
 
mathcloset.com  100 
   

Chapter 6  Geometric Probability 
 
 
Theorem 11.  Problems with Equally Likely Regions 

If a point is chosen at random from a region 𝐴 (i.e. all points in region 𝐴 are equally likely to be 

picked) and if region 𝐵 is a subset of region 𝐴, then 

 

 
 

𝑃(point picked is in region 𝐵) =
Length(𝐵)

Length(𝐴)
 

 

 
 

𝑃(point picked is in region 𝐵) =
Area(𝐵)

Area(𝐴)
 

 

 
 

𝑃(point picked is in region 𝐵) =
Volume(𝐵)

Volume(𝐴)
. 

 

 
 
Theorem 11 is the continuous analogue of Theorem 5 - Problems with Equally Likely Outcomes.   
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To find probability with continuous sample spaces we would, in general, need to modify our 
definition of the probability of an event from sums over all outcomes to integrals over all 
outcomes – which of course, is a problem of calculus. 
 
However, in the special cases where the continuum of outcomes in a region are assumed to be 
equally likely, the calculus problem of finding length, area or volume simplifies to a geometry 
problem of finding length, area or volume. 
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Exercises for Chapter 6 
 
 
 
1. (5T174)  Four segments are drawn from the midpoints of the 

 sides of a regular octagon, creating a square, four congruent 

 pentagons, and four congruent kites, as shown in the figure.  

 If a point is chosen at random inside the octagon, determine 

 exactly the probability that the point lies inside the square. 

 

 

Still need to insert problems (5T115), (5D104), (5T104), (MB072), (5D024), (5C011), (5T993) 

here. 

 

2. (5D914)  The westbound Main Street bus on which I ride is scheduled to arrive at State 

 Street at 8:10, but it actually arrives randomly within 4 minutes on either side of 8:10.  The 

 north bound State Street bus that I hope to catch is scheduled to arrive at Main Street at 

 8:14, but again its arrival is randomly distributed within 4 minutes either side of 8:14.  

 What is the probability of my catching the 8:14 bus? 

3. A rectangle and an arrowhead are drawn on a regularly spaced 
 grid of lattice points.  If a point 𝑃 is chosen at random in the 
 rectangle, what is the probability that 𝑃 will be in the shaded 
 arrowhead, as shown in the figure on the right? (Note: The point 𝑃 
 can be anywhere in or on the rectangle and is not limited to the 
 lattice points.) 
 (Source: December 2012 Calendar Problem #20, The Mathematics 
 Teacher) 
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4. Suppose we select two points on a stick of unit length  such 
 that the two points are picked independently and such that 
 all points along the stick are equally likely to be picked in 
 both cases.  Then suppose we break the stick at these two 
 points and get three pieces of stick.  What is the probability 
 that the three pieces can be made into a triangle? 

 
 
 
5. Mai and her mom are hoping to see each over lunch.  Both Mai and her mom only take 15 

 minutes for lunch.  Mai has to finish some reading before class and her mom has to finish 

 some lecture prep before class.  Both Mai and her mom are so busy that all they can 

 promise is that they will get to the cafeteria, independently, at some random point 

 between noon and 1 pm.  What is the probability that they will actually be able to see each 

 other over lunch? 

 
6. If a point (𝑥0, 𝑦0, 𝑧0) is picked at random from the unit cube where 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1,  

 0 ≤ 𝑧 ≤ 1, what is the probability that 𝑥0
2 + 𝑦0

2 + 𝑧0
2 ≤ 1? 
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7. The sum of two positive quantities is known.  If all pairs of possible values are equally 

 likely, prove that the probability that their product will not be less than five-ninths of the 

 maximum possible product is 2/3.  (Source: Probability, James R. Gray, 1967, Page 31, 

 Problem 13) 

 Note: For two positive numbers 𝑥 and 𝑦 with 𝑥 + 𝑦 = 𝑐 for 𝑐 fixed, the maximum possible 

 value of 𝑥𝑦 occurs for 𝑥 = 𝑦 = 𝑐/2.  Is that intuitive?  To formally justify this, note that 

𝑥𝑦 = 𝑥(𝑐 − 𝑥) = 𝑐𝑥 − 𝑥2 = −(𝑥 −
𝑐

2
)
2

+ (
𝑐

2
)
2

. 

 So 𝑥𝑦 ≤ (𝑐/2)2 and this only happens when 𝑥 = 𝑦 = 𝑐/2. 

8. (a) If at a certain conference one of the delegates is equally likely to arrive at any time  

  during an hour, find the probability that the greater of the times he was present or  

  absent during that hour is at least 𝑛 times the smaller.   

 (b) If a second delegate is equally likely to arrive, independently, at any time during the  

  same hour, what is the probability that the arrivals are separated by at least forty  

  minutes?    (Source: Probability, James R. Gray, 1967, Page 32, Problem 14) 

9. A straight line is divided at random into three parts.  What is the probability that an acute-

 angled triangle can be formed by those three parts?  (Source: Probability, James R. Gray, 

 1967, Page 33, Problem 20) 

10. Each edge of a cube measures 6 cm.  The three edges 

 passing through vertex 𝐴 are divided into segments of 3 

 cm, 2 cm, and 1 cm, starting from point 𝐴.  Then the 

 cube is cut along the planes parallel to its faces and 

 passing through the points of division (see figure).  The 

 pieces are then put into a bag and shaken before a single 

 piece is randomly selected and drawn out.  What is the 

 probability that this piece will have dimensions 3 cm × 2 

 cm × 1 cm?  (Source: Combinatorics-polynomials-

 probability, Quantum: The Student Magazine of Math 

 and Science, Nikolay Vasilyev and Victor Gutenmacher, 

 March/April 1993, pp 18-22, 62.) 
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11. Let 𝑃 be a randomly chosen interior point of the regular 

 hexagon 𝐴𝐵𝐶𝐷𝐸𝐹 as shown. 

 Find the probability that there exists a perpendicular line 

 segment from 𝑃 to each of the six sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐸, 𝐸𝐹, 

 and 𝐹𝐴 of this hexagon.  (Source: Mathematics Teacher, April 

 1990 Calendar, Problem 17.) 

 

 

12. Let 𝐷𝐸 be a diameter of circle 𝐶.  The shaded (yin) portion of 

 the yin-yang type symbol shown is constructed by adding on a 

 semicircle of diameter 𝑎 and removing a semicircle of 

 diameter 𝑏 from the upper half of circle 𝐶.  Assume the 

 centers of both semicircles are on diameter 𝐷𝐸. 

 What is the probability that a randomly selected point from 

 the interior of circle 𝐶 is in the shaded (yin) portion of this  

 yin-yang type symbol? 

 

 

 

  



 
mathcloset.com  106 
   

Project 6  How Likely is it for Two Numbers to be Relatively Prime? 
 

What is the probability that two numbers picked independently and at random from the set of 
all positive integers will have no common divisor? 
 
The answer is 6/𝜋2 which is just a bit larger than 60%.  So how does 𝜋 make its way into a 
problem that does not involve circles? 
 
There is documentation that this problem with its fascinating answer was posed in lectures 

given by Chebyshev (founding father of Russian mathematics) in the 19th century.  This 

problem is sometimes referred to as Chebyshev’s Problem in his honor.  However, there is 

some scholarship that sources the problem to lectures given by the German mathematician 

Dirichlet nearly a half century prior to Chebyshev.  What can be said with certainty is that 

this problem has caught the attention of many famous mathematicians. 

 
 
Let 𝑎 and 𝑏 be the two numbers picked from ℤ+ (the set of all positive integers).  What is the 

probability that 𝑎 is divisible by 3?  Clearly every third number in ℤ+ is a multiple of three, so 

𝑃(𝑎 is divisible by 3) = 1/3. 

By the same logic 𝑃(𝑎 is divisible by 𝑛) = 1/𝑛  for every 𝑛 ∈ ℤ+.  And as 𝑎 and 𝑏 are picked 

independently from ℤ+, 𝑃(𝑎 and 𝑏 are both divisible by 𝑛) = 1/𝑛2. 

Therefore,  

𝑃(𝑎 and 𝑏 are not both divisible by 𝑛) = 1 −
1

𝑛2
. 

 

The positive integers 𝑎 and 𝑏 will have no common divisor if and only if they are relatively 

prime.  That is, provided 𝑎 and 𝑏 are not both divisible by the same prime number.  (Why? 

Because every potential common divisor can be written as the product of prime numbers so to 

be divisible by any number is to be divisible by all primes in the prime factorization of that 

number). 

Let 𝐸𝑘  be the event that 𝑎 and 𝑏 are not divisible by the 𝑘𝑡ℎ prime number.  To be precise, let 

𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, … be the sequence of prime numbers 2,3,5,7,11,13,17,… .  So, for 

example, 𝐸6 is the event that 𝑎 and 𝑏 are not both divisible by 13. 

Then 

𝑃(𝑎 and 𝑏 have no common divisor) 
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= 𝑃(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ∩ 𝐸4 ∩⋯). 

Finding this probability would be much easier if the events 𝐸1, 𝐸2, 𝐸3, 𝐸4 , … were independent 

because if these events were independent then 

𝑃(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ∩ 𝐸4 ∩⋯) = 𝑃(𝐸1)𝑃(𝐸2)𝑃(𝐸3)𝑃(𝐸4)⋯. 

Roughly put, we would like to hope that knowing that 𝑎 and 𝑏 are not both divisible by 𝑞3 = 5, 

for one example, does not give us any hint as to whether they are both divisible by 𝑞5 = 11. 

This doesn’t seem unreasonable but that is no substitute for a proof!  However, we are just 

going to have to accept this result without proof for this course. 

Having made that assumption, we have 

𝑃(𝑎 and 𝑏 have no common divisor) 

= 𝑃(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ∩ 𝐸4 ∩ 𝐸5 ∩ 𝐸6⋯) 

= 𝑃(𝐸1)𝑃(𝐸2)𝑃(𝐸3)𝑃(𝐸4)𝑃(𝐸5)𝑃(𝐸6)⋯ 

= (1 −
1

𝑞1
2)(1 −

1

𝑞2
2)(1 −

1

𝑞3
2)(1 −

1

𝑞4
2)(1 −

1

𝑞5
2)(1 −

1

𝑞6
2)⋯ . 

 

Now imagine the process of multiplying out this infinite product.  The process, in theory, would 

be to go through all possible ways of picking either the term 1 or −(
1

22
) from the first factor 

(1 −
1

22
) and then multiplying that by one of the two terms in the second factor (1 −

1

32
) and 

then multiplying that by one of the two terms in the third factor (1 −
1

52
), etc. 

It would obviously be a big mess!  But fortunately, there is trick that will actually make the 

process doable. 

Instead of working to find 𝑃(𝑎 and 𝑏 have no common divisor) let’s consider finding 

(⋆)            
1

𝑃(𝑎 and 𝑏 have no common divisor)
. 

If that turns out to be doable (and it is) then we could flip (⋆) back over when we’re done to 

recapture 𝑃(𝑎 and 𝑏 have no common divisor). 

Consider 

1

𝑃(𝑎 and 𝑏 have no common divisor)
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=
1

(1 −
1
𝑞1
2) (1 −

1
𝑞2
2) (1 −

1
𝑞3
2) (1 −

1
𝑞4
2) (1 −

1
𝑞5
2) (1 −

1
𝑞6
2)⋯

 

= (
1

1 −
1
𝑞1
2

)(
1

1 −
1
𝑞2
2

)(
1

1 −
1
𝑞3
2

)(
1

1 −
1
𝑞4
2

)(
1

1 −
1
𝑞5
2

)(
1

1 −
1
𝑞6
2

)⋯ 

=∏(
1

1−
1
𝑞𝑖
2

)

∞

𝑖=1

 

where again 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, … is the sequence of prime numbers 2,3,5,7,11,13,17,…  

We still have an infinite product at this point and it doesn’t look to be any easier to work with.  

But now comes the trick!  Consider the geometric sequence 

(
1

𝑞𝑖
2)

0

+ (
1

𝑞𝑖
2)

1

+ (
1

𝑞𝑖
2)

2

+⋯ . 

From the general formula for geometric sequences, we know that 

(
1

𝑞𝑖
2)

0

+ (
1

𝑞𝑖
2)

1

+ (
1

𝑞𝑖
2)

2

+⋯ = (
1

1 −
1
𝑞𝑖
2

). 

So, 

1

𝑃(𝑎 and 𝑏 have no common divisor)
 

=∏(
1

1−
1
𝑞𝑖
2

)

∞

𝑖=1

 

=∏((
1

𝑞𝑖
2)

0

+ (
1

𝑞𝑖
2)

1

+ (
1

𝑞𝑖
2)

2

+⋯)

∞

𝑖=1

. 

 

Now imagine the process of multiplying this infinite product all out.  Is that possible?  It is if you 

look at “just right”! 
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What would it look like when you finished?  You would end up with the sum of all possible 

terms of the form 

(
1

𝑞1
2)

𝑚1

(
1

𝑞2
2)

𝑚2

(
1

𝑞3
2)

𝑚3

(
1

𝑞4
2)

𝑚4

⋯  

= (
1

𝑞1
𝑚1𝑞2

𝑚2𝑞3
𝑚3𝑞4

𝑚4⋯
)

2

 

where each 𝑚𝑖 ∈ {0,1,2,3,… }. 

 

Do you recognize this yet?  It will help if we replace the 𝑞𝑖  will the numbers they represent. 

(
1

2𝑚13𝑚25𝑚37𝑚411𝑚413𝑚517𝑚6⋯
)
2

. 

 

Do you now see that the denominator 2𝑚13𝑚25𝑚37𝑚411𝑚413𝑚517𝑚6⋯ with each 𝑚𝑖 ∈

{0,1,2,3,… } is the prime factorization of some integer? 

And so, the sum over all possible terms of the form 

(
1

𝑞1
𝑚1𝑞2

𝑚2𝑞3
𝑚3𝑞4

𝑚4⋯
)

2

 

where each 𝑚𝑖 ∈ {0,1,2,3,… } is the sum of (
1

𝑛
)
2

 over all possible positive integers 𝑛. 

That is, 

1

𝑃(𝑎 and 𝑏 have no common divisor)
 

=∏((
1

𝑞𝑖
2)

0

+ (
1

𝑞𝑖
2)

1

+ (
1

𝑞𝑖
2)

2

+⋯)

∞

𝑖=1

 

= ∑
1

𝑛2

∞

𝑛=1

. 

And fortunately, the great mathematician Leonard Euler of Basel, Switzerland, showed in 1735 

that this sum equals 𝜋2/6.  It was a celebrated result at the time because many other famous 

mathematicians of his day had tried but failed to solve this problem.  To this day, this result is 

called the Basel Problem in honor of Euler’s hometown. 
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So there we have it, 

1

𝑃(𝑎 and 𝑏 have no common divisor)
=
𝜋2

6
 

which means 

𝑃(𝑎 and 𝑏 have no common divisor) =
6

𝜋2
. 

∎ 
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Project 7  Frog Jumping Problem (AMC 12B, 2010, Problem 18) 
(A generalization of MSHSML Problem SD104) 

A frog makes 3 jumps, each exactly 1 meter long. The directions of the jumps are chosen 

independently at random. What is the probability that the frog's final position is no more than 1 

meter from its starting position? 

(The above is the exact wording from the AMC exam but let me add some clarifying 

information.  We can assume the frog starts at the origin of a fixed coordinate system and at 

each jump picks an angle at random from [0,2𝜋] radians independent of all previous jumps.) 

