Random Labeled Trees 7/19/01

Theorem 1. 1-Shifted Poisson Randomization Theorem

Define \mathbb{S}^n to be the product space $\{1, 2, ...\} \times \cdots \times \{1, 2, ...\}$ and let \mathbb{S}^n_t be the set of all vectors $(s_1, ..., s_n)$ in \mathbb{S}^n such that $s_1 + ... + s_n = t$.

Suppose that (X_1, \ldots, X_n) is a random vector such that for all $(s_1, \ldots, s_n) \in \mathbb{S}_t^n$,

$$P(X_1 = s_1, \dots, X_n = s_n) = \frac{(t-n)!}{(s_1-1)! \cdots (s_n-1)!} (p_1)^{s_1-1} \cdots (p_n)^{s_n-1}$$

where $p_1 + ... + p_n = 1$ and $p_j \ge 0$ for j = 1, ..., n.

Suppose that (Y_1, \ldots, Y_n) is a vector of independent **1-shifted Poisson** random variables and that Y_j has parameter λp_j , $j = 1, \ldots, n$. That is, suppose that for all $s \in \{1, 2, \ldots\}$,

$$P(Y_j=s)=rac{e^{-\lambda p_j}(\lambda p_j)^{s_{j-1}}}{(s_j-1)!}$$

Then for $t \ge n$,

$$\mathbf{E}(g(X_1,\ldots,X_n)) = \frac{(t-n)!}{t!} \frac{\mathrm{d}^t}{\mathrm{d}\lambda^t} \left(e^{\lambda} \lambda^n \mathbf{E}(g(Y_1,\ldots,Y_n)) \right) \Big|_{\lambda=0}$$

Let $\mathcal{A} \subseteq \mathbb{S}^n$ and define $\mathcal{A}_t = \mathcal{A} \cap \mathbb{S}_t^n$. Then for $t \ge n$,

$$P((X_1,\ldots,X_n)\in\mathcal{A}_t)=\frac{(t-n)!}{t!}\frac{\mathrm{d}^t}{\mathrm{d}\lambda^t}\left(e^{\lambda}\lambda^n P((Y_1,\ldots,Y_n)\in\mathcal{A})\right)\Big|_{\lambda=0}$$

If we take $p_j = \frac{1}{n}$ for j = 1, ..., n and t = 2n - 2, then the random vector $(X_1, ..., X_n)$ models random labeled trees with *n* vertices where X_j equals the degree of the j^{th} vertex.

Theorem 2.

We will need the following definitions.

 \mathbb{S}^{∞} : the infinite product space $\{0,1,\ldots\} \times \{0,1,\ldots\} \times \cdots$

 \mathbb{S}_n^∞ : the set of all vectors (s_1, s_2, \dots) in \mathbb{S}^∞ such that $0s_1 + 1s_2 + \dots = n-2$

$$\mathbb{S}_{n,t}^{\infty}$$
: the set of all vectors (s_1, s_2, \dots) in \mathbb{S}^{∞} such that $\begin{array}{c} 0s_1 + 1s_2 + \dots = n-2\\ s_1 + s_2 + \dots = t \end{array}$

For any $\mathcal{A} \subseteq \mathbb{S}^{\infty}$ define $\mathcal{A}_n = \mathcal{A} \cap \mathbb{S}_n^{\infty}$ and $\mathcal{A}_{n,t} = \mathcal{A} \cap \mathbb{S}_{n,t}^{\infty}$

We note that the condition that $0s_1 + 1s_2 + \ldots = n-2$ implies that $s_j = 0$ for all j > n-1. Hence all vectors in \mathcal{A}_n and $\mathcal{A}_{n,t}$ are of the form $(a_1, \ldots, a_{n-1}, 0, 0, \ldots)$.

