. A Rearranging yields 10{(m + n) = mn, or
(m —10)(n — 10) = 100.

Since 100 has 9 divisors, there are 9 values m — 10 can take on (with n —10 equal to 100/{m — 10)).
Moreover, m — 10 and n — 10 could both be negative, yielding another 9 solutions. However, we
must omit the solution m = n = 0 since that would give us 1/0+1/0 = 1/10 as our initial problem.
Thus, there are 17 solutions.

]
AMC 1993 Problem #19
How many ordered pairs (m, n) of positive integers are solutions to
4 2
—+—-=17
m n
| (A)1 | (B) 2 | (©)3 | (D) 4 | (E) more than 4
Solution
]

13.5.1 Counting Integer Solutionsof 1/x+1/y+1/z=1/n.

See Indeterminate Equation, Xing Zhou, Section 3.3, Page 21.

13.6 Perfect Squares

13.6.1 Properties of Perfect Squares

Properties of Perfect Squares (in Base 10)

1) Thelast digitis 0,1, 4,5, 6, or 9.
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2)
3)
4)
5)
6)
7)
8)
9)

The digital root is always 1, 4, 7, 9.
If the last digit is 6, then the penultimate digit must be odd.
If the last digit is not 6, then the penultimate digit is even.

If the last digit is 5, then the penultimate digit must be 2.

The last two digits cannot both be odd.
If the last digit is zero, it must also end in an even number of zeros.

Even square numbers have an even square root. Odd squares have an odd square root.

The remainder after dividing by 3 is either 1 or O.
10) The remainder after dividing by 4 is either 1 or O.

11) They always have an odd number of prime factors.

(wiki, Perfect Squares)
Proof of (3) and (4).
Every perfect square may be represented by (10a + b)? where a is a nonnegative integer and

b is nonnegative integer less than 10.
Now (10a + b)? = 100a + 20ab + b? = 2(10)(5a + ab) + b?. It follows that the tens digit

of (10a + b)? is an odd number if and only if the tens digit of b? is an odd number.
But by checking all cases we see that the tens digit of (10a + b)? is an odd number only for

4?2 = 16 and 6% = 36.

And in both of these cases the units digit equals 6. Hence we can state that the tens digit of

02=100 52 =25
12 =01 6% =36
22 =04 72 =49
32 =109 82 = 64
42 = 16 92 =81

(10a + b)? is odd if and only if the units digit of (10a + b)? is 6.

Theorem

If p is a perfect square then pq is a perfect square if and only if g is a perfect square.

Proof

pq =n’p =k’
p|pq & k? n2<=>k|n < n =rk for some integerr

pq _n* (rk)?*
=—=—= =r°.

p k2
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19. Let a and b be positive integers such that (a,b) =1 and ab is a
perfect square. Prove that @ and b are perfect squares. Prove that
the result generalizes to kth powers.

https://www.quora.com/The-number-8A3BC5-is-a-perfect-square-of-a-number-that-is-
divisible-by-3-What-is-A-B-C-if-A-B-and-C-are-different-digits

The number 84A3BC(5 is a perfect square of a number that is divisible by 3. Whatis A + B + C if
A, B, and C are different digits?
Solution
From the list of properties of perfect squares we can immediately see that C = 2.
843B25 = (3 - n)?

So 843B25 is divisible by 9. Therefore

8+A+3+B+2+5=184+A+B
must be divisible by 9. Hence A + B must be divisible by 9. ThismeansA+ B =0,A+B =9
orA+ B =18. Butwecanruleout A+ B = 0and A + B = 18 because this requires A = B =
0OorA =B = 9andwe are given that A # B.
So A + B = 9. And we already know that C = 2. Therefore, A+ B+ C = 11.

https://www.flyingcoloursmaths.co.uk/ask-uncle-colin-a-six-digit-square/

ABCDEF is a six-digit perfect square (i.e. A # 0) in base ten such that DEF = 8 X ABC, what is
thesumof A+ B+ C+D+E+F?

