Poisson Randomization (Multinomial Allocation)
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Theorem 1. Poisson Randomization Theorem

Define S™ to be the product space {0,1, ...} X --- X {0,1, ... } and let S? be the set of all vectors
(s1).,S,) inS™such thats; + ...+ s, = t.

Suppose that (X, , ..., X,, ;) is a multinomial random vector. That is, for all (sy, ..., s,) € S%,

t!

P(X1,t =Sp, e X = Sn) - Sqls,!-

(pl)sl(pz)sz (P

where p; +--+p,=1and p; =20 forj=1,.,n

Suppose that (Y4, ..., Y;,) is a vector of independent Poisson random variables and that Y; has
parameter Ap;, j = 1,...,n. That s, suppose that for all (sy, ..., s,) € S™,

Py =s1,...Yp=s,) =1L, PYi =)
_ e PGy
= =1 s

e ApS1ttsn

= (P1)°1(p2)2 -+ (p)*"

t! Sqlosp!

Let A € S™ and define A; = A N S}. Thenfort > 0,

P ((Xllt, s Xne) € c/lt) ( 2P((Yy, Yo, ) Vo) € cﬂ))|

A=0

and

(9:(X1r s X)) = (e (g(Yl,YZ,..,Yn)))L:O



Note: need to fill in definition of g; and g]

Theorem 2. Factorial Moments via Poisson Randomization
Define the random vectors (X1 4, ..., X ¢ ) and (Y3, ..., ¥,) as in Theorem 1.

Define random variables W, = g(X,, ..., X, ) and W, = g(¥;, ..., Y,) with supporton § €
{0,1,...}. Define A, to be the event that W, = w and define A;,, = A, N S so that

P((Xyp s Xne) € Ay ) = P(W, = w).

Then,

dt dr S
E (W) = T 357 (el Z P((Yy, .., Yo) € AW)HW)

w=0

6=1l3=0

Theorem 3. Expected Waiting Time to Meet Given Quotas

Suppose we distribute balls independently into m distinguishable boxes such that the
probability that a ball is distributed into Box j on any given trial is p;. When g; = 1 balls have
been distributed into Box i we will say Box i has reached its quota.

Let Wirim:qy,42,am) = Wem:q represent the waiting time until exactly r different boxes have
reached their quota.

Let E (W[k] ) represent the k" ascending moment of Wim.q- Thatis,

(r:m:ql :CIZI---IQm)

E (VVrU;r]lQ) = ((Wr:m:Q + 0)(Wr:m:Q + 1) (Wrrm:Q +hk— 1))

Define N(g, 4,....am) (£) = N (t) to be the number of boxes that have not reached their quota
after t balls have been distributed.

We allow for the possibility that 25'”:1 pj < 1soastoinclude the case where our interest is
limited to a particular set of m boxes out of a larger set (say m + v) of possible boxes.

Then the k" ascending moment of Wi.m.q is given by
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where C; is the set of all samples of size j drawn without replacement from {1,2, ..., m}, where
the order of sampling is not considered important.

Applications
Problem 1.

Suppose m distinguishable balls are distributed independently among n + r distinguishable
urns and that all urns are equally likely. Suppose that n of the n + r urns are marked. Let T
equal the number of urns among these n marked urns which are occupied by at least one ball.
Let W; equal the number of urns among these n marked urns which are occupied by exactly i
balls. We note that without loss of generality we can assume that the n marked urns are the
first n urns when we arrange the n + r urns in a row.

(a) Show
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PO = 1) = npg(n+ 1) =) (~DF) (J") (r + j)m
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(b) Show

E(Tpw) = n— )|(n+r)‘m<2( v )(r+s+n—v)m>

provided n = v.



(c) Show

— 1) — Gcl) m & n-k—j (N —k (r +j)(m_i(n_j))
P =) = m,zo o )(i!)"-f(m —itn—))!

providedm > i - n.

(d) Show

(Z — v) viml(n+r—v)™ ¥

@Mvm—-iv)!(n+r)m

E(W)p)) =

providedm > ivand v < n.

A Unified Derivation of Occupancy and Sequential Occupancy Distributions, Ch. A.
Charalambides, Advances in Combinatorial Methods and Applications to Probability and
Statistics, pages 259-273.

Problem 2.

Suppose n balls are independently distributed into m distinguishable boxes and that a ball is
equally likely to land in any of the m boxes. Let, N; =the number of boxes containing j balls,
j=1,..,n

(a) Show

m!n!

P((NO, ey Nn) = (ao, ey an)) = mn((o!)ao(l!)al (n!)an)(ao! al! an!)

where
(Jaj=0for0<j<nanda; =0forallj >n
(ii) ag + -+ + a,, = the number of boxes = m, and

(iii) (0-agy) + -+ (n - a,) = the number of balls = n.



Note that is not necessary to specify whether the n balls are distinguishable or not because the
required probability would be the same in either case.

(b) Show that the number of ways to distribute n distinguishable balls into m distinguishable
boxes so that exactly a,- boxes contain exactly r balls equals

min(m | ]) e Yy mtm = e
JZ - (DI (n — )

provided 0 < a,, < min (m, BJ)

The special case r = 1 is considered in, A recursive solution to an occupancy problem resulting
from TDM radio communication application, Jyh-Horng Wen, Jee-Wey Wang, Applied
Mathematics and Computation, Vol. 101, 1999, no. 1, pages 1-3. They do not find a closed form
solution but rather derive a recurrence relation for the case r = 1.