Solution 

Let 𝛼, 𝛽 and 𝛾 be the three angles the frog chooses.  Then … 

 
 

 
after the first jump the 
frog’s coordinates will be 
(cos(𝛼) , sin(𝛼)), 

after the second jump the 

frog’s coordinates will be 

(cos(𝛼) + cos(𝛽) , sin(𝛼) +

sin(𝛽)), 

and after the third jump the 

frog’s coordinates will be  

(cos(𝛼) + cos(𝛽) +

cos(𝛾) , sin(𝛼) + sin(𝛽) +

sin(𝛾)). 

 

The problem is asking for the probability that the frog hops back inside the unit circle centered 

at the origin on the third jump. 

We are given the information that all angles (𝛼, 𝛽, 𝛾) in the 2𝜋 × 2𝜋 × 2𝜋 cube shown below 

are equally likely to be selected by the frog. 
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Let 𝓢 (hypothetically the brown pyramid shown above) represent the subset of angles (𝛼, 𝛽, 𝛾) 

in this cube where the frog will end up jumping back into the unit circle centered at (0,0).  

In this case it would follow from the method of geometric probability that  

𝑃(frog hops back into the unit circle centered at (0,0) after the third jump) =
Vol(𝓢)

Vol(Cube)
. 

A difficulty in this problem is that it is three dimensional which makes describing 𝓢 and finding 

its volume more difficult than in previous geometric probability problems we have 

encountered. 

Fortunately, we can use symmetry to reduce this to a two-dimensional problem.  To illustrate 

this idea, consider the two cases shown below, when 𝛼 = 0 and when 𝛼 = 0.384 

 

  

𝛼 = 0 radians 𝛼 = 0.384 radians 
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By imaging a new coordinate system (shown as the dotted lines in the figure below) 

 

it is apparent from the symmetry of the circle that the probability that the frog will finally end 

up back inside the unit circle centered at the origin is the same whether 𝛼 = 0 or 𝛼 = 0.384 (or 

any other radian value in [0,2𝜋]). 

That is, the event that the frog ends up in the unit circle centered at the origin is independent 

of the value of 𝛼. 

It follows that we can just fix 𝜶 = 𝟎 without changing the probability that the frog ends up in 

the unit circle centered at the origin. 

By fixing 𝛼 = 0 the problem becomes one of describing and finding the area of that two-

dimensional region 𝒯, inside the 2𝜋 × 2𝜋 square of all possible values of the angles (𝛽, 𝛾), 

where the frog will end up jumping back into the unit circle centered at (0,0). 
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Once we find 𝒯 then it will follow that 

𝑃(frog hops back into the unit circle centered at (0,0) after the third jump) =
Area(𝒯)

Area(Square)
. 

 

Our goal now is to find what the region 𝒯 defined above will look like for any given (fixed) 
value of 𝛽, 0 ≤ 𝛽 ≤ 2𝜋. 

 

For any fixed 𝛽 (i.e. keeping the blue dot fixed), the frog will be inside the unit circle centered at 

the origin when the red dot (the frog’s position after the third jump) is somewhere on the 

darkened arc shown below. 

 

This is, on the arc between the two points of intersection of the circle centered at (0,0) and the 

circle centered at  

(cos(0) + cos(𝛽) , sin(0) + sin(𝛽)) = (1 + cos(𝛽) , sin(𝛽)), 

 

The equation of these two circles are: 

(𝑥 − 0)2 + (𝑦 − 0)2 = 1 

and 

(𝑥 − (1 + cos(𝛽)))
2
+ (𝑦 − sin(𝛽))2 = 1. 
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For any fixed 𝛽 we can solve for the points of intersection of these two circles by expanding the 

second equation and simplifying. 

1 = (𝑥 − (1 + cos(𝛽)))
2
+ (𝑦 − sin(𝛽))2 

= (𝑥2 + 𝑦2) + (sin2(𝛽) + cos2(𝛽)) − 2 cos(𝛽)𝑥 − 2 sin(𝛽) 𝑦 − 2𝑥 + 2 cos(𝛽) + 1 

= 1+ 1 − 2 cos(𝛽) 𝑥 − 2 sin(𝛽)𝑦 − 2𝑥 + 2 cos(𝛽) + 1. 

Note that we could make the substitution 𝑥2 + 𝑦2 = 1 because the points of intersection are 

on the circle where 𝑥2 + 𝑦2 = 1.  We could make the substitution sin2(𝛽) + cos2(𝛽) = 1 

because this is a Pythagorean identity, true for all angles.  Bringing all terms to the same side, 

the second equation has simplified to  −cos(𝛽) 𝑥 − sin(𝛽) 𝑦 − 𝑥 + cos(𝛽) + 1 = 0.  However, 

−cos(𝛽) 𝑥 − sin(𝛽)𝑦 − 𝑥 + cos(𝛽) + 1 = 0 

⟺ 

𝑦 = (
1 + cos(𝛽)

sin(𝛽)
) (1 − 𝑥). 

 

Now substituting this formula for 𝑦 in terms of 𝑥 into the equation 𝑥2 + 𝑦2 = 1, we have the 

quadratic equation 

𝑥2 + (
1 + cos(𝛽)

sin(𝛽)
)

2

(1 − 𝑥)2 = 1. 

After simplification this becomes 

𝑥2 − (1 + cos(𝛽))𝑥 + cos(𝛽) = 0. 

Using the quadratic formula we find 

𝑥 =
(1 + cos(𝛽)) ± √(1 + cos(𝛽))2 − 4 cos(𝛽)

2
 

=
(1 + cos(𝛽)) ± √(1 − cos(𝛽))2

2
 

=
(1 + cos(𝛽)) ± (1 − cos(𝛽))

2
. 
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So, the 𝑥 coordinate of the two points of intersection are 𝑥 = 1 and 𝑥 = cos(𝛽).  It follows that 

the (𝑥, 𝑦) coordinates of the two points of intersection are 

(𝑥, 𝑦) = (1, (
1 + cos(𝛽)

sin(𝛽)
) (1 − 1)) = (1,0) 

and 

(𝑥, 𝑦) = (cos(𝛽) , (
1 + cos(𝛽)

sin(𝛽)
) (1 − cos(𝛽))) 

= (cos(𝛽) ,
1 − cos2(𝛽)

sin(𝛽)
) 

= (cos(𝛽) , sin(𝛽)). 

Recall that the frog’s position after the third jump (i.e  the red dot in our diagrams) is  

(1 + cos(𝛽) + cos(𝛾) , sin(𝛽) + sin(𝛾)). 

We want to set this position equal to the above two points of intersection and solve for 𝛾 as a 

function of 𝛽. 

(1 + cos(𝛽) + cos(𝛾) , sin(𝛽) + sin(𝛾)) = (1,0) 

⟺ {
cos(𝛽) + cos(𝛾) = 0

sin(𝛽) + sin(𝛾) = 0
 

⟺ 𝛾 = {
𝛽 + 𝜋 0 ≤ 𝛽 ≤ 𝜋
𝛽 − 𝜋 𝜋 ≤ 𝛽 ≤ 2𝜋

 

and 

(1 + cos(𝛽) + cos(𝛾) , sin(𝛽) + sin(𝛾)) = (cos(𝛽) , sin(𝛽)) 

⟺ {
1 + cos(𝛾) = 0

sin(𝛾) = 0
 

⟺ 𝛾 = 𝜋. 

This shows that for fixed 𝛽 ∈ [0, 𝜋] the range of 𝛾 where the frog will be inside the unit circle 

centered at (0,0) is 𝛾 ∈ [𝜋, 𝛽 + 𝜋] and for fixed 𝛽 ∈ [𝜋, 2𝜋] the range of 𝛾 is 𝛾 ∈ [𝛽 − 𝜋, 𝜋].  

We illustrate this as the shaded regions in the diagram below. 
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Because all points (𝛽, 𝛾) in the square region 0 ≤ 𝛽 ≤ 2𝜋, 0 ≤ 𝛾 ≤ 2𝜋 are equally likely, 

𝑃(frog hops back into the unit circle centered at (0,0) after the third jump) 

=
Area of the two shaded triangles

Area in the square
 

=

1
2𝜋

2 +
1
2𝜋

2

(2𝜋)(2𝜋)
=
𝜋2

4𝜋2
=
1

4
. 

∎ 
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Chapter 7   Miscellaneous Topics 
 

7.1  System Reliability 
 

Electrical circuit problems offer a are nice application of working with using “or’s” and “and’s”. 

 
Consider the following portion of an electric circuit with three relays.  Current will flow from 
point 𝐴 to point 𝐵 if there is at least one closed path when the relays are activated. The relays 
may malfunction and not close when activated.  Suppose that the relays act independently of 
one another and close properly when activated, with a probability of 0.9. 
 

Compare the probability of current flowing from 𝐴 to 𝐵 in the series system shown below 
 

 
 
with the probability of flow in the parallel system shown below. 
 

 
 
 

 

Example 

Suppose that Switches 1 through 4 used in the construction of electric circuits will shut properly 

when activated with probability 𝑝. Assuming that these switches operate independently, will 

Design 1 or Design 2 have the higher probability that current will flow from point A to point B 

when the switches are activated? 
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Solution 

 

Let 𝐶𝑗 be the event that the 𝑗𝑡ℎ  switch shuts properly when activated, 𝑗 = 1,2,3,4.  Then 

 

𝑃(Design 1 works) = 𝑃((𝐶1or 𝐶2) and (𝐶3 or 𝐶4)) 

= 𝑃((𝐶1 ∪ 𝐶2) ∩ (𝐶3 ∪ 𝐶4)) 

= 𝑃(𝐶1 ∪ 𝐶2)𝑃(𝐶2 ∪ 𝐶4) 

= (𝑃(𝐶1) + 𝑃(𝐶2) − 𝑃(𝐶1 ∩ 𝐶2))(𝑃(𝐶1) + 𝑃(𝐶2) − 𝑃(𝐶1 ∩ 𝐶2)) 

= (𝑝 + 𝑝 − 𝑝2)2 

= 4𝑝2 − 4𝑝3 + 𝑝4 

= 𝑝2(2 − 𝑝)2 
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𝑃(Design 2 works) = 𝑃((𝐶1and𝐶3) or (𝐶2and 𝐶4)) 

= 𝑃((𝐶1 ∩ 𝐶3) ∪ (𝐶2 ∩ 𝐶4)) 

= 𝑃(𝐶1 ∩ 𝐶3) + 𝑃(𝐶2 ∩ 𝐶4) − 𝑃((𝐶1 ∩ 𝐶3) ∩ (𝐶2 ∩ 𝐶4)) 

= 𝑝2 + 𝑝2 − 𝑝4 

= 2𝑝2 − 𝑝4 

= 𝑝2(2 − 𝑝2) 

 

(2 − 𝑝)2 − (2 − 𝑝2) = (4 − 4𝑝 + 𝑝2) − 2 + 𝑝2 

 

= 2𝑝2 − 4𝑝 + 2 

= 2(𝑝2 − 2𝑝 + 1) 

= 2(𝑝 − 1)(𝑝 − 1) 

∎ 

 

 

Example 

Electricity can flow from point A to point B in the diagram shown below provided there is at 

least one path where every switch (the shaded small rectangles) on that path is working.  

Assume that each switch operates or fails independently of all other switches and assume that 

each switch will operate properly with probability 𝑝 = 0.90.  Under these assumptions, what is 

the probability that a current can flow from point A to point B.  
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Solution  

The key to a messy looking (it’s really not as messy as it seems) problem of this type is to break 

it down into many smaller problems and solve the smaller problems separately.  We start by 

identifying four separate “lines” which are connected in parallel. 

 

 

Lines are connected in parallel if the System will work if and only if at least one Line works. 

 

Let 𝐸𝑖  be the event that Line 𝑖 works.  Then 

𝑃(System works) = 𝑃(𝐸1 or 𝐸2 or 𝐸3 or 𝐸4) = 𝑃(𝐸1∪𝐸2∪𝐸3∪𝐸4). 
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An important point of why this problem is not as hard as it looks is that all the switches act 

independently.  And because each line is composed of separate switches (i.e. no two lines share 

a switch), the lines act independently. 

That is, the events 𝐸1, 𝐸2 , 𝐸3 and 𝐸4 are independent.  Remember that this implies that the 

complements of these events 𝐸1
𝑐 , 𝐸2

𝑐 , 𝐸3
𝑐  and 𝐸4

𝑐 are also independent events. 

First note that by the rule of complements 

𝑃(𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4) = 1 − 𝑃((𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4)
𝑐) 

and then by DeMorgan’s Rule 

𝑃((𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4)
𝑐) = 𝑃(𝐸1

𝑐 ∩ 𝐸2
𝑐 ∩ 𝐸3

𝑐 ∩ 𝐸4
𝑐). 

That is, 

𝑃(𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4) = 1 − 𝑃(𝐸1
𝑐 ∩ 𝐸2

𝑐 ∩ 𝐸3
𝑐 ∩ 𝐸4

𝑐). 

(It is actually easier if you just say what this means in words.  The probability that at least one of 

the lines works equals 1 minus the probability that all of the lines fail.) 

But as we noted above, 𝐸1
𝑐 , 𝐸2

𝑐 , 𝐸3
𝑐 and 𝐸4

𝑐 are independent events.  So 

𝑃(𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4) = 1 − 𝑃(𝐸1
𝑐 ∩ 𝐸2

𝑐 ∩ 𝐸3
𝑐 ∩ 𝐸4

𝑐) 

= 1 − 𝑃(𝐸1
𝑐)𝑃(𝐸2

𝑐)𝑃(𝐸3
𝑐)𝑃(𝐸4

𝑐) 

= 1 − (1 − 𝑃(𝐸1))(1 − 𝑃(𝐸2))(1 − 𝑃(𝐸3))(1 − 𝑃(𝐸4)). 

 

Notice what this is telling us in general. 

If a system (or a part of a system) is composed of 𝑛 independent lines connected in parallel, 
then 

𝑃(System Works) = 1 −∏(1− 𝑃(𝑖𝑡ℎ Line Works))

𝑛

𝑖=1

. 

 

So we can always break up a system (or a part of a system) composed on 𝑛 independent lines 

connected in parallel into 𝑛 separate (and much easier) subproblems! 

Line 1 

Now let’s focus on finding 𝑃(Line 1 Works).  Notice that Line 1 is composed of two “parts”. 



 
mathcloset.com  123 
   

 

 

Notice that both Part 1 and Part 2 have to work if order for Line 1 to work.  When separate 

“parts” all have to work in order for a line to work we say the parts are connected in series. 

 

Parts of the same line are connected in series if the line will work if and only if all parts on 
that line work. 

 

Let 𝐾𝑖  be the event that Part 𝑖 on a Line 1 works. 

𝑃(Line 1 works) = 𝑃(𝐾1 and 𝐾2) = 𝑃(𝐾1 ∩ 𝐾2). 

Now the independence of the switches comes to our rescue again.  Notice that each part is 

composed of separate switches (i.e. no switch is in both parts).  Therefore, the parts act 

independently. 

That is, the events 𝐾1 and 𝐾2 are independent. 

Hence, 

𝑃(Line 1 works) = 𝑃(𝐾1 ∩ 𝐾2) = 𝑃(𝐾1)𝑃(𝐾2). 

Notice what this is telling us in general. 

If a line is composed of 𝑛 independent parts connected in series, then 

𝑃(Line Works) =∏𝑃(𝑖𝑡ℎ Part on that Line Works)

𝑛

𝑖=1

. 