Solution

ABCDEF = 1000 - ABC + DEF

=1000-ABC + 8- ABC

= 1008 ABC

=2%.32.7-ABC
We are given that ABCDEF is a perfect square which means that all prime factors occur to an
even power. Therefore ABC must be a multiple of 7.
We note that if A > 125 then 8 X ABC will be a four-digit number and hence cannot equal
DEF. Furthermore A # 0. Therefore, 100 < ABC < 125.
The multiples of 7 between 100 and 125 are {105,112,119}. Thatis, ABC € {105,112,119}.
Therefore,

ABCDEF = 1008 - ABC € {105840, 112896, 119952}.

We can use our list of properties of perfect squares to rule out 105840 and 119952. (A perfect
square cannot end with an odd number of 0’s and cannot end with a 2.)
Therefore, ABCDEF = 112896. (If a calculator was allowed on your test, you could directly
verify that 112896 = 3362 is the only perfect square in this list of candidates.)
Hence,
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A+B+C+D+E+F=1+1+2+8+9+6=27.

Saint Mary’s College Mathematics Contest Problems
18. In what bases (less than or equal to 12)is 2101 a perfect square?
Solution

Saint Mary’s College Mathematics Contest Problems
97. What is the smallest base in which 213 is odd and a perfect square?
Solution

AMC
62

22. The number 121;, written in the integral base b, is the square of an
integer for

(A) b= 10,only (B) b=10andbd = S5,only (C) 2<5< 10
(D) 5> 2 (E) no value of b

Solution

Find all positive integer n such that n? + 4n + 10 is a perfect square, i.e. n? + 4n + 10 = k?
for some positive integer k.
Solution
We know that a? = 0 or 1 (mod 4) for all integer a. Therefore, k? = 0 or 1 (mod 4). But
k*’=n?+4n+10=(n+2)*>+6
and
(n+2)2=00r1(mod4).

Therefore,
k>’=n+2)?>+6=0+60r1+6(mod4)
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= 2or3 (mod4)
which is a contradiction. Hence there are no values of n where n? + 4n + 10 is a perfect
square.

Find all positive integer n such that n? + n + 109 is a perfect square, i.e. n> + n + 109 = k?
for some positive integer k.

Solution
b\* b2
ax2+bx+c=a(x+—> ——+c
2a 4q
1% 1
n2+n+109=(n+—) ——+109
2 4
_(2n+1)? . 4(109) — 1
B 4 4
_ (2n+1)? +435
B 4
So

4k? = 2n+ 1)? + 435

4k? — (2n+1)? = 435
2k —2n—-1)(2k +2n+ 1) = 435

Now 435 = 3-5-29. So, we have the following possible cases to solve for (k, n).
2k—2n—-1=1,2k+2n+1 =435
2k—2n—-1=3,2k+2n+1 =145
2k—2n—-1=29,2k+2n+1=15
2k—2n—-1=152k+2n+1=29
2k—2n—-1=87,2k+2n+1=5
2k—2n—1=1452k+2n+1=3
2k—2n—-1=4352k+2n+1=1

2k=2n+1+1,Q2n+2)+2n+1=435
4n+3 = 435,n = 108,k = 218

4k?(mod 4) = 0(mod 4)
435 (mod4) = 3(mod 4)
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Therefore, we need
(2n+ 1)? = 1(mod 4)
which implies that
2n+1=1(mod4) or 2n+ 1 = 3(mod4)
2n = 0(mod4) or 2n = 2(mod 4)
n = 0(mod4) or n = 1(mod4)

02 = 0(mod 4)
12 = 1(mod 4)
22 = 0(mod 4)
32 = 1(mod 4)

AMC 1965
40. Let n be the number of integer values of x such that

P =24 62+ 1122 + 32+ 31
is the square of an integer. Then n is:
A)4 (B)3 ()2 (D)1 (E)O

Solution
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Let P =2+ 62+ 1122+ 3z + 31
= (£ + 32+ 1)? — 3(z — 10) =y~