For all $\mathcal{A} \neq (0, 0, ...)$, let \mathbb{A}_n be the collection of (n-1)-dimensional vectors formed by taking each infinite-dimensional vector in \mathcal{A}_n and truncating after a_n . So for example,

$$(a_1,\ldots,a_{n-1},0,0,\ldots) \rightarrow (a_1,\ldots,a_{n-1})$$

Define $\mathbb{A}_{n,t}$ similarly. For notational consistency it is necessary to separate out the case $\mathcal{A} = (0, 0, ...)$

Define the random vector

$$P((X_1, ..., X_{n-1}) = (x_1, ..., x_{n-1})) = \begin{cases} \frac{t!(n-2)!}{x_1! \cdots x_{n-1}!(0)!^{x_{1-1}}} & 0x_1 + ... + (n-2)x_{n-1} = n-2\\ t^{n-2} & x_{j} \in \{0, 1, ..., \} \forall j \\ 0 & \text{otherwise} \end{cases}$$

where

$$\sum_{\substack{x_1+\ldots+x_{n-1}=t\\ 0x_1+\ldots+(n-2)x_{n-1}=n-2\\x_i\in\{0,1\ldots\}}} \frac{t!(n-2)!}{x_1!\cdots x_{n-1}!(0!)^{x_1}\cdots ((n-2)!)^{x_{n-1}}} = t^{n-2}$$

Consider an infinite sequence Y_1, Y_2, \ldots of independent Poisson random variables where

$$P(Y_{j} = y) = \frac{e^{\left(\frac{-\theta\lambda^{j-1}}{(j-1)!}\right)} \left(\frac{\theta\lambda^{j-1}}{(j-1)!}\right)^{y}}{y!} \qquad y = 0, 1, 2, \dots \text{ and } j = 1, 2, \dots$$

Then

$$\mathbf{E}(g(X_1,\ldots,X_{n-1},0,0,\ldots)) = \left(\frac{1}{n^{t-2}}\right) \left(\frac{d^{n-2}}{d\lambda^{n-2}} \frac{d^t}{d\theta^t} \left(e^{\theta e^{\lambda}} \mathbf{E}(g(Y_1,Y_2,\ldots))\right) \Big|_{\lambda=0\atop \theta=0}\right)$$

and for $\mathcal{A} \neq (0, 0, \dots)$

$$P((X_1, ..., X_{n-1}) \in \mathbb{A}_{n,t}) = \left(\frac{1}{n^{t-2}}\right) \left(\frac{d^{n-2}}{d\lambda^{n-2}} \frac{d^t}{d\theta^t} \left(e^{\theta e^{\lambda}} P((Y_1, Y_2, \dots) \in \mathcal{A})\right)\Big|_{\lambda=0}\right)$$

If we take t = n, then the random vector (X_1, \ldots, X_{n-1}) models random labeled trees with n vertices where X_j equals the number of vertices with degree j.

Problem 1.

The number of labeled trees with n vertices such that the first vertex has degree k equals

$$\binom{n-2}{k-1}(n-1)^{n-k-1}$$

<u>Reference</u>

This result agrees with "On Cayley's Formula for Counting Trees", Clarke, L. E., *Journal of the London Mathematical Society*, Vol. 33, 1958, 471 - 474.

Problem 2.

The number of labeled trees with n vertices such that exactly k vertices have degree 1 equals

$$\frac{n!}{k!} S(n-2, n-k)$$

<u>Reference</u>

This problem appears in <u>Combinatorial Problems and Exercises</u>, 2nd Edition, Laszlo Lovasz, North-Holland, 1993, page 35, Problem 8.

Rényi, Alfréd, "Some Remarks on the Theory of Trees", *Magyar Tud. Akad. Math. Kutato Int. Kozl.*, 4, 1959, 73 - 85.

Problem 3.

(a) The number of labeled trees with n vertices such that exactly c_i vertices have degree i, i = 1, ..., n - 1, equals

$$rac{n!(n-2)!}{c_1!\cdots c_{n-1}!(0!)^{c_1}(1!)^{c_2}\cdots ((n-2)!)^{c_{n-1}}}$$

where
$$c_1 + \ldots + c_{n-1} = n$$
, $1c_1 + \ldots + (n-1)c_{n-1} = 2(n-1)$, and $c_i \in \{0, 1...\}$.