 

So, similar to what we saw for lines connected in parallel, we can always break up a line 

composed on 𝑛 independent parts connected in series into 𝑛 separate (and much easier) 

subproblems! 
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Let’s continue to simplify 𝑃(Line 1 works) = 𝑃(𝐾1)𝑃(𝐾2).  Part 1 of Line 1 consists of two 

switches connected in parallel. 

 

Hence, the probability that this part works is just 

𝑃(𝐾1) = 1 −∏(1− 𝑃(𝑖𝑡ℎ Switch of Part 1 Works))

2

𝑖=1

 

𝑃(𝐾1) = 1 − (1 − 𝑃(1
𝑠𝑡 Switch of Part 1 Works))(1 − 𝑃(2𝑛𝑑 Switch of Part 1 Works)) 

Now recall that we are assuming that every switch in the entire system works with probability 

𝑝.  Therefore 

𝑃(𝐾1) = 1 − (1 − 𝑝)(1 − 𝑝) = 1 − (1 − 𝑝)
2. 

By the same reasoning, 

𝑃(𝐾2) = 1 − (1 − 𝑝)(1− 𝑝)(1 − 𝑝) = 1 − (1 − 𝑝)3. 

Therefore, 

𝑃(Line 1 works) = 𝑃(𝐾1 ∩ 𝐾2) = 𝑃(𝐾1)𝑃(𝐾2) 

= (1 − (1 − 𝑝)2)(1 − (1 − 𝑝)3). 

That’s Line 1 finished.  Three more to go. 

Line 2 

The second line 

 

is easy because it is just three (independent) switches connected in series.  So 

𝑃(Line 2 Works) =∏𝑃(𝑖𝑡ℎ switch on that line works)

3

𝑖=1

= 𝑝 ⋅ 𝑝 ⋅ 𝑝 = 𝑝3. 
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Line 3 

The third line 

 

is composed of two (sub)lines connected in parallel.  These two (sub)lines are independent 

because they share no switches.  Hence, from the general formula for independent lines 

connected in parallel, 

𝑃(Line 3 Works) = 1 −∏(1− 𝑃(𝑖𝑡ℎ (sub)line of Line 3 Works))

2

𝑖=1

. 

We can immediately notice that each subline of Line 3 is exactly what we encountered in Line 2.  

That is, 

𝑃(1𝑠𝑡 (sub)line of Line 3 Works) = 𝑃(2𝑠𝑡  (sub)line of Line 3 Works) = 𝑃(Line 2 Works) 

which we just determined to equal 𝑝3.  Therefore, 

𝑃(Line 3 Works) = 1 −∏(1 − 𝑃(𝑖𝑡ℎ (sub)line of Line 3 Works))

2

𝑖=1

 

= 1 − (1 − 𝑃(1𝑠𝑡 (sub)line of Line 3 Works))(1 − 𝑃(2𝑛𝑑  (sub)line of Line 3 Works)) 

= 1 − (1 − 𝑝3)(1 − 𝑝3) = 1 − (1 − 𝑝3)2. 

Line 4 

We see that Line 4 is a repeat of Line 1.  Hence 

𝑃(Line 4 Works) = 𝑃(Line 1 Works) = (1 − (1 − 𝑝)2)(1 − (1 − 𝑝)3). 

System 

 

Bringing this all together 

𝑃(System Works) = 1 −∏(1− 𝑃(𝑖𝑡ℎ Line Works))

4

𝑖=1
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where 

𝑷(Line 𝟏 Works) = 𝑷(Line 𝟒 Works) 

= (1 − (1 − 𝑝)2)(1 − (1 − 𝑝)3) = (1 − (1 − 0.9)2)(1 − (1 − .9)3) 

= (1 − 0.12)(1 − 0.13) = (0.99)(0.999) = 𝟎. 𝟗𝟖𝟗𝟎𝟏 

 

𝑷(Line 𝟐 Works) = 𝑝3 = (0.9)3 = 𝟎.𝟕𝟐𝟗 

 

𝑷(Line 𝟑 Works) = 1 − (1 − 𝑝3)2 = 1 − (1 − 0.729)2 = 𝟎. 𝟗𝟐𝟔𝟓𝟓𝟗. 

 

Therefore, 

𝑃(System Works) = 1 −∏(1− 𝑃(𝑖𝑡ℎ Line Works))

4

𝑖=1

 

= 1− (1 − 0.98901)(1 − 0.729)(1 − 0.926559)(1 − 0.98901) 

= 0.9999975961727 

So, this system is almost sure to work! 

∎ 

 

Example ??  Again 

Looking back at Example ?? we might note that we also had four lines connected in parallel in 

that problem because the system works if and only if at least one of the four lines shown in the 

diagram below works.  That is, if and only if all switches work properly along at least one of 

these four lines. 
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Now the approach we took in Example ??? showed how we could take advantage of lines 

connected in parallel to make the problem much easier to handle. 

Could we use the approach of Example ??? in Example ??? ?  Why or why not? 

∎ 
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Exercises for Chapter 7, Section 1 
 
Consider the following portion of an electric circuit with three relays.  Current will flow from 
point 𝐴 to point 𝐵 if there is at least one closed path when the relays are activated. The relays 
may malfunction and not close when activated.  Suppose that the relays act independently of 
one another and close properly when activated, with a probability of 0.9. 
 
 a  What is the probability that current will flow when the relays are activated? 
 
 b  Given that current flowed when the relays were activated, what is the probability  
 that relay 1 functioned? 
 

 
 

Solution 

(a)  Let 𝐶𝑖  be the event that Relay 𝑖 works properly.  Then 

𝑃(current flows from 𝐴 to 𝐵) = 𝑃((𝐶1or𝐶2)or𝐶3) 

= 𝑃(𝐶1 ∪ 𝐶2 ∪ 𝐶3) 

= 1 − 𝑃((𝐶1 ∪ 𝐶2 ∪ 𝐶3)
′) 

= 1 − 𝑃((𝐶1)
′ ∩ (𝐶2)

′ ∩ (𝐶3)
′) 

= 1 − 𝑃((𝐶1)
′)𝑃((𝐶2)

′)𝑃((𝐶3)
′) 

= 1− (0.1)(0.1)(0.1) = 1 − 0.001 = 0.999 

 

(b) 

𝑃(𝐶1|(𝐶1 ∪ 𝐶2 ∪ 𝐶3)) =
𝑃(𝐶1 ∩ (𝐶1 ∪ 𝐶2 ∪ 𝐶3))

𝑃(𝐶1 ∪ 𝐶2 ∪ 𝐶3)
 

=
𝑃(𝐶1)

𝑃(𝐶1 ∪ 𝐶2 ∪ 𝐶3)
=

0.9

0.999
=
1000

1111
= 0. 900 
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Project 7  The Bridge Design 
 

The circuit shown below is called a bridge. Let 𝐶𝑗 be the event that the 𝑗𝑡ℎ  switch shuts properly 

when activated, 𝑗 = 1,2,3,4,5.  Assume the switches operate independently of each other and 

let 𝑝 = 𝑃(𝐶𝑗) for all 𝑗 = 1,2,3,4,5 for some 0 < 𝑝 < 1. Find the probability that the current will 

flow from point A to point B when the switches are activated. 

 

 

Solution 

𝑃(Current flows) = 𝑃((𝐶1 and 𝐶4) or (𝐶2 and 𝐶5) or (𝐶1 and 𝐶3  and 𝐶5) or (𝐶2  and 𝐶3 and 𝐶4)) 

= 𝑃((𝐶1 ∩ 𝐶4) ∪ (𝐶2 ∩ 𝐶5) ∪ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∪ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)). 

Can we apply Property (vi) 

 (vi) If events 𝐸1, 𝐸2 , … , 𝐸𝑛  are mutually exclusive then 

𝑃(𝐸1 ∪ 𝐸2 ∪⋯∪ 𝐸𝑛) = 𝑃(𝐸1) + 𝑃(𝐸2) + ⋯+ 𝑃(𝐸𝑛). 
 

and simplify this last expression to 

𝑃(𝐶1 ∩ 𝐶4) + 𝑃(𝐶2 ∩ 𝐶4) + 𝑃(𝐶1 ∩ 𝐶3 ∩ 𝐶5) + 𝑃(𝐶2 ∩ 𝐶3 ∩ 𝐶4) ? 

 

No!  The events (𝐶1 ∩ 𝐶4), (𝐶2 ∩ 𝐶4), (𝐶1 ∩ 𝐶3 ∩ 𝐶5) and (𝐶2 ∩ 𝐶3 ∩ 𝐶4) are not mutually 

exclusive.  As just one example, we note that 

𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶4)) = 𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶4 ∩ 𝐶4) 

= 𝑃(𝐶1 ∩ 𝐶2 ∩ (𝐶4 ∩ 𝐶4)) 

= 𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶4) = 𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶4) = 𝑝
3 ≠ 0. 
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Hence, (𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶4) ≠ ∅ by the contrapositive of Property (ii), 𝑃(∅) = 0. 

Therefore, we have to apply the principle of inclusion-exclusion, the generalized version of 

Property (vi), which is valid even when the events are not mutually exclusive.  

𝑃(Current flows) 

= 𝑃((𝐶1 ∩ 𝐶4) ∪ (𝐶2 ∩ 𝐶5) ∪ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∪ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

= 𝑃(𝐶1 ∩ 𝐶4) + 𝑃(𝐶2 ∩ 𝐶5) + 𝑃(𝐶1 ∩ 𝐶3 ∩ 𝐶5) + 𝑃(𝐶2 ∩ 𝐶3 ∩ 𝐶4) 

−𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶5)) − 𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5)) 

−𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) − 𝑃((𝐶2 ∩ 𝐶5) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5)) 

−𝑃((𝐶2 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) − 𝑃((𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

+𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶5) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5)) 

+𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

+𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

+𝑃((𝐶2 ∩ 𝐶5) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

−𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶5) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

 

= 𝑃(𝐶1 ∩ 𝐶4) + 𝑃(𝐶2 ∩ 𝐶5) + 𝑃(𝐶1 ∩ 𝐶3 ∩ 𝐶5) + 𝑃(𝐶2 ∩ 𝐶3 ∩ 𝐶4) 

−𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶4 ∩ 𝐶5) − 𝑃(𝐶1 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

−𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4) − 𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶5) 

−𝑃(𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) − 𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

+𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

+𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

+𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

+𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

−𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

 

= 𝑃(𝐶1)𝑃(𝐶4) + 𝑃(𝐶2)𝑃(𝐶5) + 𝑃(𝐶1)𝑃(𝐶3)𝑃(𝐶5) + 𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4) 



 
mathcloset.com  132 
   

−𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶4)𝑃(𝐶5) − 𝑃(𝐶1)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

−𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4) − 𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶5) 

−𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) − 𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

+𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

+𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

+𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

+𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

−𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) 

 

= 2𝑝2 + 2𝑝3 − 5𝑝4 + 2𝑝5. 

∎ 

Note: Make sure not to gloss over how we came to the result 

𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶5) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) = 𝑝
5, 

for example. The details of the simplification show that 

𝑃((𝐶1 ∩ 𝐶4) ∩ (𝐶2 ∩ 𝐶5) ∩ (𝐶1 ∩ 𝐶3 ∩ 𝐶5) ∩ (𝐶2 ∩ 𝐶3 ∩ 𝐶4)) 

= 𝑃((𝐶1 ∩ 𝐶1) ∩ (𝐶2 ∩ 𝐶2) ∩ (𝐶3 ∩ 𝐶3) ∩ (𝐶4 ∩ 𝐶4) ∩ (𝐶5 ∩ 𝐶5)) 

= 𝑃(𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 ∩ 𝐶5) 

= 𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝐶4)𝑃(𝐶5) = 𝑝5. 

  



 
mathcloset.com  133 
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7.2. Geometric Series in Probability 
 

Geometric Series 

𝑝0 + 𝑝1 + 𝑝2 +⋯ =
1

1 − 𝑝
  provided |𝑝| < 1. 

 

Remember that for |𝑝| < 1, 
 

∑𝑝𝑥
𝑏

𝑥=𝑎

=
𝑝𝑎 − 𝑝𝑏+1

1 − 𝑝
    and    ∑ 𝑝𝑥

∞

𝑥=𝑎

=
𝑝𝑎

1 − 𝑝
. 

 

But we can simplify this sum.  It is just a geometric series.  Remember that for |𝑞| < 1, 

∑𝑞𝑥
𝑏

𝑥=𝑎

=
𝑞𝑎 − 𝑞𝑏+1

1 − 𝑞
    and    ∑ 𝑞𝑥

∞

𝑥=𝑎

=
𝑞𝑎

1 − 𝑞
. 

 

Why?  Let  𝑆 = 𝑞𝑎 + 𝑞𝑎+1 + 𝑞𝑎+2 +⋯+ 𝑞𝑏 .  Then multiplying both sides by 𝑞 gives 

𝑆 ⋅ 𝑞 = 𝑞(𝑞𝑎 + 𝑞𝑎+1 +⋯+ 𝑞𝑏) = 𝑞𝑎+1 + 𝑞𝑎+2 +⋯+ 𝑞𝑏+1 . 

Subtracting 𝑆𝑞 from 𝑆 we get 

𝑆 − 𝑆 ⋅ 𝑞 = (𝑞𝑎 + 𝑞𝑎+1 +⋯+ 𝑞𝑏) − (𝑞𝑎+1 + 𝑞𝑎+2 +⋯+ 𝑞𝑏+1) 

= 𝑞𝑎 − 𝑞𝑏+1. 

So, 

𝑞𝑎 − 𝑞𝑏+1 = 𝑆 − 𝑆𝑞 = 𝑆(1 − 𝑞) ⟹ 𝑆 =
𝑞𝑞 − 𝑞𝑏+1

1 − 𝑞
. 
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Note the following general result about the geometric random variable (i.e. negative 

binomial with 𝑟 = 1).  If 𝑋~geometric(𝑝), then 𝑃(𝑋 > 𝑎) = (1 − 𝑝)𝑎 .  Why? 

𝑃(𝑋 > 𝑎) = ∑ (
𝑥 − 1
1 − 1

) 𝑝1(1 − 𝑝)𝑥−1
∞

𝑥=𝑎+1

= 𝑝∑(1 − 𝑝)𝑥
∞

𝑥=𝑎

 

= 𝑝 (
(1 − 𝑝)𝑎 − (1 − 𝑝)∞

𝑝
) = (1 − 𝑝)𝑎 . 
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Exercises for Chapter 7, Section 2 
 
1. (TI1711)  Allie and Bubs play a game.  Allie starts and flips a coin twice.  If she gets two 

 heads she wins.  If not, then Bubs flips a coin twice.  If he gets two heads, he wins.  If Bubs 

 fails to get two heads, then it’s Allie’s turn again.  The game continues in this fashion; the 

 first person to get two heads on their turn wins.  What is the probability Allie wins? 

2. Suppose you know from experience that 1% of the parts coming off an assembly line at a 

 local manufacturing plant are defective.   

 (i) What is the probability that a lot of 500 will have less than 3 defectives in it?   

  (ii) Suppose you cannot tell by just looking whether a part is defective but rather have to  

  subject the part to a test in order to tell.  What is the probability that you will have to  

  test more than 150 parts before you find a defective one? 

3. Adam rolls a well-balanced die until he gets a 6.  Amy rolls the same die until she rolls an 

 odd number.  What is the probability that Adam rolls the die more times than Amy does? 