When x = 10, P = (22 + 3x+ 1)? = 1312 = 42 To prove that

10 is the only possible value we use the following lemma: If

INI> | M,
N, M integers, then

N—M2>2|N|—1
(This lemma is easy to prove; try it.)
Case I If x> 10, then
3(x—10) = (2+3x+1)2— 22> 2|24+ 3x+1]|— 1,
an impossibility.
Case II If x < 10, then
3(10— 2) = 92— (a2 + 3x+ 1)2
>2|lyl—1>2|2+ 3+ 11—1.
This inequality holds for the integers
x=210—1,—2,—3,—4,—35,—6,

but none of these values makes P the square of an integer.

x* 4+ 6x3 + 11x% + 3x + 31 = (ax? + bx + ¢)? + lower terms rem

= a’x* + 2abx3 + (2aca+:b21?z2:+3?lc)cic Jlr c? + lower terms rem

(x?+3x+1)2+6x+1+22?
Not sure where | am heading with this!

435
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Writing as a square:

In this method take the desired quantity and write it as the square of some number,
perhaps involving some or all of the original expression. Then see what makes sense.

In this problem from the 2002 NC State Math Contest, we are asked to find the four
values for which n° +n+109 is a perfect square.

n* +n+109=(n+k)’ =n*+2nk + k*
= n+109=2nk+k*> = n(1-2k)=k*-109 Now check values of k from 1 through 10.
10942

2k -1

-=>n

109—-k*  (k*-109\ _ (2k+1 435 )
2k—1 2k—1 ) 4 42k — 1)

435 =3 % 5% 29

2 x+1 435
[T ,—T]

Perfect Squares notes by John Goebel

6. For what positive integer values of #is n° —19n+99 a perfect square?
AIME 1999

If n2 — 190499 = (n—k)> = n> — 2nk + k> = —19n+99 = 2nk + k> =
k> —99  2k+19 35
k*—99=n(2k—19) =n= = — . 2k — 19 must
n = e T T 4 2@k 19) TS

then divide 35, giving k = —8,6,7,9,10,12,13,27 and n = 1,9,10, 18

Perfect Squares notes by John Goebel

7. For how many positive integers n is n> —2004n a perfect square?
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If, n* —2004n = m?, then n?> —m? = (n+m)(n —m) = 2004n is even, so
n—mis even. If n? —2004n = (n—2k)? = n> —4nk +4k*> = n(4k —2004) =
4k

k2 251001

= = 1 . 251001 = 3%-1672, so for i
n 501 k450 +k—501 51001 = 3-- 1677, so for integer n,

k = —250500, —83166, —27388,—10020,334,492,498, 500,502, 504,510,
668,1002,2004,28390,84168,251502. For the first nine k’s, this produces
non-positive n, for the other nine k’s, n = 252004, 84672,28900,2672,2004,
2672,28900,84672,252004, respectively, giving 5 distinct n.

(1T075)
5. Kis a positive two digit number. When its digits are reversed to form the two digit
number L, L#K, then K*-I? is a perfect square? What is that perfect square?

Solution

Lt K= [Om +ns Then L = lOn+m
k™ L" = (00m™+ 20mn + n*
— (1oon* + 20 mn Fm?)
= 99 (m=n*) = 911 (m+n)(m-n)

C|eanlj erther m+n or m-n must

be I, but m-n wont work, min=1I]
Also, Since m-n>0, m >n; and
m-n will hawe to be a penPec:r

Squane, Consider the Possibf’iﬁes
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myn/m-n LMML March 2006 ]
Q2| 7

|3 5

714 3

6 \S | -<————n\e r.mlj S7f4wuz

m= 6 5 N=§

The perfedt squane = 9-11:11 = (089

Mathematics Teacher, Calendar Problem Number 24, October 1990

2 Exactly one of the following six
numbers is a perfect square;
can you determine which one?

64 844 231 096 378
75 406 651 906 592
55 432 988 756 447
23 T84 855 888 784
19 830 005 200 433
66 971 114 742 058

Solution
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@ The units digit of any inte-
ger is one of the ten digits 0,

T TR 9. Note that—
0% =0, 5% =25,
1= 1, 6% = 36,
28=4, 72 = 49,
3:=9, 8% = 64,
42=16, 9*=81.

In short, the units digit of a per-
fect square must be 0, 2, 4, 5, 6, or
9. The only number in the list sat-
isfying the stated condition is the
fourth number from the top. Since
we are given that exactly one of
the numbers is a perfect square,
the fourth number must be the
one. For the record,

23 784 855 888 784 = (4 876 972)".