(c) Show that
m
P(Ny = m —k) = —2§(n, k)
m

provided max(0,m — n) < k < m — 1 and where S(n, k) is the Stirling Number of the Second
Kind.

Problem 3.
Special cases illustrating Theorem 3.

(1) Coupon Collector’s Problems

(need references)



Bh1=qz="=qm=1

F(n5) =k D Y o (I s

j=m-r+1 C;j

Pr=pP2=""=Pm=pPand q1=q;="=qp =1
m
k! . m\ /i — 1\*
(k] — —_1Vj-m-r+1) (" (] 1 (_)
E(Wig) =25 ), D (GG
j=m-r+1

which agrees with Charalambides,page 271,(withp = ﬁ) after appropriate notational

adjustments. Furthermore, in this case

) =5 D 0 () )

j=m-r+1

-+ > 0

j=m-r+1

(needs proof. relate to sum of indep. but not identically dist. geometric random vars.)

P1=Pz="=Pm=pPand q; =qz = =qp =2
Newman, Donald and Shepp, Lawrence; “Double Dixie Cup Problem”, American Mathematical
Monthly, Vol. 67, 1960, pages 58-61.

Holst, Lars; “On Birthday, Collector’s, Occupancy and Other Classical Urn Problems”,
International Statistical Review, 1986, 54, 1, pp. 15-27.

(Two children collecting cards in cooperation.)

m 1 1

W)=k S TS Y (i)

j=m-r+1 C; vy =0 th=0
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(Birthday problem. Waiting for the first person to meet their quota.)
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=ki(:n)(i+k—1)!(%).
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(2) Knock’'m Down

Benjamin, Arthur and Fluet, Matthew, “The Best Way to Knock’m Down”, The UMAP Journal,
20.1, 1999, pages 11-20.

Mauer, Stephen, “The King Chicken Theorems”, Mathematics Magazine, Vol 53, 1980, pages
67-80.

The game of Knock’m Down is played by two players, each of whom is given a 6-sided die, n
tokens, and a card with the numbers 2 through 12. Each player allocates tokens among the
eleven numbers on their card. It is permissible to allocate multiple tokens to the same number
of a card. The players roll the dice together and each removes one token from their board on
the value equal to the sum of the dice. If a player does not have any tokens on their board on
the value equal to the sum of dice, that player’s board is unchanged during that turn. Play
continues until a player has removed all tokens from their board. The first player to remove all
tokens from their board is the winner. If both players remove their last token on the same roll,
then the game is a draw.

How should a player allocate their tokens?

Strategy 1. Determine the allocation which has the smallest expected number of turns to
remove all tokens.

Strategy 2. Determine the allocation (if it exists) which wins at least as frequently as it loses no
matter what allocation your opponent has chosen.

As it will be seen these two strategies can lead to different conclusions. First consider Strategy
1. We will illustrate our notation for the allocation (quotas) through two examples.

If n = 3 and we allocate one of the three tokens to the number 6 and the remaining two tokens

to the number 7, then we will definer =m =2,q, = land g, = 2,and p;, =

P(sumoftwodice = 6) = %, and p, = P(sumoftwodice = 7) = %.

If n = 3 and we allocate one of the three tokens to the number 6, one to the number 7 and one
to the number 8, then we will definer =m=3,q;, =1,q, =1,andg; =1,and p; =



P(sumoftwodice = 6) = %, p, = P(sumoftwodice = 7) = %, ps = P(sumoftwodice = 8) =
5

36
In this way for any allocation Q we have
E (Wm:m:Q) = expectednumberofturnstoremovealltokens(satisfyallquotas)

qtl_l qtj_l

z z (_1)1'—1
0

=1 C; ve, =0 Vt].=

m
]:
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Strategy 1 reduces to the task of determining an allocation @ which minimizes the above
expectation.

Exercises.

1.) Write a computer program which accepts the number of tokens you choose to allocate to
each number 2 through 12 as input and returns (Wm:m:Q) as output.

2.) Verify that on average it takes 15.476 turns to remove four tokens if one token is allocated
to each of the numbers five through eight. Verify that this is optimal in the sense of Strategy 1.
Be sure to exploit symmetry and intuitive conditions given in Benjamin and Fluet's paper to
reduce the search space.



Proof (Theorem 1)
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Thus,
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_P((%y,...,Y,) € AandY; + -+ Y, = t)
B P(Y;+-+Y,=1t)
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Z"qt t! Sl! SZ! Sn! (p1)51(p2)52 (pn)sn

e~AAt
t!

e At t! s s s
ZC/ltf t! 51!52!...Sn!(p1) 1(p2) 2"'(pn) n
- o)t
t!

t!
= T 0 @) )

Lo s,

= P((Xp s Xne) € A¢)

Therefore,



and

It follows that

Thus forr > 0,
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Proof (Theorem 2)

Es((W)py) = E(M) (W — 1) - (Wy — 7 + 1))

- ZW(W—I)---(W—T+1)P(Wx —w)
w=0

= Z W[T]P(va = W)

w=0
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It follows that,



dt ([ dm <
E (W) = 7\ | 757 z 8" (P((Yy, .., Y,) € A, )e?)
w=0 =1
dt dr C
=T e’ z P((Yy,...,Y,) € A,)0Y
w=0 6=1/ ;-0
Proof (Theorem 3)
Within the proof of the Poisson Randomization Theorem, we showed
had —AAn
P((Y, Yy, .., Yy) EA) = Z P((Xy, Xp, e, X)) € An)
n=0
It follows that
—/1/111