4. 𝐴 and 𝐵 are involved in a duel.  The rules of the duel are that they get to pick up their guns 

 and shoot at each other simultaneously.  If one or both are hit, then the duel is over.  If 

 both shots miss, then they repeat the process.  Suppose that the results of the shots are 

 independent and that each shot of 𝐴 will hit 𝐵 with probability 𝑝𝐴, and each shot of 𝐵 will 

 hit 𝐴 with probability 𝑝𝐵.  What is 

 (a) the probability that 𝐴 is not hit? 

 (b) the probability that both duelists are hit? 

 (c) the probability that the duel ends after the 𝑛𝑡ℎ round of shots? 

 (d) the conditional probability that the duel ends after the 𝑛𝑡ℎ round of shots given that 𝐴 

  is not hit? 

 (e) the conditional probability that the duel ends after the 𝑛𝑡ℎ round of shots given that  

  both duelists are hit? 

5. Amelia has a coin that lands heads with probability 1/3, and Blaine has a coin that lands on 

 heads with probability 2/5.  Amelia and Blaine alternately toss their coins until someone 

 gets a head; the first one to get a head wins.  All coin tosses are independent.  Amelia goes 

 first.  The probability that Amelia wins is 𝑝/𝑞, where 𝑝 and 𝑞 are relatively prime positive 

 integers.  What is 𝑞 − 𝑝?  (Source: AMC 10a Problem 18 2017) 

6. A fair die is rolled until a 6 appears. 

 (a) What is the probability that it will take exactly 6 tries? 
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 (b) What is the probability that it will take at least 6 tries? 

 (c) Is this experiment more likely to end on an even numbered trial or an odd numbered  

  trial? 

 (d) If the first roll is not a six, what is the probability it will take at least 3 tries to get a 6? 
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Project 8  First Player Advantage 
 

 

 

 

Let 𝑝 equal the probability that the first player wins 

 

𝑝 =
1

2
+
1

4
𝑝 

𝑝 (1 −
1

4
) =

1

2
 

𝑝 =

1
2
3
4

=
2

3
 

 

 

 

 

Let 𝑝 equal the probability that 𝐴 wins. 

𝑝 =
1

6
+ (

5

6
)
3

𝑝 
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𝑝 (1 − (
5

6
)
3

) =
1

6
 

𝑝 =

1
6

(1 − (
5
6)

3

)

=
36

91
 

 

 

Now let 𝑝 equal the probability that 𝐵 is the next winner 

𝑝 =
1

6
+ (

5

6
)
2

𝑝 

 

𝑝 (1 − (
5

6
)
2

) =
1

6
 

 

𝑝 =

1
6

(1 − (
5
6)

2

)

=
6

11
 

 

 

(
36

91
)(

6

11
) =

216

1001
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AMC 10a Problem 18 2017 

Amelia has a coin that lands heads with probability 1/3, and Blaine has a coin that lands on 

heads with probability 2/5.  Amelia and Blaine alternately toss their coins until someone gets a 

head; the first one to get a head wins.  All coin tosses are independent.  Amelia goes first.  The 

probability that Amelia wins is 𝑝/𝑞, where 𝑝 and 𝑞 are relatively prime positive integers.  What 

is 𝑞 − 𝑝? 

 

Whiskey, Marbles, and Potholes, Author(s): J. Chris Fisher and Denis Hanson 
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Equalizing a Two-Person Alternation Game 

 

 

Paper by Thorpe 

A before B before C … problem and solution 
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Rahman - Theoretical Exercises in Probability and Statistics 

 

Blom - Probability and Statistics - Theory and Applications 
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Box K Finishes Last 
 
Suppose we repeatedly distribute identical balls into m distinguishable boxes.  Let 𝑝𝑗  equal the 

probability that a ball is distributed into Box 𝑗 on any given trial.  Assume all trials are 
independent. 
 
 (I) Find 𝑃(Each of boxes 1,2,… , 𝐾 − 1 receives a ball before Box 𝐾 does). 
 
Note that in this problem we are not excluding the possibility that some or all of Boxes 𝐾 +
1,… ,𝑚 receive a ball before Box 𝐾 does. 
 
Solution (I) 
 
Let 𝐴𝑖,𝐾 be the event that Box 𝑖 receives a ball before Box 𝐾 does and let 𝐵𝑗 be the event that 

the first ball distributed lands in Box 𝑗.  Then, 
 

𝑃(Each of Boxes 1,2,… , 𝐾 − 1 receives a ball before Box 𝐾 does) 
 

= 𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾) = ∑𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾 ∩ 𝐵𝑗|𝐵𝑗)

𝑚

𝑗=1

𝑝𝑗  
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= ∑𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾 ∩ 𝐵𝑗|𝐵𝑗)𝑝𝑗

𝐾−1

𝑗=1

+ 𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾 ∩ 𝐵𝐾|𝐵𝐾)𝑝𝐾 

+ ∑ 𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾 ∩ 𝐵𝑗|𝐵𝑗)𝑝𝑗

𝑚

𝑗=𝐾+1

. 

 
 
However,  
 

𝑃((⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1

) ∩ 𝐵𝑗| 𝐵𝑗) =

{
 
 
 
 
 

 
 
 
 
 

𝑃

(

 
 
⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1
𝑖≠𝑗 )

 
 

𝑗 ≤ 𝐾 − 1

0 𝑗 = 𝐾

𝑃 (⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1

) 𝑗 ≥ 𝐾 + 1

 

 

where we define  𝑃 (⋂𝐴𝑖,2

𝐾−1

𝑖=1
𝑖≠1

) = 1.  Thus, 

 

𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾) 

 

= ∑𝑃

(

 
 
⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1
𝑖≠𝑗 )

 
 
𝑝𝑗

𝐾−1

𝑗=1

+ 0 + 𝑃 (⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1

) ⋅ 𝑝⋆ 

 

where 𝑝⋆ = ∑ 𝑝𝑗

𝑚

𝑗=𝐾+1

. 

 
 

Solving for 𝑃(𝐴1,𝐾 ∩⋯∩ 𝐴𝐾−1,𝐾), we see we have the recurrence relation 
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𝑃(⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1

) =
1

(𝑝1 + 𝑝2 +⋯+ 𝑝𝐾)

[
 
 
 
 

∑ 𝑃

(

 
 
⋂𝐴𝑖,𝐾

𝐾−1

𝑖=1
𝑖≠𝑗 )

 
 
𝑝𝑗

𝐾−1

𝑗=1

]
 
 
 
 

. 

 
 
The simplest way to “solve“  this recurrence is to start with the simplest cases and “guess”  the 
general solution and then verify this guess by induction. 
 
 

 Case 𝐾 = 2  

 
 

𝑃(Box 1 receives a ball before Box 2) 
 

= 𝑃(𝐴1,2) =
1

(𝑝1 + 𝑝2)
𝑃(⋂𝐴𝑖,2

2−1

𝑖=1
𝑖≠1

)𝑝1 =
𝑝1

𝑝1 + 𝑝2
. 

 
 

 Case 𝐾 = 3 

 
𝑃(Box 1 and Box 2 receive a ball before Box 3) 

 

= 𝑃(𝐴1,3 ∩ 𝐴2,3) =
1

(𝑝1 + 𝑝2 + 𝑝3)

[
 
 
 
 

∑𝑃

(

 
 
⋂𝐴𝑖,3

3−1

𝑖=1
𝑖≠𝑗 )

 
 
𝑝𝑗

3−1

𝑗=1

]
 
 
 
 

 

 

=
1

(𝑝1 + 𝑝2 + 𝑝3)
(𝑃(𝐴2,3)𝑝1 + 𝑃(𝐴1,3)𝑝2)  

 

=
1

(𝑝1 + 𝑝2 + 𝑝3)
(

𝑝2
𝑝2 + 𝑝3

𝑝1 +
𝑝1

𝑝1 + 𝑝3
𝑝2) 

 

= (
𝑝1𝑝2

𝑝1 + 𝑝2 + 𝑝3
)(

1

𝑝2 + 𝑝3
+

1

𝑝1 + 𝑝3
). 

 
 
It is still difficult to see the general pattern so we continue on the case 𝐾 = 4. 
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 Case 𝐾 = 4 

 
 

𝑃(Box 1 and Box 2 and Box 3 receive a ball before Box 4) 
 

= 𝑃(𝐴1,4 ∩ 𝐴2,4 ∩ 𝐴3,4) =
1

(𝑝1 + 𝑝2 + 𝑝3 + 𝑝4)

[
 
 
 
 

∑𝑃

(

 
 
⋂𝐴𝑖,4

4−1

𝑖=1
𝑖≠𝑗 )

 
 
𝑝𝑗

4−1

𝑗=1

]
 
 
 
 

 

 

= (
𝑝1

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4
)𝑃(𝐴2,4 ∩ 𝐴3,4)  

 

+(
𝑝2

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4
)𝑃(𝐴1,4 ∩ 𝐴3,4) 

 

+(
𝑝3

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4
)𝑃(𝐴1,4 ∩ 𝐴2,4) 

 
 

= (
𝑝1

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4
) [(

𝑝2𝑝3
𝑝2 + 𝑝3 + 𝑝4

) (
1

𝑝3 + 𝑝4
+

1

𝑝2 + 𝑝4
)] 

 

+(
𝑝2

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4
) [(

𝑝1𝑝3
𝑝1 + 𝑝3 + 𝑝4

) (
1

𝑝3 + 𝑝4
+

1

𝑝1 + 𝑝4
)] 

 

+(
𝑝3

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4
) [(

𝑝1𝑝2
𝑝1 + 𝑝2 + 𝑝4

) (
1

𝑝2 + 𝑝4
+

1

𝑝1 + 𝑝4
)] 

 
 

= ∑
𝑝1𝑝2𝑝3

(𝑝𝑗1 + 𝑝4)(𝑝𝑗1 + 𝑝𝑗2 + 𝑝4)(𝑝𝑗1 + 𝑝𝑗2 + 𝑝𝑗3 + 𝑝4)(𝑗1,𝑗2,𝑗3)∈ℙ3

 

 
 
where ℙ3 is the set of all permutations of all the numbers {1,2,3}.  In the general case, (which 
we leave to the reader to verify by induction), we have 
 
 

𝑃(Each of Boxes 1,2,… , 𝐾 − 1 receives a ball before Box 𝐾 does) 
 

= ∑
𝑝1𝑝2𝑝3⋯𝑝𝐾−1

(𝑝𝑗1 + 𝑝𝐾)(𝑝𝑗1 + 𝑝𝑗2 + 𝑝𝐾)⋯(𝑝𝑗1 + 𝑝𝑗2 +⋯+ 𝑝𝑗𝐾−1 + 𝑝𝐾)(𝑗1,…,𝑗𝐾−1)∈ℙK−1
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where ℙK−1 is the set of all permutations of all the numbers {1,2,… , 𝐾 − 1}.           
 

 
A solution equivalent to that in (I) is derived in “Repeated Independent Trials and a Class of Dice 
Problems“, September 1964, American Mathematical Monthly, Edward Thorp, 778 - 781.  
Thorp’s uses the General Probability Theorem in his derivation.  In that article, Thorp gives a 
conjectured upper and lower bound for 
 

𝑃(Each of Boxes 1,2,… , 𝐾 − 1 receives a ball before Box 𝐾 does). 
 
These conjectures were proven correct by C. W.  Burrill, September 1966, American 
Mathematical Monthly, 738 - 741. 
 

 

 

19.  Adam rolls a well-balanced die until he gets a 6.  Amy rolls the same die until she rolls an 

odd number.  What is the probability that Adam rolls the die more times than Amy does? 

Solution 
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Let 𝑋 be the number of rolls it takes Adam to get a 6.  Let 𝑌 be the number of rolls it takes Amy 

to get an odd number. 

 

Then  𝑋~Negative Binomial(𝑟 = 1, 𝑝 = 1/6)  and  𝑌~Negative Binomial(𝑟 = 1, 𝑝 = 1/2) 

 

Also, we know that 𝑋 and 𝑌 are independent random variables. 

 

 

The problem is asking for 𝑃(𝑋 > 𝑌). 

 

𝑃(𝑋 > 𝑌) = 𝑃((𝑋, 𝑌) ∈ {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3),… }) 

 

=∑∑𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑥−1

𝑦=1

∞

𝑥=2

 

 

= ∑∑𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦)

𝑥−1

𝑦=1

∞

𝑥=2

 

 

=∑∑(
𝑥 − 1
1 − 1

)(
1

6
)
1

(
5

6
)
𝑥−1

(
𝑦 − 1
1 − 1

)(
1

2
)
1

(
1

2
)
𝑦−1𝑥−1

𝑦=1

∞

𝑥=2

 

= (
1

6
)
1

(
1

2
)
1

∑∑(
5

6
)
𝑥−1

(
1

2
)
𝑦−1𝑥−1

𝑦=1

∞

𝑥=2

 

= (
1

6
)
1

(
1

2
)
1

∑(
5

6
)
𝑥−1

(∑(
1

2
)
𝑦−1𝑥−1

𝑦=1

)

∞

𝑥=2

. 
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Let 𝑆𝑥 = ∑(
1

2
)
𝑦−1𝑥−1

𝑦=1

 

 

𝑆𝑥 = (
1

2
)
0

+ (
1

2
)
1

+ (
1

2
)
2

+⋯+ (
1

2
)
(𝑥−1)−1

 

 

𝑆𝑥 (
1

2
)
1

= ((
1

2
)
0

+ (
1

2
)
1

+ (
1

2
)
2

+⋯+ (
1

2
)
(𝑥−1)−1

) (
1

2
)
1

 

 

= (
1

2
)
1

+ (
1

2
)
2

+ (
1

2
)
3

+⋯+ (
1

2
)
𝑥−1

 

 

 

𝑆𝑥 − 𝑆𝑥 (
1

2
)
1

 

 = ((
1

2
)
0

+ (
1

2
)
1

+⋯+ (
1

2
)
𝑥−2

) − ((
1

2
)
1

+ (
1

2
)
2

+⋯+ (
1

2
)
𝑥−1

) 

 = (
1

2
)
0

− (
1

2
)
𝑥−1

 

 

but 

𝑆𝑥 − 𝑆𝑥 (
1

2
)
1

= 𝑆𝑥 (1 − (
1

2
)
1

) 

 

So 

 

𝑆𝑥 − 𝑆𝑥 (
1

2
)
1

= 𝑆𝑥 (1 − (
1

2
)
1

) = (
1

2
)
0

− (
1

2
)
𝑥−1

 

 



 
mathcloset.com  151 
   

𝑆𝑥 =
(
1
2)

0

− (
1
2)

𝑥−1

1 − (
1
2
)
1 = 2(1 − (

1

2
)
𝑥−1

) 

 

So, 

 

𝑃(𝑋 > 𝑌) = (
1

6
)
1

(
1

2
)
1

∑(
5

6
)
𝑥−1

∙ 𝑆𝑥

∞

𝑥=2

= (
1

6
)
1

(
1

2
)
1

∑(
5

6
)
𝑥−1

∙ (2 (1 − (
1

2
)
𝑥−1

))

∞

𝑥=2

 

 

= (
1

6
)
1

(
1

2
)
1

2(∑(
5

6
)
𝑥−1

∞

𝑥=2

−∑(
5

6
∙
1

2
)
𝑥−1

∞

𝑥=2

) 

 

Let  

 

𝑆𝑛 = 𝑝
1 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑛−1 

 

Then, 

 

𝑆 =∑𝑝𝑥−1

∞

𝑥=2

= 𝑝1 + 𝑝2 + 𝑝3 +⋯ = lim
𝑛→∞

𝑆𝑛 

 