The Pentagon, Volume 15, Number 2, Spring 1956, Problem Corner, Problem #90, page 106
A merchant buys an odd number of felt hats at $10 each and one cloth hat for a whole number
of dollars less than $10. How much does the cloth hat cost if the total amount of money
involved is a perfect square?
Solution
Let n be the number of felt hats the merchant buys and let m be the cost of a cloth hat. From
the information given we know that

10n+m=r?
where n is odd, m € {1,2, ...,9} and r is a positive integer. The tens digit of 10n + m does not
depend on m and the tens digit of 10n is odd because n is odd.
This means that the tens digit of 72 is odd. But we have shown above that the tens digit of 72 is
odd if and only if the units digit of 72 equals 6.
That is, if and only if m = 6.

Mu Alpha Theta National Convention 2004, Number Theory Test, Mu Division, Problem #11

11. Which of the following is the list of possible units digit of a perfect square that ends with
4 identical digits?
A. 0 only B. 0 or 4 only C.0, 1, or 4 only D. 0, 1, 4, or 6 only E. NOTA

Solution
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11. A All but 0 and 4 are easily dismissed by noting that only 00 or 44 could be repeated
last 2 digits. An ending of 4444 can be dismissed by noting that any such number is of the form
16k+12, which cannot be a perfect square.

ARML 1995 #1-3

Find all primes p such that p1%%* + p995 is a perfect square.
Solution

p1994 + p1995 — p1994(p + 1)

p'°°* is a perfect square therefore p'9%* + p199 is a perfect square ifand only if p + 1 is a

perfect square.

letp +1 =k? Thenp =k? —1= (k—1)(k+ 1). But pis prime, therefore k — 1 = 1 and
k = 2. Hence p = 3. Thatis, p = 3 is the only prime such that p9°* + p19%° is a perfect
square.

Note: The same argument shows that p2™ + p?"**1 is a perfect square for prime p if and only if
p=3.
]
Find all (m, n, x) positive integer triples satisfying the equation
2M 4+ 3™ = x2,
Solution
Let (m, n, x) be such a triple. Then (2™ + 3™) = x? mod 3.

We can see that 3 divides 3™ but 3 does not divide 2™. Therefore,

3" =0 mod 3 and 2™ # 0 mod 3

= (2™ mod 3) + (3" mod 3) Z 0 mod 3
= (2™ +3") # 0mod 3

= x? £ 0 mod 3

Now the square of an integer is never equivalent to 2 mod 3 (as the following simple argument
shows).
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(3k)?’mod3=0
(3k +1)? mod 3 = (9k? + 6k + 1) mod 3

= <3(3k2 + 2k)> mod 3+ 1 mod 3 =1 mod3

(3k + 2)? mod 3 = (9k? + 12k + 4) mod 3

E<3(3k2+2k+1)> mod 3+ 1 mod 3 =1 mod 3

Therefore, it must be that x2 = 1 mod 3. But 3" = 0 mod 3 tells us that 2™ = x2 mod 3.
Therefore, we can conclude that

2™ = 1 mod 3.

But
2ZM=1mod3 <& miseven

as the following simple argument will show.

2%k mod 3 = (2%)* mod 3 = 4¥ mod 3

4* mod 3 = (4 mod 3)* mod 3= 1*mod 3 = 1 mod 3

2%2%*1mod 3 = (22)* -2 mod 3 = 4% -2 mod 3

4% .2 mod 3 = (4 mod 3)* mod 3 - 2 mod 3

= ((1" mod 3) - (2 mod 3)) mod 3

((1" mod 3) - (2 mod 3)) mod 3 = (1-2) mod 3 =2mod3

Now consider the equation 2™ + 3™ = x2? modulo 4. Then (2™ + 3™) = x2 mod 4.
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Because m is (by assumption) greater than or equal to 1 and because we have just shown that
m is even, we can now conclude that m = 2.

Therefore, 2™ = 0 mod 4. But clearly 4 does not divide 3" so 3" # 0 mod 4. Therefore, it has
to also be true that x? % 0 mod 4.