P(Ng(t) >m-—r)= Z P(NmQ(t) >m— r)

However,
Wimo >n © Npo)>m-—r.
Therefore,
P(Wyinig > 1) = P(Npo(®) >m —1)
and
—AAn
P(NS(®) >m—7) = Z P(Wyinig > n)
n=0

Thus,

foo 21 (P(NS (@) >m-7))da

o) x e—/ll’{n
:f k-1 ZP(WT:m:Q>n) =
0 n=0 '
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= Z P(Wrmg >n)(n+ k — 1)y

n=0

[ee)

= Z P(Wr:m:Q +k-1> n)n[k_l]

n=0

_ %E ((Wrimiq + k= 1>[k])

(see Problem ?7?7?).

But
(Wr:m:Q + k — 1)[k] = Vl/r[’;r]lQ
Thus
* 1
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0
Now let A; be the event that ¥; < q;. From the General Probability Theorem, we have
P(Ng(t) >m-—r)

= P(atleastm — r + lofthemeventsA,, A,, ..., A, occurs)
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m

= Y (il

j=m-r+1

where

and where C; is the set of all samples of size j drawn without replacement from {1,...,

the order of sampling is considered unimportant.

In the Poisson model,

P(4;)=P(Y<q;) = Z M

Also, as the Y;’s are independently,
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Solutions
Problem 1(a)

Let X; equal the number of balls that go into the j*" urn. Then (X4, ..., Xp4,) is a multinomial

1 Sn+r
) (n ¥ r)

random vector. That is, for all (s4,...,Sp4+,) € ST,

S1

m! 1
P(Xl =Sy, ""Xn+7' = Sn+r) - Sq I Sn+T (Tl + T)

_ m! ( 1 )
syl Syl \ntr

Therefore we can use Theorem 1 with A defined as that subset of S**" where exactly k of
(Y4, ...,Y,) are greater than 0 and the random variables (Y,,,4, ..., Y;,4+,-) can be anything.
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Therefore,
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which agrees with Charlambides, page 265, and with Barton and David, “Contagious
Occupancy”, Journal of the Royal Statistical Society, Series B, 21, 120-133.

Problem 1(b).

From Theorem 2
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We have simplified the initial expression in such a way so as to simplify the process of taking
the derivatives with respect to 8 and A and evaluating the resulting expression at 8 = 1 and

A = 0. In particular,



o) = ie{ 3y €0 ()6 (3, o ) (o)
= i=0 6=1/ 1,20
o <]ZO -1y (7) el ; () (=10 @) (= o-i10))
-
_ % <,Z, (—1)n) (J’})e(%’;)l RIS (]_Hj'(n ;) Dl
-
=%<ZO (_1)n—f(;l)e(%£)z<(fl j) - ]>'${” }o>1{n>v}>
£ i
=Z(—1)n-f(}’)(;:i)m( )0 =Dt Ol :
- 2 I OEY (gL
-y e ()G wo o S

( )l(n+r)m<2( 1)"5 )(r+s+n—v)m)l{n2v}

We note that there is a misprint in Charlambides, page 265, where he has omitted a constant
factor of j! (in his notation) in his statement of the above result.

Problem 1(c).

Define A to be that subset of S™*" where exactly k of (Y3, ...,Y,) equal i and the random
variables (Y4, ..., ¥,,4,-) can be anything.

Hence,
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This results agrees with Charlambides, page 265.

Problem 1(d).
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_ > () A0 (L (g — 100
dam (inn- J(n+r)l(” n dov 9=1
/=0 A=0
n
am (n — v) A=)
Cam\ (rm+nE© e )’1%”{0'1""'”}(”)
A=0
n
— (n—v)v! (r+n—v>m Yo ml : : )
@vm+rm®\ n+r (m — iv)! M=ol

(o

v) vim!(n+r—v)™w

@)v(m -

provided m = ivand v < n.

v)!(n+r)m



This results agrees with Charlambides, page 265 and with Buoncristiani, Cerosoli (???) who
considered the special case r = 0.

Solution (2a)

Let X; equal the number of balls that land in box j, j = 1,2,...,m. Define S$™ to be the product
space {0,1, ...} X ---x {0,1, ... } and let S7* be the set of all vectors (cy, 3, ..., ;) in S™ such
thatc; + ¢, + ...+ ¢, = 1.

Let A, be that set of all (cq, ¢y, ..., ;) such that
(i) a; of the m values in the vector (¢4, 3, ..., ¢y) equal j, j = 0,1,2,...,n and
(i) (cq,Cq, ey ) € ST,
Then,
P((Ng, Ny, ..., N) = (ag, @y, .., a,)) = P((Xy, X5, .., X)) € A,,)
where (X4, X5, ..., X,,) is a multinomial random vector with equal cell probabilities. That is,

@

C2

n! 1\ /1
P = ek = et = e = o) Gl

Now define A be that set of all (¢, ¢5, ..., ¢;) such that
(i) a; of the m values in the vector (¢y,¢3, -, Cpp) €Qual j, j =0,1,2,..,n and
(ii) (cq, €3y wry Cy) € S™.

By the Poisson Randomization Theorem we have,

dn
P((X1, Xz, o Xin) € Ay) = ——(e2P((Yy, Yy, ..., V) € A))|

dAn A=0

where Y;,Y,,...,Y,, are independent, identically distributed Poisson random variables with

parameter % Now define,

ij =the number of ¥;’s that equal j forj = 1,2,...,n
and

Ny = the number of ¥;'s> n.