𝑆𝑛 = 𝑝
1 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑛−1 

 

𝑆𝑛 ∙ 𝑝
1 = (𝑝1 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑛−1) ∙ 𝑝1 

 

= 𝑝2 + 𝑝3 + 𝑝4 +⋯+ 𝑝𝑛 
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𝑆𝑛 − 𝑆𝑛 ∙ 𝑝
1 

 = (𝑝1 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑛−1) − (𝑝2 + 𝑝3 + 𝑝4 +⋯+ 𝑝𝑛) 

 = 1 − 𝑝𝑛 

but 

𝑆𝑛 − 𝑆𝑛 ∙ 𝑝
1 = 𝑆𝑛(1 − 𝑝

1) 

 

So 

 

𝑆𝑛 − 𝑆𝑛 ∙ 𝑝
1 = 𝑆𝑛(1 − 𝑝

1) = 𝑝1 − 𝑝𝑛 

 

𝑆𝑛 =
𝑝2 − 𝑝𝑛

1 − 𝑝1
 

𝑆 =∑𝑝𝑥−1

∞

𝑥=2

= 𝑝1 + 𝑝2 + 𝑝3 +⋯ = lim
𝑛→∞

𝑆𝑛 

= lim
𝑛→∞

𝑆𝑛 

= lim
𝑛→∞

(
𝑝1 − 𝑝𝑛

1 − 𝑝1
) 

 

=
𝑝1 − 𝑝∞

1 − 𝑝1
=
𝑝1 − 0

1 − 𝑝1
      (because 0 < 𝑝 < 1) 

 

=
𝑝1

1 − 𝑝
 

 

So, 
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𝑃(𝑋 > 𝑌) = (
1

6
)
1

(
1

2
)
1

2(∑(
5

6
)
𝑥−1

∞

𝑥=2

−∑(
5

6
∙
1

2
)
𝑥−1

∞

𝑥=2

) 

 

= (
1

6
)
1

(
1

2
)
1

2(

5
6

1 − (
5
6
)
−

5
12

1 − (
5
12
)
) 

 

= (
1

6
)(

5
6
1
6

−

5
12
7
12

) 

 

= (
1

6
)(5 −

5

7
) 

 

= (
5

6
)(1 −

1

7
) 

 

=
5

7
 

∎ 

 

 

(63) 𝐴 and 𝐵 are involved in a duel.  The rules of the duel are that they get to pick up their 

guns and shoot at each other simultaneously.  If one or both are hit, then the duel is over.  If 

both shots miss, then they repeat the process.  Suppose that the results of the shots are 

independent and that each shot of 𝐴 will hit 𝐵 with probability 𝑝𝐴, and each shot of 𝐵 will hit 𝐴 

with probability 𝑝𝐵.  What is 

 (a) the probability that 𝐴 is not hit? 

 (b) the probability that both duelists are hit? 

 (c) the probability that the duel ends after the 𝑛𝑡ℎ round of shots? 
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 (d) the conditional probability that the duel ends after the 𝑛𝑡ℎ round of shots given 

that 𝐴 is not hit? 

 (e) the conditional probability that the duel ends after the 𝑛𝑡ℎ round of shots given 

that both duelists are hit? 

 

Solution 

 

Let 𝑝𝐴 = 𝑃(𝐴 hits 𝐵 on any given shot) and let  𝑝𝐵 = 𝑃(𝐵 hits 𝐴 on any given shot). 

 

 

(a) 𝑃(𝐴 not hit) 

  

 

=∑𝑃(𝐴 and 𝐵 both miss on their first 𝑗 − 1 shots 

∞

𝑗=1

 

       AND 𝐴 hits on 𝑗𝑡ℎ  shot but 𝐵 misses on 𝑗𝑡ℎ  shot) 

 

  

 

=∑𝑃(𝐴 and 𝐵 both miss on their first 𝑗 − 1 shots )

∞

𝑗=1

 

       ∙    𝑃 (𝐴 hits on 𝑗𝑡ℎ  shot but 𝐵 misses on 𝑗𝑡ℎ  shot) 

 

  =∑(1− 𝑝𝐴)
𝑗−1(1 − 𝑝𝐵)

𝑗−1 ∙ 𝑝𝐴 ∙ (1 − 𝑝𝐵)

∞

𝑗=1
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  = 𝑝𝐴 ∙ (1 − 𝑝𝐵) ∙ (∑(1 − 𝑝𝐴)
𝑗−1(1 − 𝑝𝐵)

𝑗−1

∞

𝑗=1

) 

  = 𝑝𝐴 ∙ (1 − 𝑝𝐵) ∙ (∑((1 − 𝑝𝐴)(1 − 𝑝𝐵))
𝑗−1

∞

𝑗=1

) 

  

 

= 𝑝𝐴 ∙ (1 − 𝑝𝐵) ∙ (∑((1 − 𝑝𝐴)(1 − 𝑝𝐵))
𝑘

∞

𝑘=0

) 

 

(Recall our in class discussion about “change of variable”.   

 Here I let  𝑘 = 𝑗 − 1. ) 

 

  

 

= 𝑝𝐴 ∙ (1 − 𝑝𝐵) (
1

1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)
) 

 

(Recall our in class discussion on geometric series.) 

 

  =
𝑝𝐴(1 − 𝑝𝐵)

1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)
 

 

(b) 𝑃(𝐴 and 𝐵 both hit) 

  

 

=∑𝑃(𝐴 and 𝐵 both miss on their first 𝑗 − 1 shots 

∞

𝑗=1
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       AND 𝐴 hits on 𝑗𝑡ℎ  shot and 𝐵 hit on 𝑗𝑡ℎ  shot) 

 

  

 

=∑𝑃(𝐴 and 𝐵 both miss on their first 𝑗 − 1 shots )

∞

𝑗=1

 

       ∙    𝑃 (𝐴 hits on 𝑗𝑡ℎ  shot and 𝐵 hit on 𝑗𝑡ℎ shot) 

 

  =∑(1− 𝑝𝐴)
𝑗−1(1 − 𝑝𝐵)

𝑗−1 ∙ 𝑝𝐴 ∙ 𝑝𝐵

∞

𝑗=1

 

  = 𝑝𝐴 ∙ 𝑝𝐵 ∙ (∑(1 − 𝑝𝐴)
𝑗−1(1 − 𝑝𝐵)

𝑗−1

∞

𝑗=1

) 

  = 𝑝𝐴 ∙ 𝑝𝐵 ∙ (∑((1 − 𝑝𝐴)(1 − 𝑝𝐵))
𝑗−1

∞

𝑗=1

) 

  = 𝑝𝐴 ∙ 𝑝𝐵 ∙ (∑((1 − 𝑝𝐴)(1 − 𝑝𝐵))
𝑘

∞

𝑘=0

) 

  

 

= 𝑝𝐴 ∙ 𝑝𝐵 ∙ (
1

1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)
) 

 

  
𝑝𝐴 ∙ 𝑝𝐵

1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)
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(c) 𝑃(duel ends after the 𝑛𝑡ℎ round of shots) 

  

 

= 𝑃 (𝐴 and 𝐵 both miss on their first 𝑛 − 1 shots  

       AND 𝐴 and 𝐵 don't both miss on their𝑛𝑡ℎ shot) 

 

  

 

= 𝑃 (𝐴 and 𝐵 both miss on their first 𝑛 − 1 shots ) 

                   ∙   𝑃(𝐴 and 𝐵 don't both miss on their 𝑛𝑡ℎ shot) 

 

  

 

= ((1 − 𝑝𝐴)𝑛−1(1 − 𝑝𝐵)𝑛−1)(1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)) 

 

 

 

 

(d) 𝑃(duel ends after the 𝑛𝑡ℎ round of shots│𝐴 not hit) 

  

 

= 𝑃 (𝐴 and 𝐵 both miss on their first 𝑛 − 1 shots  

                     AND 𝐴 hits but 𝐵 misses on𝑛𝑡ℎ  shot) ∕ 𝑃(𝐴 not hit) 
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= 𝑃 (𝐴 and 𝐵 both miss on their first 𝑛 − 1 shots ) 

           ∙   𝑃(𝐴 hits but 𝐵 misses on 𝑛𝑡ℎ shot) ∕ 𝑃(𝐴 not hit) 

 

  

 

=

((1 − 𝑝𝐴)𝑛−1(1 − 𝑝𝐵)𝑛−1)(𝑝𝐴(1 − 𝑝𝐵))

(
𝑝𝐴(1 − 𝑝𝐵)

1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)
)

 

 

  = ((1 − 𝑝𝐴)𝑛−1(1 − 𝑝𝐵)𝑛−1)(1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)) 

 

 

 

(e) 𝑃(duel ends after the 𝑛𝑡ℎ round of shots│𝐴 and 𝐵 both hit) 

  

 

= 𝑃 (𝐴 and 𝐵 both miss on their first 𝑛 − 1 shots  

            AND 𝐴 hits but 𝐵 misses on𝑛𝑡ℎ shot) ∕ 𝑃(𝐴 and 𝐵 both hit)  

 

  

 

= 𝑃 (𝐴 and 𝐵 both miss on their first 𝑛 − 1 shots ) 

    ∙ 𝑃(𝐴 and 𝐵 both hit 𝑛𝑡ℎ shot) ∕ 𝑃(𝐴 and 𝐵 both hit) 
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=

((1 − 𝑝𝐴)𝑛−1(1 − 𝑝𝐵)𝑛−1) (𝑝𝐴𝑝𝐵)

(
𝑝𝐴 ∙ 𝑝𝐵

1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)
)

 

 

  = ((1 − 𝑝𝐴)𝑛−1(1 − 𝑝𝐵)𝑛−1)(1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)) 

 

 

Note that parts (c), (d) and (e) have the same answers! 

∎ 
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7.3  Event A Occurs Before Event B 
 

Consider an experiment consisting of independent and identical replications of a game with 
sample space Ω.  Let 𝐴 and 𝐵 represent two disjoint events in Ω.  Suppose this game is 
repeated until event 𝐴 occurs or event 𝐵 occurs for the first time.  That is, until the outcome 
belongs to 𝐴 or 𝐵 for the first time.   
 
For example, we can imagine that we continue to roll a pair of dice until a sum of either 5 
(event 𝐴) or 7 (event 𝐵) appears for the first time. 
 
On any given trial, let 𝑝 = 𝑃(𝐴), 𝑞 = 𝑃(𝐵), 𝑟 = 𝑃(𝑁) = 1 − 𝑝 − 𝑞. 
 
Show that under this set up 
 

𝑃(event 𝐴 occurs before event 𝐵) =
𝑃(𝐴)

𝑃(𝐴) + 𝑃(𝐵)
=

𝑝

𝑝 + 𝑞
. 

 
 
Solution 1  (Geometric Series Approach) 
 
Let 𝑁 represent the event “neither 𝐴 nor 𝐵”.  That is, 𝑁 = 𝐴′ ∩ 𝐵′.  Let (𝑁,𝑁, 𝐴), for example, 
be our notation for the situation where “Neither” occurs on the first and second trials and 
event 𝐴 occurs for the first time on the third trial.  Using this notation, we can represent the 
event “𝐴 occurs before 𝐵” as 
 

(𝐴 before 𝐵) ≡ 𝑁 or (𝑁, 𝐴) or (𝑁, 𝑁, 𝐴) or (𝑁, 𝑁,𝑁, 𝐴) or (𝑁, 𝑁,𝑁, 𝑁, 𝐴) or⋯. 
 
We recognize that events 𝑁, (𝑁, 𝐴), (𝑁,𝑁, 𝐴), (𝑁,𝑁, 𝑁, 𝐴),⋯ are all disjoint.  Therefore 
 
 
𝑃(𝐴 before 𝐵) 

= 𝑃(𝐴) + 𝑃(𝑁,𝐴) + 𝑃(𝑁, 𝑁, 𝐴) + 𝑃(𝑁,𝑁, 𝑁, 𝐴) + 𝑃(𝑁, 𝑁,𝑁, 𝑁, 𝐴) + ⋯ 

= 𝑝 + 𝑟𝑝 + 𝑟2𝑝 + 𝑟3𝑝 + 𝑟4𝑝 + ⋯ 

= 𝑝(𝑟0 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 +⋯) 

= 𝑝 (
1

1 − 𝑟
) 

= 𝑝 (
1

𝑝 + 𝑞
). 



 
mathcloset.com  161 
   

∎ 
 
 
 
 
 
Solution 2  (First Step Analysis Approach) 
 
For any event 𝐸, suppose we let 𝐸1 represent the event that event 𝐸 occurs on the first trial.  

Then 

𝑃(𝐴 before 𝐵) = 𝑃(𝐴 before 𝐵|𝐴1)𝑃(𝐴1) + 𝑃(𝐴 before 𝐵|𝐵1)𝑃(𝐵1)

            + 𝑃(𝐴 before 𝐵|𝑁1)𝑃(𝑁1)

= (1 ⋅ 𝑝) + (0 ⋅ 𝑞) +  𝑃(𝐴 before 𝐵|𝑁1) ⋅ (1 − 𝑝 − 𝑞)

= 𝑝 +  𝑃(𝐴 before 𝐵|𝑁1) ⋅ (1 − 𝑝 − 𝑞).

  

 
But intuitively,  

𝑃(𝐴 before 𝐵) = 𝑃(𝐴 before 𝐵|𝑁1). 
 
That is, knowing that you got a nuisance ball on the first draw does not change the ultimate 
probability that you will get an 𝐴 ball before a 𝐵 ball. 
 
After making this substitution in the previous expression for 𝑃(𝐴 before 𝐵), we end up with   
𝑃(𝐴 before 𝐵) occurring on both sides of the equation.  That is, 
 

𝑃(𝐴 before 𝐵) = 𝑝 +  𝑃(𝐴 before 𝐵|𝑁1) ⋅ (1 − 𝑝 − 𝑞) 

= 𝑝 + 𝑃(𝐴 before 𝐵) ⋅ (1 − 𝑝 − 𝑞). 

 
Algebraically solving for 𝑃(𝐴 before 𝐵) yields 
 

𝑃(𝐴 before 𝐵) =
𝑝

1 − (1 − 𝑝 − 𝑞)
=

𝑝

𝑝 + 𝑞
=

𝑃(𝐴)

𝑃(𝐴) + 𝑃(𝐵)
. 

∎ 
 
 
Solution 3  (Conditional Probability by Rescaling Approach) 
 
Suppose an urn contains 𝑛1 balls labeled 𝐴, 𝑛2 balls labeled 𝐵 and 𝑛3 balls labeled 𝑁 such that 
  

𝑝 =
𝑛1

𝑛1 + 𝑛2 + 𝑛3
,  𝑞 =

𝑛2
𝑛1 + 𝑛2 + 𝑛3

  and  𝑟 =
𝑛3

𝑛1 + 𝑛2 + 𝑛3
. 
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Then our experiment could be modeled as drawing balls from this urn with replacement until 
we get a ball labeled 𝐴 or a ball labeled 𝐵 for the first time.  The presence of the 𝑛3 balls 
labeled 𝑁 are “nuisance” balls in as much as every time we draw one, we just sigh, throw it 
back in and try again. 
 
The more nuisance 𝑁 balls there are in the urn the more draws it will take, on average, to finish 
this experiment.  But it is intuitively clear that the ultimate probability of drawing an 𝐴 ball 
before drawing a 𝐵 ball will not depend on how many nuisance 𝑁 balls are in the urn. 
 