However the square of an integer is never equivalent to 2 or 3 mod 4 (as the following simple
argument shows).

(4k)> mod4 =0
(4k + 1)? mod 4 = (4(4k2 + 2k) + 1> mod 4 = 1 mod 4
(4k + 2)? mod 4 = (4(4k2 + 4k + 1)> mod 4 = 0 mod 4

(4k + 3)? mod 4 = (4(4k2 +2k+2)+ 1> mod 4 = 1 mod 4

Therefore, it must be that x? = 1 mod 4. But 2™ = 0 mod 4 tells us that 3" = x? mod 4.
Therefore, we can conclude that

3™ = 1 mod 4.

But
3"=1mod4 < niseven

as the following simple argument will show.
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3% mod 4 = (3%2)* mod 4 = 9% mod 4

9* mod 4 = (9 mod 4)* mod 4 = 1¥ mod 4 = 1 mod 4

3%2**1 mod 4 = (32)¥ -3 mod 4 = 9% -3 mod 4

9% .3 mod 4 = (9 mod 4)* mod 4 - 3 mod 4
= ((1" mod 4) - (3 mod 4)) mod 4

((1k mod 4) - (3 mod 4)) mod 4 = (1-3) mod 4 = 3 mod 4

So now we know that m and n are both even. This means that 2™ and 3" are perfect squares.
2M + 3" = x2,

This means that 2™/2 and 3"/2 are positive integers. It follows that
2 2
2m 43" = (2m/2)" + (3M/2)" = x?

where 2™/2 and 3™/2 are positive integers.

That is, (Zm/z, 3”/2,x) is a Pythagorean triple! Is a primitive Pythagorean triple? Yes.

We note that 2™/2 only has factors of 2 and 3n/2 only has factors of 3. [Don’t forget that we
have just shown that m/2 and n/2 are integers.]

Therefore, gcd(Zm/Z, 3”/2) = 1. But this tells us that gcd(Zm/z, 3"/2,x) = 1. [Show this.]

Therefore, (2™/2,3™/2,x) is a primitive Pythagorean triple.

The USSR Olympiad Problem Book: Selected Problems and Theorems of Elementary
Mathematics, Shklarsky, Chentzov, Yaglom
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Problem 110(a)

Find a four-digit number which is an exact square and such that its first two digits are the same
and its last two digits are the same.

Solution

110. (a) Let a be the first digit, and b the last digit, of the
desired integer N. Then the integer can be written as

N =1000g + 100ag + 106 + b,
or as
N =1100a + 115 = 11(100a + b)
Since this integer is to be a perfect square, and since it clearly must
be divisible by 11, it must also be divisible by 121; that is, -TAII— =
100z + b must be divisible by 11. But
100a + b=99% + (a + b) = 11-9a + (a + b)

Hence a + & must be divisible by 11. Since neither a nor b exceeds
9, and since ¢ is not 0, it follows that 1 <a¢ + b < 18, whence
a+b=11,

This implies that

100 + b = 11-9a + 11 = 11(9a + 1),

N  100a + b
121 11

=92+ 1

Since N is a perfect square, % is also a square. But among the

integers of form 9¢ + 1, where a ranges through the integer values
1to9, only 9:7+ 1 =64 is a perfect square. This means that N =
121-64 = 7744 — 882,

13.7 Repunits
For the repunits R,,, where R,, = (10" — 1)/9, verify the assertion.

If gcd(n, m) = 1, then gcd(R,, Ry) = 1.
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HINT: Assume that m < n; then R,, — 10"""R,, = R,_,,,, SO

_10m -1
9

R,=11--11

n ones

Suppose m < n. Then
11---11-11---1100---00 = 11---11.

nones mones mn—mones n—m ones

That is,
R, —10"™R,, = R, _n.