Then,



P((Yy Yy, .., V) € A) = P((NE,NE, .., NELNE,) = (ag,ay, .., 01, 0) )
where the vector (N§,NY, ..., NJ, N, ) follows a multinomial distribution with parameters

90'911'“191’1.1 and 91’L+l with

e‘(%)(i)"
0; =P, =) =Tm and 6,, =P(; >n).
Thus,
P((NSNE, o NENE,) = (a0, 4, .., @, 0))

— _ m! (eo)ao (01)(11 (Qn)an(0n+)0

aolall--~an!0!

pl aj
N EAPPN
S L N (m)(ﬁ)
T aglaglan!o! j=0 IT
= s _(niq)(a0+a1+"'+an) (i)(o‘ao+1’a1+m+n'an)
= ((oH%o(1H21---(nh)an)-(aglaq!-an!) m
— m! e_/l/ln,

- mm-((oHao(1)41..-(nh)an)-(agla!---an!)
Therefore,
dn
P((X0, Xy e Xin) € Ay) = T (*P((H, Y, V) €8) )|
B dr 3 m!
a W(e “mn - (0D (1D - (nD) ) - (ao! as! - a,!)

e "1&")

A=0

_ m! 4 om |
- mn-((0H%o (1) %1 (n)2n)-(agla!--ay!) dA™ (/1 ) 1=0

_ m!ln!
T mm((0)%0(1)%1(n)an)-(aglas -apn!)’

Solution (2b)

We can proceed exactly as in (a) except now define A,, to be the set of all (¢, ¢y, ..., ;) SUCh
that

(i)a, of the m values in the vector (¢4, ¢, ..., ¢;,) equal r
(ii)(clt CZ) ey Cm) € S‘r‘r{l
and define A to be the set of all (¢4, ¢, ..., ¢;,,) such that

(i)a, of the m values in the vector (¢4, ¢, ..., ¢;,) €qual r



(ii)(cq, €y oony ) € S™.
Then,
P(N, = a,) = P((Xy, X3, ., X;n) € Ay)

and by the Poisson Randomization Theorem we have,

P((Xl;XZ; ;Xm) € An) = %(P((Yl' YZ' Y Ym) € A))L:O.

However
P((Ylt YZ; ey Ym) € A) = P(Nf = ar)

where N =the number of ¥;’s that equal r and N follows a binomial distribution with
parameter 6,., with

0, =P(Y,=7) =" T)(%) .

Thus,

P(N? = a,)

TG CANAECT A
() ()

m! e_(%) ZAY ar mea. (M — Qy . e_(%) ay J
) aer;W( ﬂ(m) ) 5 () )(—1)’< r!(’")>

()G ey ) (e-x(m‘,‘;r'j) Ar‘(ar+]')>

— Zm_ar
- j=0 (r!)(ar+j).mT'(ar+j)

Hence,
dn

P((X1, Xz, o Xin) € Ay) = 2

(P! =a)|

my,/m—ay, ; )
(ar)(j )(_1)]> dr (e_’l(m_ar_])/lr(aﬁj))

— Z‘m—ar Il m
j=0 Fn@r+dmriar+) | gan

A=0



_ Zm—ar ((ar)(j r)(_l)]) n! (m — a, _j)n—rar—rj

j=0 (r)lar+Hmn (n—ra,—1j)!

By a change of variable, this solution can also be expressed in the form :

m , —ar
m <(ar)(m—ar]—ar)(—1)1 ¢ ) n! (m —j)n—rf.

j=ar rimn (n—rj)!

dn o _ n! -
Note: — (e ™A")[,_ = ot

Solution (2¢)

For 0<ay<m

P(N, = ao)
my\,/m—ag ;
_ m-—ag (ao)(] )(_1)] n! _ _ \n—0-a¢—0-j
- Zj:o ( (on(@o+i).mn (n—O«aO—O«j)!(m @ —J) °
m m—ao) ;
—a ()G ) ,
— Z;)’;an Ao/ \J — (m —a, _])n

= e (U7 e ) (FDm = ag = )")

mnh (m-ag)!' \J

M(m-agp)
= %S(n,m—ao).

Taking a, = m — k, we have,
P(Ny =m — k) = —25(n, k).

From the above it is clear that the two probability models are related. However the critical
difference should be stressed. (X;, X5, ..., X,,) is a vector of dependent random variables while
(Y, Y,,...,Y,,) is a vector of independent random variables. It is the purpose of the Poisson
Randomization Theorem given below to restructure problems involving the multinomial model
into equivalent problems involving the Poisson model. By so doing, we will be able to exploit
the independence of the Y;’s.

Theorem

Suppose an experiment consists of t independent trials and that every trial has n distinct
outcomes. Let p; equal the probability of outcome j on any trial and let C; equal the number of
times outcome j occurs in these t (multinomial) trials. Then



t

(¥(Cy, ., C)) = oz (M (¥ (2, ...,Z,,)))L:O.

where Zy, ..., Z,, are independent Poisson random variables such that Z; has parameter /1pj,
j=1,..,n. Thatis

—Ap; N7
P(Z,=z) =900 2 eq01,..).

Zi!