In particular, 𝑃(𝐴 before 𝐵) would not change if we initially just removed all the nuisance 𝑁 
balls from the urn.  This would be convenient for us because then on the very first draw we 
would be able to tell whether an 𝐴 ball occurred before a 𝐵 ball (or vice versa). 
 
Removing the nuisance balls will rescale the probability of drawing an 𝐴 ball or a 𝐵 ball on any 
given draw but it will not change the relative probability of these two events.  Specifically, if we 
let Ω⋆ represent the new sample space once the 𝑛3 nuisance 𝑁 balls are removed from the urn, 
then we can see that the relative probability of drawing an 𝐴 ball to that of drawing a 𝐵 ball is 
the same for the original sample space Ω and the reduced sample space Ω⋆. 
 

𝑃Ω(𝐴)

𝑃Ω(𝐵)
=

𝑛1
𝑛1 + 𝑛2 + 𝑛3

  
𝑛2

𝑛1 + 𝑛2 + 𝑛3
  
=
𝑛1
𝑛2

 

and similarly 
 

𝑃Ω⋆(𝐴)

𝑃Ω⋆(𝐵)
=

𝑛1
𝑛1 + 𝑛2

  
𝑛2

𝑛1 + 𝑛2
  
=
𝑛1
𝑛2
. 

 
 
This description is the exact idea behind conditional probability - some outcomes are removed 
from the (original) sample space but the relative probability of the remaining outcomes is not 
changed.   
 
In general, the relative probabilities of outcomes in the reduced sample space will not change 
as long as all we scale (multiply) each remaining outcome by the same factor 𝑘 where 𝑘 is 
chosen to guarantee that 𝑃Ω⋆(Ω

⋆) = 1. 
 
In particular, we can find 𝑘 by solving 
 

1 = 𝑃Ω⋆(𝐴) + 𝑃Ω⋆(𝐵) = 𝑘𝑃Ω(𝐴) + 𝑘𝑃Ω(𝐵) 
 
for 𝑘.  In this case we find 
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𝑘 =
1

𝑃Ω(𝐴) + 𝑃Ω(𝐵)
. 

 
Thus, 

𝑃Ω⋆(𝐴) = 𝑘 ⋅ 𝑃Ω(𝐴) =
𝑃Ω(𝐴)

𝑃Ω(𝐴) + 𝑃Ω(𝐵)
 

and 
 

𝑃Ω⋆(𝐵) = 𝑘 ⋅ 𝑃Ω(𝐵) =
𝑃Ω(𝐵)

𝑃Ω(𝐴) + 𝑃Ω(𝐵)
. 

 
 
It follows from this argument that 
 

𝑃Ω(𝐴 before 𝐵) = 𝑃Ω⋆(𝐴 before 𝐵) = 𝑃Ω⋆(𝐴) =
𝑃Ω(𝐴)

𝑃Ω(𝐴) + 𝑃Ω(𝐵)
. 

 
Also notice that this formula for 𝑃Ω⋆(𝐴) is consistent with our clear understanding that once we 
remove the 𝑛3 Nuisance balls they the resulting probability of drawing an 𝐴 ball on any draw 
must equal the number of 𝐴 balls (𝑛1) in the urn over the total number balls in the urn 
(𝑛1 + 𝑛2). Notice that we can work backwards to see that, in fact, this is the case. 
 

𝑃Ω⋆(𝐴) =
𝑃Ω(𝐴)

𝑃Ω(𝐴) + 𝑃Ω(𝐵)
=

𝑛1
𝑛1 + 𝑛2 + 𝑛3

  (
𝑛1

𝑛1 + 𝑛2 + 𝑛3
) + (

𝑛2
𝑛1 + 𝑛2 + 𝑛3

)  
=

𝑛1
𝑛1 + 𝑛2

. 

 
∎ 

 
Example  A pair of dice is rolled until a sum of either 5 or 7 appears.  Find the probability that a 

sum of 5 occurs before a sum of 7.  

Using the geometric series approach we find  
 
𝑃(5 before a 7) 

= 𝑃(5) + 𝑃(𝑁, 5) + 𝑃(𝑁, 𝑁, 5) + 𝑃(𝑁, 𝑁,𝑁, 5) + 𝑃(𝑁,𝑁, 𝑁, 𝑁, 5) +⋯ 

= (
4

36
) + (

26

36
)(

4

36
) + (

26

36
)
2

(
4

36
) + (

26

36
)
3

(
4

36
) +⋯ 

= (
4

36
)(

1

1 − (
26
36)

) 
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= (
4

36
)(
36

10
) =

4

10
=
2

5
 

 
and using the derived general formula we again find that 
 

𝑃(5 before a 7) =
𝑃(5)

𝑃(5) + 𝑃(7)
=

4/36

(4/36) + (6/36)
=
4

10
=
2

5
. 

∎ 
 

The general conclusion from this example is that the probability of a particular event (e.g. 

Amy wins two games before Charlie wins two games) in a game where ties are possible will 

equal the probability of that same event in a version of the game where ties are not possible 

provided we adjust the probability of any player winning a game to their conditional 

probability of winning a game given the information that the game did not end in a tie. 

 

This is a simple trick that can save you a lot of time in a contest setting.  Removing the 

possibility of ties makes the problem easier to model and easier to solve. 
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Exercises for Chapter 7, Section 3 
 

1. (a) Two friends, Amy and Charlie like to play a game that can either end in a win for one  

  of the players or in a tie.  For any game let 𝑃(Amy wins) = 𝑎, 𝑃(Charlie wins) = 𝑐 and 

  let 𝑃(tie) = 𝑏 = 1 − 𝑎 − 𝑐.  Assume that the outcomes of successive games are  

  independent.  

  Amy and Charlie have decided ahead of time that if a game ends in a tie they will start  

  a new game and continue to do this until one of them gets an outright win.  Find the  

  probability that Amy will earn a win before Charlie. 

 (b) Continue with the same details as in part (a) except now find the probability that Amy  

  will earn two wins before Charlie earns two wins. 

 (c) How would the result in part (II) change if Amy and Charlie were playing a game where 

  it was not possible for the game to end in a tie? 

2. If 𝐴 and 𝐵 play a series of games in each of which the probability that 𝐴 wins is 𝑝 and that 

 𝐵 wins is 𝑞 = 1 − 𝑝, find  

 (a) the probability that 𝐴 wins two games before 𝐵 wins three games.  

 (b) the probability that 𝐴 is the first player to win two successive games. 

 (Source: Probability, James R. Gray, 1967, page 35, problem 30) 

3. Three men, 𝐴, 𝐵, 𝐶 have respective probabilities 𝑝, 𝑞, 𝑟 of succeeding each time they 

 attempt a certain task.  They organize a competition with a prize for the first to succeed, 

 each being allowed one attempt at a time in rotation in the order 𝐴, 𝐵, 𝐶, 𝐴, 𝐵, 𝐶, 𝐴,… .  If 

 under these conditions their chances of winning the prize are equal, express 𝑞 and 𝑟 as 

 functions of 𝑝 and hence show that 0 ≤ 𝑝 ≤ 1/3. 

 Assuming 𝑝, 𝑞, 𝑟 to satisfy these relations examine whether there are any possible values of 

 𝑝 for which it would benefit 𝐵 to support the proposal to reverse the order of attempts 

 after each round so that attempts are made in the order 𝐴, 𝐵, 𝐶, 𝐶, 𝐵, 𝐴, 𝐴, 𝐵, 𝐶, 𝐶,… .   

 (Source: Probability, James R. Gray, 1967, page 37, problem 29( 
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Project 8  Penney’s Nontransitive Pennies 
 

 

(TT092)  Alec offers to play a game with Teddy.  Alec will flip a coin repeatedly until either HHH 

(three consecutive heads) appears – in which case Alec wins – or until a three-flip sequence of 

Teddy’s choosing appears.  Teddy can’t chose HHH, but he can choose any other three-flip 

sequence, as long as he declares it before the game begins.  Presuming that Teddy makes the 

best possible choice, determine the probability that he will win. 

Solution 

Alec has at least a 1/8 chance of winning (if HHH comes up immediately).  Teddy wants to 

ensure that if a tail shows somewhere in the first three flips, that he will win before Alec does.  

The best strategy is to choose THH.  This keeps Alec at a 1/8 chance of winning, making Teddy’s 

chance 7/8. 

∎ 

 

 

Problem 21. Patterns in Repeated Trials 
 
Consider a series of independent trials where on each trial there are 𝑆 possible outcomes 
{𝑂1, … , 𝑂𝑆} and suppose that on every trial 
 

𝑃 ({𝑂𝑗}) = 𝑝𝑗 ,   𝑗 = 1, … , 𝑆. 

 
Suppose the trials continue until a particular pattern of outcomes is observed.  Let 𝑁𝐴 equal the 
number of trials required to observe pattern 𝐴 for the first time. 
 
e.g. Consider rolling a die until you observe the pattern 𝐴 = {1,2}.  If we observed the 
sequence   

2   1   4   6   3   3   1   6  1  2 

 
Then 𝑁𝐴 would be 10 for this particular sequence of outcomes. 
 
The first problem we will consider is finding a formula for 𝐸(𝑁𝐴) for a general pattern 𝐴.   
 
The second part of this problem involves finding the probability that pattern 𝐴 will occur before 
pattern 𝐵. 
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The solution to both parts of this problem involves the critical points of one pattern with 
respect to another pattern.  The definition of critical points goes back to “Patterns in Repeated 
Trials”, Bizley, M.T.L., 1962, Journal of the Institute of Actuaries, 88, 360 - 366. 
 
Definition 
 

The 𝑘𝑡ℎ letter of pattern 𝐴 is a critical point with respect to pattern 𝐵 provided the last 𝑘 letters 
of pattern 𝐵 and first 𝑘 letters of pattern 𝐴 are identical (same letters in the same order). 
 
Define 
 

𝑐𝑘(𝐴|𝐵) = {
1 if the 𝑘𝑡ℎ letter of pattern 𝐴 is a critical point wrt to pattern 𝐵

0 else.
 

 
 
Example     Let  𝐴 = {0,1,0,2}  and  𝐵 = {0,2,1}.  Then 
 

𝐴  0  1  0  2                
𝐴 0 1 0 2 𝑐4(𝐴|𝐴) = 1

0 1 0 2 𝑐3(𝐴|𝐴) = 0

0 1 0 2 𝑐2(𝐴|𝐴) = 0

0 1 0 2 𝑐1(𝐴|𝐴) = 0

𝐵 0 2 1
𝐴 0 1 0 2 𝑐3(𝐴|𝐵)= 0

0 1 0 2 𝑐2(𝐴|𝐵)= 0

0 1 0 2 𝑐1(𝐴|𝐵)= 0

𝐴 0 1 0 2
𝐵 0 2 1 𝑐4(𝐵|𝐴)= 0

0 2 1 𝑐3(𝐵|𝐴)= 0

0 2 1 𝑐2(𝐵|𝐴)= 1

0 2 1 𝑐1(𝐵|𝐴)= 0

𝐵 0 2 1
𝐵 0 2 1 𝑐3(𝐵|𝐵)= 1

0 2 1 𝑐2(𝐵|𝐵)= 0

0 2 1 𝑐1(𝐵|𝐵)= 0

  

 

 
We need a few more definitions before stating the main results. 
 
Definition 



 
mathcloset.com  170 
   

 
Patterns A and B are reduced if neither pattern is just a piece of the other. 
 
For example : 
 

𝐴 = {0, 1, 0, 2, 2} and 𝐵 = { 0,2,1 } ⟹ 𝐴 and 𝐵 are reduced patterns

𝐶 = {0, 1, 0, 2, 2} and 𝐷 = { 1,0,2 } ⟹ 𝐶 and 𝐷 are not reduced patterns.
 

 
 
 
Definition 
 

Let  𝐴 = {𝑂𝑎1, … , 𝑂𝑎𝑟}  and  𝐵 = {𝑂𝑏1, … , 𝑂𝑏𝑡}.  Define 

 

(𝐴 ∗ 𝐵) =∑( ∏
1

 𝑝𝑎𝑘

min{𝑗,𝑟}

𝑘=1

) ⋅ 𝑐𝑗(𝐴|𝐵).

𝑡

𝑗=1

 

 
 
Definition 
 
Let  𝑁𝐴|𝐵 equal the number of additional trials needed for pattern 𝐴 to occur given that pattern 

𝐵 just occurred. 
 
 
Theorem 
  
 (1) 𝐸(𝑁𝐴) = (𝐴 ∗ 𝐴) 

 (2) If patterns 𝐴 and 𝐵 are reduced, then 𝐸(𝑁𝐴|𝐵) = (𝐴 ∗ 𝐴) − (𝐴 ∗ 𝐵) 

 (3) If patterns 𝐴 and 𝐵 are reduced, then 
 

𝑃(𝐴 occurs before 𝐵) =
𝐸(𝑁𝐵) + 𝐸(𝑁𝐴|𝐵) − 𝐸(𝑁𝐴)

𝐸(𝑁𝐵|𝐴) + 𝐸(𝑁𝐴|𝐵)
 

=
(𝐵 ∗ 𝐵) − (𝐴 ∗ 𝐵)

((𝐵 ∗ 𝐵) − (𝐴 ∗ 𝐵)) + ((𝐴 ∗ 𝐴) − (𝐵 ∗ 𝐴))
. 

Applications 
  
(4) Show that when flipping a fair coin, 
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𝑃(pattern {𝑇, 𝐻,𝐻} appears before pattern {𝐻, 𝐻,𝐻}) =
7

8
. 

 
Note that when flipping a fair coin 3 times, all 8 possible outcomes 
 

{(𝐻, 𝐻, 𝐻), (𝐻, 𝐻, 𝑇), (𝐻, 𝑇,𝐻), (𝑇, 𝐻,𝐻), (𝐻, 𝑇, 𝑇), (𝑇,𝐻, 𝑇), (𝑇, 𝑇, 𝐻), (𝑇, 𝑇, 𝑇)} 

 
are equally likely to occur.  On this basis one might conclude that the answer to (4) should be 
1/2.  What is wrong with this reasoning? 
 
(5) Suppose we say that pattern 𝐴 beats pattern 𝐵 if 
 

𝑃(pattern 𝐴 appears before pattern 𝐵) >
1

2
. 

 

Also suppose we use the notation 𝐴 ⟶
𝑏
𝐵 to mean pattern 𝐴 beats pattern 𝐵.  Show 

 

𝑇 𝐻 𝐻 ⟶
𝑏
 𝐻 𝐻 𝑇 ⟶

𝑏
 𝐻 𝑇 𝑇 ⟶

𝑏
 𝑇 𝑇 𝐻 ⟶

𝑏
 𝑇 𝐻 𝐻. 

 

 That is, show that the operation ⟶
𝑏

 is nontransitive. 
 
 
 
(6) When flipping a fair coin show that 
 

𝐸(𝐻𝑇𝐻𝐻) < 𝐸(𝑇𝐻𝑇𝐻) 
but 
 

𝑇 𝐻 𝑇 𝐻 ⟶
𝑏
𝐻 𝑇 𝐻 𝐻. 

 
That is, more likely than not, pattern 𝑇 𝐻 𝑇 𝐻  will occur before pattern 𝐻 𝑇 𝐻 𝐻  but on 
average pattern 𝑇 𝐻 𝑇 𝐻 will take longer to occur than pattern 𝐻 𝑇 𝐻 𝐻.  Is this a logical 
contradiction? 
 