Suppose a — kb > 0. Then
gcd(a, b) = ged(a — kb, b)
Proof
If r|b then r|kb.
If rla and r|kb then r|(a — kb).
If r|(a — kb) and r|b then r|((a — kb) + kb).
Sor|aand r|b if and only if r|(a — kb) and r|b. Therefore gcd(a, b) = gcd(a — kb, b).

gcd(R,,, R,,) = gcd(R, — 10" ™R, R,,)
= gcd(R,,, Ry—m)

gcd(52,14) = ged(52 — 14,14) = gcd(38,14) = gcd(24,14) = gcd(10,14)
= gcd(14,10) = gcd(4,10) = gcd(10,4) = gcd(6,4) = gcd(2,4)
= gcd(4,2) = gcd(2,2) = 2

gcd(Rsy, Ry4) = ged(Rsg, R14) = ged(Ry4, Ry4) = gcd(Ryg, R14)

= gcd(Ry4, R1p) = gcd(Ry, Ryo) = gcd(R0, Ry) = gcd(Rg, Ry)
= gcd(Ry, Ry) = ged(Ry, Ry) = ged(Ry,R,) = R, = Rgcd(s2,14)

gcd(52,15) = ged(52 — 15,15) = gecd(37,15) = gcd(22,15) = gecd(15,7)
= gcd(8,7) = gcd(1,7) =1

gcd(Rs,, Rys) = gcd(R37, Rys) = ged(Ry;, Rys) = ged(Rys, R7)
= gcd(Rg, Ry) = ged(Ry, R;) = ged(1,R;) =1 = Rgcdcs2,1s)
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Suppose n = km. Then
10" — 1 = (10m — 1)(10%-Dm 4 10k=2m 4 ... 4 10™ + 1)

10%m 4 100%k=Dm 4 ... 4 102 + 10™ — 10k=Dm — 10k=2m — ... — 10™ — 1
= 10km = 10"

Conclusion
If m|n then Ry, |R,,.

]

If d|R, and d|R,,, then d|R,, 1

Proof

R, — 10" ™R, = R,_p.
Therefore,
Ryim — 10(n+m)—mRm = Rtn+m)-m
Ryym = 10M™R,, + R,

Therefore, if d|R,, and d|R,,,, then d|R,, 4 1m

]

Repdigit

Example (Source: Mu Alpha Theta 2001 National Convention, Mu Division, Number Theory
Topic Test, Problem 30)

A number N expressed in base (A + 1) is AAAA. If N = Q(Q — 2), what is Q expressed in base
(A+1)?

Solution
N = (AAAA) 444 =A-(A+1)P2+4-A+1D?*+4- A+ +4

(AA00)

A+1D?*AA+1D)+A)+AA+1D+A4)
(A+1D)?2+1D)AA+1)+A4)
(1A+1D)?2+0A4+D'+1A+1D)HYAU+ DT+ 44+ 1))

(101) 411 (AA) 441
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30. Notice that AAAA can be factored into (AA)(101). Also, AA +2=101. Q is thus 101.

Question 7. [p 194. #11]

A repunit is an integer with decimal expansion containing all 1’s.

Determine which repunits are divisible by 3; and which are divisible by 9.
SOLUTION: If

n=ap-10" +ap_1-10"" +-- +ay-10° +a; - 10 + ay.
then

n = ag+ ag—1+---+az+a; + ap (mod 3)
and
n = ar+ap—1+ - +az+a +ao (mod 9).

So a repunit is divisible by 3 if and only if the number of decimal digits is a multiple of 3, and a repunit is
divisible by 9 if and only if the number of decimal digits is a multiple of 9.

Question 8. [p 194. #12]
Determine which repunits are divisible by 11.
SOLUTION: Again, since
n=ap-10"+a,_; - 101+ 445102+ ay - 10+ ag
= (—1)*ap +---—a; +ao (mod 11),

and for a repunit ap = a1 = -+ - = a;, = 1, then any repunit with an even number of decimal digits is divisible
by 11.

https://math.stackexchange.com/questions/881503/length-of-smallest-repunits-divisible-by-

primes

I want to prove this statement from Wikipedia:

It was found very early on that for any prime p greater than 5, the
period of the decimal expansion of 1/p is equal to the length of the
smallest repunit number that is divisible by p.
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Thanks Erick Wong, I understand it now. So we need p|10¥ — 1, so

04 =4 10° i

= — ==

p p p

10
So we need the fractional parts of —and— to be equal: that will happen for the
p p

first time if £ = period. : For example,
p

1 1
— =0.(076923), 10° - — = 76923.(076923)
13 15

And the difference is 76923

Therepunitsare 1,111,111, 1111, .... the next repunit to x will always be
x*10+1. If the remainder left by x repunit is r then remainder left by the next
repunit will always be (r*10+1)%n. Since the repunit can be very large,
there is no need to find the repunit number. Simply counting the number of
ones will give us the answer.