Theorem
Let D, equal the number of C;’s which equal k, k € {0,1, ..., t}. Then

Dy+Dy+--+D;=n and 0Dy +1D; +---+tD, =t and

At aen

(¥(Dy, Dy, ..., D;, 0,0, ...)) ar_d (eee(ﬁ)(w(zo,zl, ...)))

A=0
6=0

where Zy, Z;, ... are independent and Z; ~Poisson(ﬂ) j=0,1,..

nij

Proof

Let Zj ~Poisson(9—ﬂ) j=0,1,..

ntj!
P(ZO = ZOle = Z, )

92°\70 191 \*1
(nOO!) (nlll)

Zo! Zl!"'

_(9/10 eat |
= e \nl0! nl1l’

o)
)

Zo Z1

1 1
G —

Zo! Zl! A




P(Zy=29,Z1 =24, |20 +2,+=7 and 0-zy+1-2; + - =m)

() (o)
— Zo! zq!---
= _ i
() Gm)
(20,21,-.)320+Z1+=T0-2g+1-Z1 +--=m ZO! AR
1\ 1\
_ (no.zoﬁ.zﬁ...)(ogol g},') .
0 1
et e
(20,21, )220 +21+-=10-Zg+1-z1 +--=m n0-zo+1-zy+-- ZO! AR
(@ @
nm zo! zy! -

Z1

1\* /1
1 (@) (3)
(20,21,---)320"'2?4‘"‘;g(:)«zo+1«21+-~-=m (n_m) 0'ZO! Zi:

1
((0nZo(1D)%1--) zg! zq !

T
Y I
(20,21,-)320+21 % =10-2g+1-21 +--=m((ODFO(ADZ1--) 2! 21!

provided zy +z; +--=71 and 0-zy+1-2z; + -

[
3

mir!
M ((0)%0(11)%1--) zg! z1 !

mlr!

e
(z,21,.-)3zg+2z1 +=T70-Zg+1-z1 +--=m" ((0H%o(1D)%1--) zg! zq!

provided zy +z; +-- =71 and 0-zp+1-2z;+--=m

— mlr!
T rm(0DZ0 (11)71-) ¢! 74!

provided zy +z; +- =7 and 0-zp+1-2z;+--=m

(¥(Zy, 24, ..))
:z Z (lp(Zo,Zl, ...)lZO+Zl+"' ZTOZO+121+
m T

_ Zo+Zl+"’:r
=mP <OZO+1Zl+~~-=m>
AN A =7
Z Z (¥(Do, Dy, ..., D ))P(O%ﬁizl m)

= D (¥, ))( -ocl )(ﬁ)mxm



dt dn .3
o <e9 (W(ZO,Zl,...))>

A=0
6=0

- Zmzr (W(Dy, Dy, -, Dy, 0,0, ...)) (m,lr,) ;,; dd;n (@men)|.

= (¥(Dy, Dy, ..., D;, 0,0, ...))

90

(W(Dy, Dy, ..., Dy, 0,0, ...)) = d;td0n< e(ﬁ>(q1(zo,zl,...)))

A=0
6=0

P(Zo+Zl+=r )

ISR AV S P mir!
B (e ’ )(W) @men Z Z rm((0N)% (1)1 .-+ ) zo! zy! -+

(z0,21,...)329+21+-=1r0-Zg+1:21+::=m

_ (e_ee(%)> (mllr,)( PUDICID
oDz, z,,.)

=Y (W0 Dy D 00,..0) () (67)

Suppose identical balls are independently distributed into n equally likely boxes (i.e. a
multinomial model or classical allocation scheme) until any k of the n boxes have at least m

balls each. Let M,, denote the number of boxes containing exactly v balls when the distribution
of balls into boxes stops. Let Z ~Poisson(6). For v =m

n! n-k
P(My—1=5)= [ i (PZ <m - 1))



x(P(Z=m))’ (P(Z=m+ 1))k_s_1 om-1e=94p

s €{0,...,k —1}and equals 0 else. Inthecasev =m

o) 1 -k
(M, = D) = fy e (PZ < v - D))"

k-r—1

x (P(Z =v)) (PZ = v)) 6v"te=9do.

To illustrate we note the special case v = m = 1 simplifies to

POy =5) =2 5L, G0/ (70T ()

l

n!(s+i)! ( 1 )S+i+1
(n—k)!sl(k—s—1)! \n—k+s+j+1

and

(TR ¥ = SN GV Wi

nlr! ( 1 )r+1
(n=k)!(k-r—1)! \n—k+r+j+1 )

Holst , considers the special case v = m = 1 and additionally assumes k = n but the form of
the solutions given in these papers is complicated.



Proof

For v=m
PM,-1=5s)=%",PM,—1= sandj**boxislastboxtoreceiveaball)

= nP(M, — 1 = sand1boxislastboxtoreceiveaball)

= nP(A N 15tboxislastboxtoreceiveaball)
where event A is

A: exactlyk —
lofboxes2throughn haveatleastmballsandexactlysofboxes2throughn haveexactlymballs.

Stated in this way we can view the problem as asking for the probability of event A where the
stopping rule is to stop when the 15¢ box has exactly m balls. The purpose of casting the
problem in this way is to make Theorem 4 appropriate. Let C; equal the number of balls
distributed into box j + 1,j € {1, ..., n — 1}, before the trials stop. Then define

l'p(Cl, ey Cn—l) =
{1 exactlyk — 1ofCy, ..., C,,_; are = mandexactlysofCj, ..., C,,_; equalm
0 else.