(7)  “A man was taken prisoner by pirates, who did not know what to do with him.  Finally, the 

captain decided to write the letters L, I, V, E and K on a die, leaving one side blank.  The die was 

to be thrown until one the words LIVE or KILL was formed by consecutive letters.  The pirates, 

who liked to gamble, were enthusiastic about the idea.  The captain asked if the prisoner had 

any last wish before the gambling started. ‘Yes’, he said, ‘I would be glad if you could replace 

the word KILL by DEAD’.  The captain agreed and wrote the letters L, I, V, E, A and D on the die.” 
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Did the prisoner increase his odds of surviving by making this request? 
 
Blom and Thorburn “How Many Random Digits are Required Until Given Sequences are 
Obtained?”, Journal of Applied Probability, 19, 518 - 531, 1982. 
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7.4  Dice Problems 
 

Suppose that a fair 𝑚-sided die labeled from 1 to 𝑚 is rolled 𝑟 times.  Show that the probability 
of getting a sum of 𝑛 is 
 

1

𝑚𝑟
∑ (−1)𝑢 (

𝑛 − 𝑚𝑢 − 1
𝑛 −𝑚𝑢 − 𝑟

) (
𝑟
𝑢
)

⌊
𝑛−𝑟
𝑚 ⌋

𝑢=0

. 

 
Solution 
 
Let Ψ(𝑟,𝑚, 𝑛) equal the number of solutions to 
  

𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛,  with  𝑥𝑗 ∈ {1,2, … ,𝑚}, 𝑗 = 1,2,… , 𝑟. 

 
If we let 𝑥𝑗 equal the number showing on the 𝑗𝑡ℎ  roll of the die then it is clear that the 

probability of getting a sum of 𝑛 is 
 

Ψ(𝑟,𝑚, 𝑛)

𝑚𝑟
. 

 
Thus, the problem reduces to one of finding Ψ(𝑟,𝑚, 𝑛).  It is clear that Ψ(𝑟,𝑚, 𝑛) equals the 
coefficient of 𝑦𝑛 in the polynomial ℎ(𝑦) given by 
 

ℎ(𝑦) = (𝑦1 + 𝑦2 +⋯+ 𝑦𝑚)𝑟. 
 
Now, 
 

ℎ(𝑦) = 𝑦𝑟(𝑦0 + 𝑦1 +⋯+ 𝑦𝑚−1)𝑟  

= 𝑦𝑟(𝑦0 + 𝑦1 + 𝑦2…)𝑟(1 − 𝑦𝑚)𝑟 

= 𝑦𝑟 (∑(
𝑟 + 𝑗 − 1

𝑗
) 𝑦𝑗

∞

𝑗=0

)(∑(−1)𝑗 (
𝑟
𝑗) 𝑦

𝑚𝑗

𝑟

𝑗=0

) 

= 𝑦𝑟 (∑𝑎𝑗𝑦
𝑗

∞

𝑗=0

)(∑𝑏𝑖𝑦
𝑖

∞

𝑖=0

) 
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= 𝑦𝑟 (∑𝑐𝑘𝑦
𝑘

∞

𝑘=0

) 

where 

𝑎𝑗 = (
𝑟 + 𝑗 − 1

𝑗
) ,    𝑗 = 0,1,2,… 

 
 

𝑏𝑖 = {
(−1)𝑖/𝑚 (

𝑟
𝑖/𝑚) 𝑖 = 0,𝑚, 2𝑚, 3𝑚,… , 𝑟𝑚

0 else

 

 
and 

𝑐𝑘 =∑𝑏𝑖𝑎𝑘−𝑖

𝑘

𝑖=0

. 

 
The coefficient of 𝑦𝑛 in the polynomial 
 

ℎ(𝑦) = 𝑦𝑟∑𝑐𝑘𝑦
𝑘

∞

𝑘=0

 

is 𝑐𝑛−𝑟.  Therefore, 
 

Ψ(𝑟,𝑚, 𝑛) = 𝑐𝑛−𝑟 = ∑𝑏𝑖𝑎𝑛−𝑟−𝑖

𝑛−𝑟

𝑖=0

 

= ∑𝑏𝑖 (
𝑛 − 𝑖 − 1
𝑛 − 𝑖 − 𝑟

)

𝑛−𝑟

𝑖=0

 

= ∑ 𝑏𝑚𝑢 (
𝑛 −𝑚𝑢 − 1
𝑛 − 𝑚𝑢 − 𝑟

)

⌊
𝑛−𝑟
𝑚 ⌋

𝑢=0

 

 
because 𝑏𝑖 = 0 except for 𝑖 = 0,𝑚, 2𝑚,… , 𝑟𝑚.  Therefore 
 

Ψ(𝑟,𝑚, 𝑛) = ∑ (−1)𝑢 (
𝑟
𝑢
) (
𝑛 −𝑚𝑢 − 1
𝑛 − 𝑚𝑢 − 𝑟

)

⌊
𝑛−𝑟
𝑚 ⌋

𝑢=0

. 

∎ 
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Theorem 
 
When a fair 𝑚-sided die labeled from 1 to 𝑚 is rolled 𝑟 times, the probability of getting a sum 
of 𝑛, (𝑛 = 𝑟, 𝑟 + 1,… ,𝑚𝑟) equals the probability of getting a sum of (𝑚 + 1)𝑟 − 𝑛. 
 

Proof 

Let 𝑥𝑗 equal the number showing on the 𝑗𝑡ℎ  roll of the fair 𝑚-sided die labeled from 1 to 𝑚,  

𝑗 = 1,2,… , 𝑟. 
 
As discussed in the previous result, the set of all ways for the sum of the rolls to equal 𝑛 is the 
same as the set of solutions (𝑥1, 𝑥2, … , 𝑥𝑟) such that 
 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛,  with  𝑥𝑗 ∈ {1,2, … ,𝑚}, 𝑗 = 1,2,… , 𝑟. 

 
But this is the same as the set of all ways to distribute 𝑛 identical balls into 𝑟 labeled urns with 

at least one ball per urn but no more than 𝑚 balls per urn. 

 

Now switch gears and imagine a set of 𝑟 labeled urns that each start off filled with 𝑚+ 1 

identical balls.  

 

Suppose we remove 𝑥𝑗 balls from Urn 𝑗 in the top row and put these 𝑥𝑗  balls into Urn 𝑗 in the 

bottom row according to the restrictions that 𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛 and 𝑥𝑗 ∈ {1,2, … ,𝑚}. 
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We can see that this is just an alternative way of distributing 𝑛 identical balls into 𝑟 labeled  

urns (the bottom row) with at least one ball per urn but no more than 𝑚 balls per urn. 

If we let 𝑦𝑗 equal the number of balls left in Urn 𝑗 in the top row after removing 𝑥𝑗 balls then it 

follows that 𝑦𝑗 = (𝑚 + 1) − 𝑥𝑗 and  

 

𝑦1 + 𝑦2 +⋯+ 𝑦𝑟 = (𝑚 + 1)𝑟 − (𝑥1 +⋯+ 𝑥𝑟) = (𝑚 + 1)𝑟 − 𝑛. 
 

Furthermore, 𝑥𝑗 ∈ {1,2, … ,𝑚} implies that the range of possible values for 𝑦𝑗 will be from 

(𝑚 + 1) −𝑚 = 1 to (𝑚 + 1) − 1 = 𝑚.  That is, 𝑦𝑗 ∈ {1,2,… ,𝑚}, 𝑗 = 1,2,… , 𝑟.  

 

This shows there is a one-to-one correspondence between the ways to distribute 𝑛 identical 

balls into the bottom row of 𝑟 distinct urns with at least one ball but no more than 𝑚 balls in 

each urn and the ways to leave (𝑚 + 1)𝑟 − 𝑛 identical balls in the top row of 𝑟 distinct urns by 

removing at least one but no more than 𝑚 balls from any one urn. 

 
That is, there is a one-to-one correspondence between the set of solutions (𝑥1, 𝑥2, … , 𝑥𝑟) such 
that 
 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛,  with  𝑥𝑗 ∈ {1,2,… ,𝑚}, 𝑗 = 1,2,… , 𝑟 

 
and the set of solutions (𝑦1, 𝑦2, … , 𝑦𝑟) such that 
 

𝑦1 + 𝑦2 +⋯+ 𝑦𝑟 = (𝑚 + 1)𝑟 − 𝑛,  with  𝑦𝑗 ∈ {1,2, … ,𝑚}, 𝑗 = 1,2,… , 𝑟. 

 
But the variable name 𝑦𝑗 is arbitrary and we could just as well refer to this as the set of 

solutions (𝑥1, 𝑥2, … , 𝑥𝑟) such that 
 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = (𝑚 + 1)𝑟 − 𝑛,  with  𝑥𝑗 ∈ {1,2, … ,𝑚}, 𝑗 = 1,2,… , 𝑟. 

 
It follows that when a fair 𝑚-sided die labeled from 1 to 𝑚 is rolled 𝑟 times, the probability of 

getting a sum of 𝑛, (𝑛 = 𝑟, 𝑟 + 1,… ,𝑚𝑟) equals the probability of getting a sum of (𝑚 + 1)𝑟 −

𝑛. 

∎ 

Example 

Suppose we roll three fair 6-sided dice. What is the probability of obtaining a sum of 16 points? 

Solution 

We could compute this by applying the general result 
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𝑃(sum = 16) =
1

63
∑ (−1)𝑢 (

16 − 6𝑢 − 1
16 − 6𝑢 − 3

) (
3
𝑢
)

⌊
16−3
6 ⌋

𝑢=0

. 

 
But it is easier to recognize that 𝑃(sum = 16) = 𝑃(sum = (6 + 1) ⋅ 3 − 16 = 5) and to find 

𝑃(sum = 5) by brute force. There are six ways for 3 dice to sum to 5.  Namely, 

{1,1,3}, {1,3,1}, {3,1,1}, {1,2,2}, {2,1,2}, {2,2,1}. 

Hence, 

𝑃(sum = 16) = 𝑃(sum = 5) =
6

63
=
1

36
. 

∎ 
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Exercises for Chapter 7, Section 4 

 

1. (4C833)  Four balls marked 1,2,3,4 are placed in an urn.  One ball is drawn, its number 

 recorded, and the ball is returned to the urn.  This process is repeated, and then repeated 

 once more.  Each ball is equally likely to be drawn on each occasion.  If the sum of the 

 numbers recorded is 9, what is the probability that the ball numbered 3 was drawn all 

 three times? 

2. What is the probability of obtaining a sum of ten points in a throw of three symmetrical six-

 sided dice, each with faces numbered 1,2,3,4,5,6?  (Source: Probability, James R. Gray, 

 1967, page 30, problem 4) 

3. An ordinary symmetrical six-sided die is thrown four times and the sum of the four 

 numbers is 12.  What is the probability that the sum of the numbers in the first two throws 

 was 4?  (Source: Probability, James R. Gray, 1967, page 38, problem 44) 

4. When rolling 12 standard 6-sided dice, the probability that the sum of the numbers rolled 

 on the 12 dice is 69 can be expressed in 𝑁/612.  Find the sum of the digits of 𝑁. (2019 AMC 

 10C, Problem 8, a mock contest created by AoPS user fidgetboss_4000) 

5. When 𝑛 standard 6-sided dice are rolled, the probability of obtaining a sum of 1994 is 

 greater than zero and is the same as the probability of obtaining a sum of S. What is the 

 smallest possible value of 𝑆? (Source: Problem 30 of 1994 AHSME) 
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Project 9  Equally Likely Dice Sums are Impossible 
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Project 10  Elchanan Mossel’s Problem 
 

A fair 6-sided die is rolled repeatedly until a 6 is obtained.  Let 𝑋 equal the number of rolls 

required.  Let 𝐴 be the event that none of the rolls prior to getting a 6 were odd numbers. 

 (a) Find 𝑃(𝑋 = 𝑘) 

 (b) Find 𝑃(𝑋 = 𝑘|𝐴). 

Solution 

(a)  𝑋 follows a Negative Binomial distribution where we are waiting to get our first success 

(getting a 6) with 𝑝 = 𝑃(success) = 𝑃(roll a 6) = 1/6..  Hence, 

𝑃(𝑋 = 𝑘) = (1 − 𝑝)𝑘−1𝑝1 = (
5

6
)
𝑘−1

(
1

6
) ,    𝑘 = 1,2,3,…   . 

 

(b)  Imagine for a moment a fair three-sided die with the faces numbered as 2,4 and 6.  

Suppose this die is rolled repeatedly until a 6 is obtained.  Let 𝑌 equal the number of rolls 

required. 

Is 𝑃(𝑋 = 𝑘|𝐴) = 𝑃(𝑌 = 𝑘)?  The two probabilities have certain elements in common but 

unfortunately they are not identical.  (But the differences are subtle and easy to miss.) 

  

It will help if we broaden the problem a bit.  Suppose that we roll a fair six-sided die until we get 

any of the numbers {1,3,5 or 6} for the first time.  Then we stop.  Let 𝑇 equal the total number 

of rolls performed before we stop.  In this case 𝑇 follows a Negative Binomial distribution 

where we are waiting for our first success (getting a 1,3,5 or 6) with 𝑝 = 𝑃(success) = 4/6 =

2/3.  Hence, 

𝑃(𝑇 = 𝑘) = (1 − 𝑝)𝑘−1𝑝1 = (
1

3
)
𝑘−1

(
2

3
) ,    𝑘 = 1,2,3, …   . 

 

Let 𝐶𝑗 be the event that the number 𝑗 ∈ {1,3,5,6} was the number we stopped on in the above 

experiment.  By symmetry 𝑃(𝐶1) = 𝑃(𝐶2) = 𝑃(𝐶3) = 𝑃(𝐶6) = 1/4. 

But it also follows by symmetry that 𝑃(𝐶1|𝑇 = 𝑘) = 𝑃(𝐶3|𝑇 = 𝑘) = 𝑃(𝐶5|𝑇 = 𝑘) =

𝑃(𝐶6|𝑇 = 𝑘) = 1/4. 
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Notice that 𝑃(𝐶6|𝑇 = 𝑘) = 𝑃(𝐶6).  This means that the events 𝐶6 and 𝑇 = 𝑘 are independent. 

 

Therefore,   

𝑃(𝑇 = 𝑘|𝐶6) = 𝑃(𝑇 = 𝑘) = (1 − 𝑝)
𝑘−1𝑝1 = (

1

3
)
𝑘−1

(
2

3
) ,    𝑘 = 1,2,3,…   . 

 

But 𝑃(𝑋 = 𝑘|𝐴) = 𝑃(𝑇 = 𝑘|𝐶6). 

 

Hence, 

𝑃(𝑋 = 𝑘|𝐴) = 𝑃(𝑇 = 𝑘) = (
1

3
)
𝑘−1

(
2

3
) ,    𝑘 = 1,2,3,…   . 

 

 

 

 

If they were identical then we would have a quick solution to our problem because 𝑌 follows a 

Negative Binomial distribution where we are waiting to get our first success (getting a 6) with 

𝑝 = 𝑃(success) = 𝑃(roll a 6) = 1/3.  Hence, 

𝑃(𝑌 = 𝑘) = (1 − 𝑝)𝑘−1𝑝1 = (
2

3
)
𝑘−1

(
1

3
) ,    𝑘 = 1,2,3,…   . 

 

 

To sort out what is going on in a probability problem it is often helpful to go through a thought 

experiment of getting an approximate answer through a simulation.   