So, find out the remainders of all repunit numbers until the remainder
becomes 0. Once it does, then the count of iterations done to make

remainder 0 will be the number of 1's.

Find the number of digits in the smallest repunit divisible by 19.
https://math.stackexchange.com/questions/3824172/finding-the-number-of-digits-in-repunit
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https://mathlesstraveled.com/2011/11/17/fun-with-repunit-divisors-more-solutions/

My previous post explained two different proofs. At the end of “Fun with repunit divisors”

I also posed a series of follow-up challenges; here are solutions to those.

1. Compute a repunit which is divisible by 2011 (you’ll probably want to use a
computer!).
As we now know from the second proof (using Fermat’s Little Theorem), the repunit
with 2()1() ones must be divisible by 2()1 1. So I guess a computer is not really necessary
after all! However, what if we want to compute the smallest repunit which is divisible
by 20117 In that case we can compute | mod 2011,11 mod 2011,111 mod 2011, ---
until we get zero. However, we don’t have to actually compute a bigger and bigger
repunit each time! Each repunit is related to the previous one by an application of the
function f(x) = 10x + 1. So it suffices to keep only the remainder (mod 2011) at
each step, and apply f(z) = 10x + 1to each remainder to get the next (reducing
(mod 2011)when needed). For example, we start out by computing ,11,111, 1111,
but at the next step we can reduce 11111 mod 2011 to get 1056. Then we compute
(1056 - 10 + 1) mod 2011 = 10561 mod 2011 = 506, then
5061 mod 2011 = 1039, and so on. Iterating this process on a computer is very fast,
and in a fraction of a second we find that (10570 — 1) / 9 is the smallest repunit divisible
by 201 1. For example, I computed this using Haskell by defining

Question &

(@) Let p > 5 be prime. If R,, is the smallest repunit for which p|R,,, establish that n|p — 1. For example, Ry is the
smallest repunit divisible by 73, and 8|72. [Hint: The order of 10 modulo pis n.| (b) Find the smallest R,, divisible by 13.

Explanation & Verified

. [a)]Letp > 5 be prime. Let R,, be the smallest repunit for which p | R,,. Recall that a repunit is of the form

" -1 10"-1
Rn—ll...lllo_l— 9

n times
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Each digit in the n-digit number N is 1. What is the smallest
value of n for which N is divisible by 333,333?

Since N = 11... 11 (with n ones) is divisible by 333333, we can write
N =11...11 = 333333 . k for some integer k.

Multiply both sides by 9 to get: 9N =99...99 =9 - 333333 . k.

Now, notice that 99 ... 99 (with n nines) is one less than 10". Thus, 99...99 = 10" — 1.
Also, we can factor 9 - 333333 = 3-999999 = 3(10° — 1)

Therefore, we want to find positive integers n, k such that 10" — 1 = 3(10° — 1)k.

By Fermat's Little Theorem, 10 = 1 (mod 7), thus, 10% — 1 is divisible by 7.So, 10" — 1
must also be divisible by 7,i.e. 10" =1 (mod 7).

Looking at powers of ten (mod 7), we see that:
10°=1,10"=3,10°=2,10° =6, 10" =4,10° =5, 10° = 1.

Since the cycle repeats every 6 powers of ten, 10" = 1 (mod 7) iff n is a multiple of 6.
Now we try n = 6, 12, 18, ...:
n=6:310°= 1k =10°—1,s03k = 1,ie. k = 0.33 ... (not an integer)

n=12:310° = Dk = 10" = 1 = (10° — 1)(10° + 1), so 3k = 10° + 1, so
k = 333333.66 ... (not an integer)

n=18:3(10° = Dk = 10" = 1 = (10° = D10 +10% + 1), so 3k = 10" + 10° + 1
= 1000001000001, which is divisible by 3.