It follows from Theorem 4 that

P(M, —1=s5) = nfoo 1 (exactlyk —1lofZ,, ..., Z,_1are=>2m

k-1,-6
0 (m-1)!" \andexactlysofZy, ..., Z,_1 equalm )9 e db



where Z,, ..., Z,, are iid Poisson(8). The final form follows on recognizing that exactly k — 1 of
Zy,..,Zy_q are at least m and exactly s of Z,...,Z,,_; equal m if and only if exactly n — k of
Z1,.,Zy_q are less than m, exactly s of Z4,...,Z,,_; equal m, and exactly k —s — 1 of Z,....Z,,_
exceed m.

The factorial moment result follows from definition. We have

I e -1,-6
=/ ((m 1)'(71 k)'(P(Z<m— 1)) gm-1o

x Tt —ae= (P =m)) (PZ 2 m + 1)) do

and the final form follows on applying the binomial theorem to remove the sum.

° n n—k
fo (w=Di(n—k)!(k-r-1)! (P(Z SV 1))

k-r—1

x (P(Z =) (P(Z = v)) 6v~1e=94de.

(n—1)!
nj; m-—D!'(n—k)!sl(k—s—1)!

N

(P(Z <m—=1))""(P(Z =m))

x (PZzm+1) " em1e-0dp

n!
m-D!'n—Kk)'s!l(k—s—1)!

(PZ <m-1)""(P(z =m))’

x (PZzm+1) " em1e-0dp



and

k-1
((Mv - 1)(r)) = z _ S(r)P(Mv -1= S)

n!

n-k
= (m—1)!(n—k)!s!(k—s—1)! (PZ<m-1)

X (P(Z = m))S(P(Z >m+ 1))1(_5_1 om-le=0dp

n!

_f ZS =T (m-D!(n—k)!(s—1)!(k—s—1)!

(PZ<m-1)""

x(PZ=m) (PZz=m+1) """ omle~0dg

= f (m —_ 1)7'1'(71 _ k)' (P(Z S m — 1))n—k Hm—le—ede
0 . |

Xzsrm( (Z m)) (P(Z>m+1))k ot

(PZ<m—1))"" g™ 1e=0dp

* n!
=f0 (m—1)! (n—k)!

(k—-r-1)! k—s-1

-r)I(k—s—1)! (P(Z = m))S(P(Z =m+ 1))

ZST(S

(k r— 1)'

® n! n—k
- fo Dy (PE sm= D) emtetd

(p(z m)) k-r-1
S —— (P(Z 2m))

n!

=), meDimm =D PE="- )" (Pz =m))’




k-r—-1

(P(z=m)) o™ te %dp

For v<mands €{0,1,..,n—k}

oo n! n—-k-s

P(M” =5) = fo (m-1)!(n—k-s)!s!(k—1)!

(PZ<m-1)-P(Z =)
x (P(Z =)’ (P(Z =m))" " om1e~0dp
and

n n—-k-r

(M) = " (pz <m-1))

x (P(Z =v)) (P(Z =m))" ™ om~1e~04p.

For v>mands €{0,..,k —1}

0o n!

P(M, =5)=[ (PZ<m-1)""

0 (m-1D!(n—-k)!s!(k—s—1)!

k—s—-1

x(P(Z=v))(PZz=m)—P(Z=v))" " 6™ le=?dp

and



n

((Mv)(r)) = fooo (m-1)!(n— !)!(k—r—l)! (P(Z =m-— 1))n_k

k-r—-1

x (P(Z =v)) (P(Z = m)) 6™ =te=9d0.

Casel. v<m

n
P(M,=s) = E P(M, = sandj'*boxislastboxtoreceiveaballbeforestopping)
j=1

= nP(M, = sand15‘boxislastboxtoreceiveaballbeforestopping)

= nP(exactlyk — lofboxes2throughn have
> mballsexactlysofboxes2throughn haveexactlyvballsand 15¢boxislastboxtoreceiveaballbeforestopping)

@ 1
= — P lyk — 10f(Z,, ..., Z
n.fo (m _ 1)| (exaCt yk o ( 2y ) Tl)
> mexactlysofof(Z,, ..., Z, )equalv) 8™ te=9d@

* n! e
=-f0 (m—1)!(k—1)!s!(n—k_s)!(P(ZSm—1)—P(Z=v)) “

x (P(Z =)’ (P(Z =m))* " om~1e=0dg

and

n—k
(M) ) = Z _ SePMy =5)

_ yn-k n! n—k-s

= Ls=r S(r) fO (m—1)!(n—k—s)!s!(k—1)! (P(Z sm-1)-PZ= v))

x (P(Z =)’ (P(Z =2m))" ™ om~1e-0dg

— [ yn-k n! _ _ _ n—k-s
=J, 5= (m=-1)!(n—k—-3)!(s—1)!(k—1)! (PZ<m-1)-P(Z="1))

x (P(Z =)’ (P(Z =m))* " em1e~0dp



— fOOO = 1)'(k o (P(Z > m)) Qm—le—ede

(n- Ii —-r)! (Z_ - )(P(Z <m-1)-P(Z= U))n_k_s(P(Z = v))s
=Jy m(P(Z > m)) Lgm-1e-04g
(n-k r)l(P(Z - U)) (P(Z =m-— 1))71 o
- (PZ<m-1)""(PZ =v)

m-D)'n—k—-—7r)(k—-1)!

x (P(Z =m)) " om-1e=0dp

Case3. v>m

n

P(M,=5s)= z P(M, = sandj'"*boxislastboxtoreceiveaballbeforestopping)

j=1
= nP(M, = sand1'boxislastboxtoreceiveaballbeforestopping)

= nP(exactlyk — lofboxes2throughn have
> mballsexactlysofboxes2throughn haveexactlyvballsand 15¢boxislastboxtoreceiveaballbeforestopping)

n!
m—1D)'(n—k)s'(k—s—1)!