We could simulate 𝑋|𝐴 by rolling a fair (six-sided) die until you got a six or any odd number, 

whichever comes first.   

If you get an odd number first, just toss out that case altogether.   

If you get a six first, count how many rolls were required (including the roll where the 6 

occurred).  Keep a tally of how many rolls were required to get that six. 
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Now start the process over.  Roll the die until you either (any) odd number or a six.  If the six 

comes first, record in your tallies how many rolls were required to get the six. 

Do this over and over until you have a lot of data collected.  Then to approximate 𝑃(𝑋 = 𝑘|𝐴) 

you would calculate the percentage of times in your tallies that it took 𝑘 rolls to get the first 6. 

In theory, if you were patient enough to collect an infinite amount of data, your approximation 

would become the exact answer. 

 

Now imagine that you kept separate tallies just as discussed above except that you swap out 

the 6 for a 1.  That is, you roll a fair (six-sided) die until you got a 1  or any of the numbers 

{3,5,6}. 

If you get any of {3,5 or 6} first, just toss out that case altogether.  If you get a 1 first, count 

how many rolls were required (including the roll where the 1 occurred).  Keep a tally of how 

many rolls were required to get that 1. 

Do this over and over until you have a lot of data collected.  Then to approximate 𝑃(𝑋 = 𝑘|𝐴) 

you would calculate the percentage of times in your tallies that it took 𝑘 rolls to get the first 6. 

 

 

 

 

 

 

 

 

 

It is real tempting to think of this as being equivalent to rolling a fair three-sided die with sides 

labeled 2,4 and 6.  If this is true, then 

𝑃(𝑋 = 𝑘|𝐴) = (
2

3
)
𝑘−1

(
1

3
) ,  𝑘 = 1,2,3, …   . 

Let’s give some notation to the situation of a three 
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But is this correct?  To see that it is not we need to describe an experiment that would allow us 

to simulate an answer to 𝑃(𝑋 = 𝑘|𝐴) and then compare that with the experiment of rolling a 

fair three-sided die with sides labeled 2,4 and 6 until we get a 6. 
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7.5  Recursion  
 

 

 

Exercises for Chapter 7, Section 5 
 

(5T175)  A fair coin is flipped 7 times.  Determine exactly the probability that two heads never 

happen on two successive tosses.  Express the answer as a quotient of two relative prime 

integers. 

Solution 

Let 𝑛 be the number of tosses and 𝑓(𝑛) the number of sequences without two consecutive 

heads.  Then 𝑓(1) = 2, 𝐻 or 𝑇; 𝑓(2) = 3, 𝐻𝑇, 𝑇𝐻, or 𝑇𝑇; and 𝑓(3) = 5,𝐻𝑇𝐻, 𝑇𝑇𝐻, 𝐻𝑇𝑇, 𝑇𝐻𝑇,  

or 𝑇𝑇𝑇.  To find 𝑓(4), add 𝑇𝐻 to the sequences of length two or add 𝑇 to the sequences of 

length 3 to obtain: 𝐻𝑇𝑇𝐻, 𝑇𝐻𝑇𝐻, 𝑇𝑇𝑇𝐻,𝐻𝑇𝐻𝑇, 𝑇𝑇𝐻𝑇, 𝐻𝑇𝑇𝑇, 𝑇𝐻𝑇𝑇, or 𝑇𝑇𝑇𝑇.  So 𝑓(4) = 3 +

5 = 8 and 𝑓(5) = 5 + 8 = 13, 𝑓(6) = 8 + 13 = 21, and 𝑓(7) = 13 + 21 = 34.  There are 

27 = 128 possible sequences, so the probability of no consecutive Heads in seven flips of a coin 

is 34/128 = 17/64.  

∎ 

 

1. Felix the cat has three favorite spots for napping.  Whenever Felix gets bored he gets up 

 from his current spot and randomly moves to one of his other two favorite spots. 

 
 

 

 If Felix starts in position 𝐴, what is the probability that Felix will end up back in position 𝐴 

 after his twentieth move? 
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2. If 𝑢𝑛 is the probability that in 𝑛 tosses of a symmetrical coin three or more consecutive 

 heads do not turn up, show that for 𝑛 ≥ 4, 

𝑢𝑛−1 − 𝑢𝑛 =
1

16
𝑢𝑛−4, 

 and hence evaluate 𝑢7.  (Source: Probability, James R. Gray, 1967, page 144, problem 7) 

3. The respective probabilities of heads and tails when a biased coin is tossed are 𝑝 and 

 1 − 𝑝.  If 𝑢𝑛 denotes the probability that two heads in succession do not occur in 𝑛 trials, 

 show that 

𝑢𝑛+2 = (1 − 𝑝)𝑢𝑛+1 + 𝑝(1 − 𝑝)𝑢𝑛. 

 Hence find the value of 𝑢𝑛 when 𝑝 = 2/3.  (Source: Probability, James R. Gray, 1967, page 

 144, problem 9) 

4. A tetrahedron which has three green faces and one red face is placed with one face in 

 contact with a table.  It is then moved from its initial position by rotating it about one of 

 the edges in contact with the table, all three edges being equally likely, until an adjacent 

 face rests in contact with the table.  A series of such moves is performed.  If 𝑝𝑛 denotes the 

 probability that the red face is in contact with the table after 𝑛 moves, shown that 

𝑝𝑛+1 =
1

3
(1 − 𝑝𝑛). 

 Find 𝑝𝑛 when initially (𝑖) the red face and (𝑖𝑖) a green face was in contact with the table. 

 If the initial face in contact with the table was chosen at random from the four faces, what 

 is the probability that the red face will be in contact with the table after 𝑛 moves? 

 If the initial face in contact with the table was chosen at random then 𝑝0 = 1/4 and hence 

𝑝𝑛 = (
1

3
)
𝑛

(
1

4
−
1

4
) +

1

4
=
1

4
. 

 (Source: Probability, James R. Gray, 1967, Page 145, Problem 14) 

 

5. Justine has a coin that will come up the same as the last flip 2/3 of the time. She flips it 
 and it comes up heads. She flips it 2010 more times. What is the probability that the last 
 flip is heads?  (Source: https://faculty.math.illinois.edu/~hildebr/ putnam/training19/ 
 probability1.pdf) 
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Project 11  The Gambler’s Ruin 
 

 A gambler has a 7/13 chance of winning a game and 6/13 chance of losing. He bets $10 

 each game. He starts with $100.  What is the probability that he reaches $150 before 

 going broke? 
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7.6  Method of Inclusion – Exclusion 
 

Critical Point: In an Inclusion-Exclusion problem when, for example, you are finding 𝑃(𝐴 ∩ 𝐵)  

as part of 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 ∪ 𝐸), you are making no assumptions on whether events 𝐶, 𝐷 

and/or 𝐸 occurred or not.  In other words, when finding 𝑃(𝐴 ∩ 𝐵), we ignore events 𝐶,𝐷 and 𝐸 

altogether. 

 

 

Exercises for Chapter 7, Section 6 
 

1.  (5T143)  Four women each store a distinct hat in the same box.  If all four women reach 

 into the box randomly and independently, what is the probability that no woman picks her 

 own hat? 

2. A bag contains a proportion 𝑝1 of white balls, 𝑝2 of black balls and 𝑝3 of red balls where 
 0 < 𝑝1 + 𝑝2 + 𝑝3 ≤ 1.  Balls are drawn at random, one at a time with replacement.  Find 
 the probability that 𝑛 draws are required to select each color at least once. (Source: 
 Probability, James Gray, Oliver & Boyd, 1967, page 43, Problem 60.) 
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7.7  Probability and Number Theory 
 

Theorem 

Let {𝛼1, … , 𝛼𝑘} be the set of prime divisors of the positive integer 𝑛 and let 𝑚 be a number 

picked at random from 1,2,… , 𝑛.  Let 𝐴𝑖 be the event that 𝑚 is divisible by 𝛼𝑖, 𝑖 = 1,2,… , 𝑘.  

Then 𝐴1, 𝐴2, … , 𝐴𝑘 are mutually independent events and 𝑃(𝐴𝑖) = 1/𝛼𝑖. 

 

 

 

Schleicher, Lackmann (Eds), An Invitation to Mathematics, From Competitions to Research 

Page 21 

 

(find other problems like this in MSHSML problems) 
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Exercises for Chapter 7, Section 7 
 

1. A drawer contains a mixture of red socks and blue socks, at most 1991 in all.  It so happens 

 that when 2 socks are selected randomly without replacement, the probability is exactly 

 one-half that both are red or both are blue.  What is the largest possible number of red 

 socks in the drawer? (Source: Mathematics Teacher, Calendar Problem #30, September 

 1991.) 
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7.8  Probability and Theory of Equations 
 

 

 

 

Exercises for Chapter 7, Section 8 
 

Răzvan Gelca, Titu Andreescu, Putnam and Beyond, Second Edition 

Problem 1079, Section 6.5, Probability, page 337.  Gelca and Andreescu site N. Negoescu, 

Probleme cu … Probleme (Problems with … Problems), Editura Facla, 1975, (Romanian) as the 

original source. 

 

Three students take an exam.  Assume they worked independently and that the exams were 

scored independently. 

Let 𝐴𝑖 be the event that exactly 𝑖 of these students pass the exam for 𝑖 = 0,1,2,3.  Assume that 

𝑃(𝐴0) = 2/5, 𝑃(𝐴1) = 13/50, 𝑃(𝐴2) = 3/20, 𝑃(𝐴3) = 1/60. 

Let 𝑝𝑖  equal the probability that the 𝑖𝑡ℎ person passes the exam, 𝑖 = 1,2,3.   

Find 𝑝1, 𝑝2 and 𝑝3. 

Solution 

We can express the probability of each event 𝐴0, 𝐴1, 𝐴2, 𝐴3 in terms of 𝑝1, 𝑝2, 𝑝3  as 

𝑃(𝐴0) = (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) 

𝑃(𝐴1) = 𝑝1(1 − 𝑝2)(1 − 𝑝3) + (1 − 𝑝1)𝑝2(1 − 𝑝3) + (1 − 𝑝1)(1 − 𝑝2)𝑝3 

𝑃(𝐴2) = 𝑝1𝑝2(1 − 𝑝3) + 𝑝1(1 − 𝑝2)𝑝3 + (1 − 𝑝1)𝑝2𝑝3 

𝑃(𝐴3) = 𝑝1𝑝2𝑝3. 

Define the polynomial 𝑄(𝑥) = (𝑝1𝑥 + (1 − 𝑝1))(𝑝2𝑥 + (1 − 𝑝2))(𝑝3𝑥 + (1 − 𝑝3)).   

Notice that the coefficient of 𝑥𝑖 of 𝑄(𝑥) is 𝑃(𝐴𝑖).  That is, 

𝑄(𝑥) = 𝑃(𝐴3)𝑥
3 + 𝑃(𝐴2)𝑥

2 + 𝑃(𝐴1)𝑥
1 + 𝑃(𝐴0) 

=
1

60
𝑥3 +

3

20
𝑥2 +

13

30
𝑥 +

2

5
. 
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Another way of saying this is that 𝑄(𝑥) is the probability generating function for the number of 

successes (student passes the exam) in the 𝑛 = 3 trials. 

The zeros of 𝑄(𝑥) = (𝑝1𝑥 + (1 − 𝑝1))(𝑝2𝑥 + (1 − 𝑝2))(𝑝3𝑥 + (1 − 𝑝3)) are 

𝑟𝑖 =
−(1 − 𝑝𝑖)

𝑝𝑖
= 1 −

1

𝑝𝑖
,    𝑖 = 1,2,3. 

From the form 

𝑄(𝑥) =
1

60
(𝑥3 + 9𝑥2 + 26𝑥 + 24) 

=
1

60
(𝑥 + 2)(𝑥 + 3)(𝑥 + 4) 

we can also determine that the roots of 𝑄(𝑥) are −2,−3 and −4.  Therefore, 

 

−2 = 𝑟1 = 1 −
1

𝑝1
⇔ 𝑝1 =

1

3
 

−3 = 𝑟2 = 1 −
1

𝑝2
⇔ 𝑝2 =

1

4
 

−4 = 𝑟3 = 1 −
1

𝑝3
⇔ 𝑝3 =

1

5
. 

∎ 

Is there a Theory of Equations “shortcut” for solving the general problem 

Find 𝑝1, 𝑝2 and 𝑝3 if  

𝑎0 = (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) 

𝑎1 = 𝑝1(1 − 𝑝2)(1 − 𝑝3) + (1 − 𝑝1)𝑝2(1 − 𝑝3) + (1 − 𝑝1)(1 − 𝑝2)𝑝3 

𝑎2 = 𝑝1𝑝2(1 − 𝑝3) + 𝑝1(1 − 𝑝2)𝑝3 + (1 − 𝑝1)𝑝2𝑝3 

𝑎3 = 𝑝1𝑝2𝑝3. 

Solution 

Define the polynomial 𝑄(𝑥) = (𝑝1𝑥 + (1 − 𝑝1))(𝑝2𝑥 + (1 − 𝑝2))(𝑝3𝑥 + (1 − 𝑝3)).   

Notice that the coefficient of 𝑥𝑖 of 𝑄(𝑥) is 𝑎𝑖 .  That is, 

𝑄(𝑥) = 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝑎0. 
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But also notice that the roots 𝑟1, 𝑟2, 𝑟3 of 𝑄(𝑥) are 𝑟𝑖 = 1 −
1
𝑝𝑖

.  So 

𝑝𝑖 =
1

1 − 𝑟𝑖
  where 𝑟1, 𝑟2, 𝑟3 are the roots of 𝑄(𝑥). 
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7.9  Assortment of Problems 
 

 

 

Exercises for Chapter 7, Section 9 
 

1. Ten tickets are numbered 1,2,3, … ,10 respectively.  Five tickets are selected at a time with 

 replacement.  What is the probability that the highest number appearing on a selected 

 ticket is 𝑘? (Source: Probability, James R. Gray, 1967, page 15, Example 1.12) 

 

(5T175)  A fair coin is flipped 7 times.  Determine exactly the probability that two heads never 

happen on two successive tosses.  Express the answer as a quotient of two relative prime 

integers. 

Solution 

Let 𝑛 be the number of tosses and 𝑓(𝑛) the number of sequences without two consecutive 

heads.  Then 𝑓(1) = 2, 𝐻 or 𝑇; 𝑓(2) = 3, 𝐻𝑇, 𝑇𝐻, or 𝑇𝑇; and 𝑓(3) = 5,𝐻𝑇𝐻, 𝑇𝑇𝐻, 𝐻𝑇𝑇, 𝑇𝐻𝑇,  

or 𝑇𝑇𝑇.  To find 𝑓(4), add 𝑇𝐻 to the sequences of length two or add 𝑇 to the sequences of 

length 3 to obtain: 𝐻𝑇𝑇𝐻, 𝑇𝐻𝑇𝐻, 𝑇𝑇𝑇𝐻,𝐻𝑇𝐻𝑇, 𝑇𝑇𝐻𝑇, 𝐻𝑇𝑇𝑇, 𝑇𝐻𝑇𝑇, or 𝑇𝑇𝑇𝑇.  So 𝑓(4) = 3 +

5 = 8 and 𝑓(5) = 5 + 8 = 13, 𝑓(6) = 8 + 13 = 21, and 𝑓(7) = 13 + 21 = 34.  There are 

27 = 128 possible sequences, so the probability of no consecutive Heads in seven flips of a coin 

is 34/128 = 17/64.  

∎ 

 