Hence, the smallest value of n that meets the criteriais n = 18.

THE 26" ANNUAL (2004) UNIVERSITY OF MARYLAND
HIGH SCHOOL MATHEMATICS COMPETITION
PART I MULTIPLE CHOICE

25. Let m = 1111---111 (2004 ones) and n = 1111---111 (666 ones). The greatest common divisor
of m and n is
a. 111 b. 333 c. 111111 (6 ones) d. 333333  e. 111111111111 (12 ones)

Solution
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Let d be the greatest common divisor. Then d is a divisor of m—1(2004-666 _1(2004-2:666, 106 =
111111, Since 111111 is a divisor of m and n, we have d = 111111. The answer is (c).

Alberta High School Mathematics Competition
First Round, 2007

1001 1's
1. The positive integer A has 1001 digits all of which are 1’s. Thatis, A = 11---11. Find
Amod(1001).
Solution

We can expand A as follows:

1001 1's
1111 = 100 + 109 + 10%%% + - + 10% + 10% + 10 + 10°

= (101990 + 10%97) + (10°%° + 10°%¢) + --- 4+ (10* + 10Y) + (103 + 10°) + 102
= 1027(1001) + 10°°°(1001) + ---+ 101(1001) + 10°(1001) + 10°2.

From here we can immediately see that A mod(1001) = 10% = 100.

Alternatively, we could expand A as

six1's  9950's six1's  9890's six 1's 110's six 1's 50's 51's
A=1111110--04+1111110---0 4+ +---4+1111110---0+1111110---0+ 11111

six1's five 1's
= (111111) -(10%%% + 10 + --- + 101 + 10°) + <11111)

- (1001 : 111) (10995 4 10989 4 .. + 101 + 106) + (1001 11+ 100)

from which it is again immediate that A mod(1001) = 100.

]
13.8 Need to Generalize
Saint Mary’s College Mathematics Contest Problems
117. How many ways could one make $2.43 with 5¢ and 8¢ stamps?
Solution
]
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13.9 Else

(5T895) Two seventh grade students were allowed to enter a chess tournament otherwise
comprised of eighth-graders. Each contestant played one match against every other
contestant. In this tournament, a contestant received 1 point for a win, 0 for a loss, and in the
case of a tie, each contestant received 1/2 point. The two seventh grade students amassed a
total of 8 points, and each eighth-grader scored the same number of points. What is the largest
number of eighth-graders that might have participated? [This is not an original problem, but
the source is lost.]

Solution

With this setup we can see that the total number of games played equals the sum of the points
earned by all the contestants.

Let n be the number of eighth grade contestants and let p equal the number of points scored
by each eighth grader.

Then, the total number of contestants equals n + 2 and the total number of games played

equals (n ; 2), as each contestant plays one match against every other contestant . And as
noted above, this implies the sum of the points earned by all the contestants also equals
(n + 2)

5 )
But we also know that the sum of the points earned by all the contestants equals np + 8.
Therefore, we have

n+2):(n+2)!:(n+2)(n+1).

"p+8:( 2 21l 2

This gives us a quadratic equation in the variable n.
2np+16=(Mm+2)(n+1)
or
n’+ (B3 —-2p)n—14=0.

We know that n is an integer and we know that the only possible integer solutions of this
quadratic are the factors of 14. Thatis, n € {1,2,7,14}.

Now consider the value of p for each possible value of n. Note that on solving for p in the
above quadratic equation we have

n?+3n-14
p= 2n '
Therefore,
12 +3(1) — 14
n=1=p= 200 =-5
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22+3(2)—14

2(2)
N _7*P+3(7) - 14
TEITPETTAIm

142 + 3(14) — 14
n=14=p= =

2(14)

p, the number of points scored by each eight-grade contestant, cannot be a negative number.
Therefore, we can eliminate the cases of n = 1 and n = 2. Hence there are two possible
scenarios. Either there are n = 7 eight-grade contestants and each scored p = 4 points or
there are n = 14 eight-grade contestants and each scored p = 8 points.

The problem asks for the largest possible number of eight-grade contestants, which is 14.
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