(PZ <m-1)""(PZ =)’

x (P(Z=m)—P(Z=1v))"""om1e-0dp

and

k-1
((Mv)(r)) = Z _ S(r)P(Mv = S)

n!

— Vk-1 *
=25 s Jo (m—-1)!(n—k)!s!(k—s—1)!

(PzZ<m-1)""

k—s—-1

x(P(Z=v))(PZz=m)-P(Z=v))" " 6™ le?dp



n!

_f ZS =T (m-D!(n—k)!(s—1)!(k—s—1)!

(PZ<m-1)""

k—s—1

x(P(Z=v)(PZ=m)—P(Z=v)) 6™ tefdp

(PZ <m—1)" " om1e=0dg

*© n!
=j0 (m— D! (n—k)!

k—s—1

yict U (p(2 = 1) (P(Z 2 m) - P(Z = v))

(k r— 1)' r)l(k—s—1)!

= f (m - 1)7'1'(71 _ k)' (P(Z <m-— 1))n—k9m_1e_9d9
0 . |

(P(z=v))" )" k-r-1
Arrm—— (k—r-1)! (P(Z = ))

! . r
(m—1D!(n _r;)! (k—r—1)! (P(Z<m-1)) k(p(Z = 1))
(P(Z > m))k_r_lgm—le—edg

Example 5

“A company
hires m
people. It
declares a
holiday on the
birthday of any

employee. What value of m
maximizes the expected work
force per year?” This




question was posed in
Chance, Vol. 13, No. 4, Fall
2000, page 54.

Assume that
people’s
birthdays are
independently
determined
and that every
day of

the year is equally likely to
occur as a birthday. Let a year
consist of n 4+ r days

where n equals the number of
potential work days (days the
company will be open

if no employee has a birthday
on that day) and r equals the
number of

non-potential work days (days
the company would not be
open even if no

employee has a birthday on
that day, e.g. weekends, July
4th, etc.).

Let T;,, equal
the number of
potential work




days where
the company
declares a

holiday because one or more
of the m employees has a
birthday on that day. Let

W, equal the work force per
year if the company has m
employees.

We will define
work force per
year as the
product of the
work force per
day

(number of employees) and
the number of days the
company is open per year.

That is,

W, =mn-T,,)

Show that




n+r—1)m
n+r

(W,,) = mn (

and that (W,,)
is maximized
atm =n +r,
the total
number of
days in a year.
It

is interesting that the solution
depends on n and r only
through their sum.

Proof

Clearly,

W) = (m(n —
Tm)) =mn — m(T,,)

Furthermore,
from part (b)
of this
problem with
v =1 (see




Poisson
Randomization

problem 1(b)) we have

(Tn) ===+ n)™ (e D () Gt r+s =)

=nn+r)"(—m+r-D"+n+r)™)

=n(1-(55)")

Thus,

(W,)) =mn — mn (1 _ (n+r—1)m) - (n+r—1)m

n+r n+r

A little
calculus shows
that (W,), the
expected work
force per year,
achieves its

maximum at bothm =n +
r—landm=n+r.

Can also easily solve this problem by letting



| = {1 someemployeehasabirthdayonDayj
70 else

Also let p; =probability a person is born on Day j for any j a potential workday

Then

o =(Y 5)=Y" a-a-p)"

Suppose we perform t multinomial trials with n 4+ r distinct possible outcomes. We will
assume that n of the outcomes have been classified as type A outcomes and that the remaining
r outcomes as type B outcomes. We will assume that all type A outcomes occur with constant
probability p; and that all type B outcomes occur with constant probability p, so that np; +
rp, = 1.

Let C; equal the number of type A outcomes which occur exactly j times in the t trials and let D;
equal the number of type B outcomes which occur exactly j times in the ¢ trials, j € {0,1, ..., t}.

Then,
n—k\/m , Citnei
P(G=k)=X]z (-1 (i!)gif(tz(il(cr):j))! (P (1= py(n =)’ ")
and
((Co)iap) ** (€@ D) gy (P g,))
_ n! r! t! Yo Ypoi 3 Y gmY
= ((n_a)| (-r-_ﬁ)l (t—Ya—Yﬁ)' (0!)a0+ﬁo...(t!)at+ﬁt>pl b, (1 p1a pzﬁ) B

where
a=ay+ +a;
B=Ppo++p
Y, =0ay + -+ ta,
Y =08y + -+ tf;

The first result is given in Charalambides . David and Barton give the first result for the special
case i = 0. Charalambides gives the second result for the special case

ay =v, a; =0fori # k and B, = 0forall k. We note that Xy = 1 by definition.

Proof



For the first result let V; equal the number of balls in urn j and let

1 exactlykof(Vy, ..., V,)equali

WV, oo, Vysy) = {0 e

By Theorem 1

P(Cl = k) = (IP(Vl; "'JVn+T))

dt .
=— (e’lP(exactlykof(Zl, . Zn)equall))|

dat A=0

=L () (Pz=0)"(1-Pz= i))""k)L

=0

where Z ~Poisson(Ap,). The final form follows on substituting for P(Z = i) and extracting the
coefficient of A¢.

For the joint factorial moment result, we have by Theorem 5

(€ ey (€ ) P g0y~ (D g))

dt dn dv

P11l p2A
=m@g(€ee e ((Wo)(ao)“'(Wt)(at)(zo)(ﬁo)“'(Zt)(ﬂt)))|

A=0
6=0
=0

dt d" " P14 peP22
= T don dgr (eee (Wo)tao)) -+ ((We) () (Zo) g)) -+ ((Zt)(/ft)))

using the independence of all the random variables (W,, W,, -+, Z,,Z4, -+ ) where.



w; ~ P0|sson( (14 ))andZ ~P0|sson( (plz'l) )

However (X)) = 8% for X ~Poisson(8) and the final form follows on substituting
and extracting the coefficient of 77" ¢

_ 4 A (e (6@DNC (6D (1) (1)
~ dAtdendrr 0! " ol o

B pfa0+...+tat pgﬁ0+...+tﬁt §

| (0)%+Bo ... (E])actBe
(egep12'+‘[ep219a0+"'+at Tﬁ0+"'+ﬁt /10(ao+ﬁ0)+-~-+t(at+ﬁt))

_ p:(l)a0+...+ta’t pgﬁ0+...+tﬁt §

| (0D@0tBo ... (g1)actBe

t n 1 7—(Bo++P¢)
d_d_<egep1)‘6ao+...+at /’1,0(“0+ﬁ0)+"'+t(at+ﬁt) (epz ) rl >

S
o
o o o

dt d* d"
d/’ltdé?” drr

dat dor (r=(Bo+ -+ B!

A=
6=

0
0

0ag++tar _0Bo++tPt r!
1 2 :
_ X
( (0!)a0+ﬁo (t!)at"‘ﬁt ) (r - (:80 + -+ ,Bt))'
dt dr

X T agn (eeeP119a0+~-~+at 20(@o+Bo)++t(ar+pt) (epza)’”—(ﬁo+"'+[>’t))
n

A=0
6=0

Oag+-+tar 0fog++tf¢ |
_ 1 2 T %
(0N @o+Bo ... (¢ actBe (7" —(Bo+ -+ .Bt))!
t A
X _(ﬂo(ao+ﬁo)+-~-+t(at+ﬂt)(evz/l)r_(ﬁﬁ"'*ﬁt) (er*)

|
da (n—(ag+ -+ at))!>

p;)a0+-~-+tat pgﬁ0+---+tﬁt I nl
- (0D @o+Bo ... (t))attPt

(= Go+ 4 0) (n— (@ + —+ @)

n—(aop+--+ag)
n

A=0

t

(/10(“0'*'30)‘*‘ +t(0—’t+ﬂt)(ep2/1)r (Bo+- +Bt)( PM)” (@o+- +at))
d/lt

A=0



_ ;)a0+---+tat pgﬁ0+---+tﬁt rl nl y
(O!)a0+ﬁ0 (t!)aﬁ'ﬁt (T - ('80 + oo F ,Bt))! (n - (CZO + -+ at))!
dt
v on (Ao(a0+ﬁ0)+---+t(at+ﬁt) (el(p1(n—ao—-'-—at)+pz(T—ﬁo—'“—ﬁt)))) -

;)a:o+---+ta’t gﬁ0+---+tﬁt r! n!
= ( (0N @+Bo ... (¢])*e+Be )(T‘ — (’30 4ot .Bt))! (Tl — (0(0 4ot at))! x

9 (pi(n—ag— - —ay) +p,(r — o — =+ — ﬁt))t_(o(a0+ﬁ0)+'"+t(at+ﬁt))t!
(t — (0Cap + Bo) + -+ t(a; + ﬁt)))!
n! r! £ pfa0+---+tat p§30+...+tﬁ

(=@ + o+ a)) (r— Bo+ o+ BY)! (t — (0Cag + Bo) + -+ + tla, + .Bt))) | < (0D)@0+Fo .- (¢1)a+Fe
X

X (py(n—ag — = — ) + pa(r — foy =+ — ﬁt))t—(0(a0+ﬁ0)+...+t(at+[gt))

(i (eb/'l,y)) _ % a€{cc+1,..}
W a=0  \0 a€{01,..,c—1}

j J
6(p14) )' Z ~Poisson(M), np, + rp, = 1 and where all random

J! J!

where W; ~Poisson(

variables are independent.
Proof

Let C; equal the number of balls in urn j and let

1 exactlykof(Cy, ..., C,)equali

l'IJl (Cll LR Cn+r) = {O else

and

o (Ch s Crar) = Gy = I} 4+ HCy = Dy

By Theorem 1



P(VVL = k) = (qjl(Cli R Cn+r))

am .
= (e’lP(exactlykof(Zl, - Zn)equall))L1=0

- @@ ea=0a-ra =0y,

0

A=0

A=0

O o o I s
= i j k il dam °
Y

= Zj__: (-1’ (]n N k) (Z) (%) (m — :zlk' +j))! (1 —p, (k _|_j))m—i(k+j) (py)iCk+D)

and

((M/i)(v)) = (Lpz (61; ey Cn+r))

_ (;i/l_’:l(ea((l{zl =i}+-+1{z, = i})(”)))lazo

=4 (e ) (pz = i))”)|l=0



where Z ~Poisson( A ) The final form for both problems follows on substituting for P(Z = i)

n+r

and extracting the coefficient of A™.