(b)

$$\sum_{\substack{c_1+\ldots+c_{n-1}=n\\0c_1+\ldots+(n-2)c_{n-1}=n-2\\c_i\in\{0,1\ldots\}}} \frac{(2n-2)!}{c_1!\cdots c_{n-1}!(0!)^{c_1}(1!)^{c_2}\cdots((n-2)!)^{c_{n-1}}} = \binom{2n-2}{n}n^{n-2}$$

(c)

$$\sum_{\substack{c_1+\ldots+c_{n-1}=t\\ 0c_1+\ldots+(n-2)c_{n-1}=n-2\\ c_i\in\{0,1,\ldots\}}} \frac{(n+t-2)!}{c_1!\cdots c_n!(0!)^{c_1}(1!)^{c_2}\cdots((n-1)!)^{c_n}} = \binom{n+t-2}{t}t^{n-2}$$

<u>Proof</u> (Theorem 1)

For all $(s_1, \ldots, s_n) \in \mathbb{S}^n$

$$P(Y_1 = s_1, \dots, Y_n = s_n) = \prod_{i=1}^n P(Y_i = s_i)$$

=
$$\prod_{i=1}^n \frac{e^{-\lambda p_i} (\lambda p_j)^{s_{j-1}}}{(s_j - 1)!}$$

=
$$\frac{e^{-\lambda} \lambda^{s_1 + \dots + s_n - n}}{(t - n)!} \frac{(t - n)!}{(s_1 - 1)! \cdots (s_n - 1)!} (p_1)^{s_1 - 1} \cdots (p_n)^{s_n - 1}$$

$$P(Y_1 + \dots + Y_n = t) = \sum_{\mathbb{S}_t^n} P(Y_1 = s_1, \dots, Y_n = s_n)$$

= $\sum_{\mathbb{S}_t^n} \frac{e^{-\lambda} \lambda^{s_1 + \dots + s_n - n}}{(t - n)!} \frac{(t - n)!}{(s_1 - 1)! \cdots (s_n - 1)!} (p_1)^{s_1 - 1} \cdots (p_n)^{s_n - 1}$
= $\frac{e^{-\lambda} \lambda^{t - n}}{(t - n)!} \sum_{\mathbb{S}_t^n} \frac{(t - n)!}{(s_1 - 1)! \cdots (s_n - 1)!} (p_1)^{s_1 - 1} \cdots (p_n)^{s_n - 1}$
= $\frac{e^{-\lambda} \lambda^{t - n}}{(t - n)!}$

Thus,

$$P((Y_1, \dots, Y_n)) \in \mathcal{A} | Y_1 + \dots + Y_n = t)$$

$$= \frac{P((Y_1, \dots, Y_n) \in \mathcal{A} \text{ and } Y_1 + \dots + Y_n = t)}{P(Y_1 + \dots + Y_n = t)}$$

$$= \frac{P((Y_1, \dots, Y_n) \in \mathcal{A}_t)}{P(Y_1 + \dots + Y_n = t)}$$

$$= \frac{\sum_{\mathcal{A}_t} \frac{e^{-\lambda_\lambda s_1 + \dots + s_n - n}}{(t-n)!} \frac{(t-n)!}{(s_1-1)! \cdots (s_n-1)!} (p_1)^{s_1 - 1} \cdots (p_n)^{s_n - 1}}{\frac{e^{-\lambda_\lambda t - n}}{(t-n)!}}$$

$$= \sum_{\mathcal{A}_t} \frac{(t-n)!}{(s_1-1)!\cdots(s_n-1)!} (p_1)^{s_1-1}\cdots(p_n)^{s_n-1}$$
$$= P((X_1,\dots,X_n) \in \mathcal{A}_t)$$

Therefore,

$$P((Y_1, \dots, Y_n) \in \mathcal{A})$$

$$= \sum_{t=n}^{\infty} P((Y_1, \dots, Y_n) \in \mathcal{A} \mid \sum Y_i = t) P(\sum Y_i = t)$$

$$= \sum_{t=n}^{\infty} P((X_1, \dots, X_n) \in \mathcal{A}_t) \frac{e^{-\lambda} \lambda^{t-n}}{(t-n)!}$$

and

$$e^{\lambda}\lambda^{n}P((Y_{1},\ldots,Y_{n})\in\mathcal{A}) = \sum_{t=n}^{\infty}P((X_{1},\ldots,X_{n})\in\mathcal{A}_{t})\frac{1}{(t-n)!}\lambda^{t}$$

It follows that

$$\frac{\mathrm{d}^{r}}{\mathrm{d}\lambda^{r}} (e^{\lambda} \lambda^{n} P((Y_{1}, \dots, Y_{n}) \in \mathcal{A}))|_{\lambda=0}$$

$$= \frac{\mathrm{d}^{r}}{\mathrm{d}\lambda^{r}} \left(\sum_{t=n}^{\infty} P((X_{1}, \dots, X_{n}) \in \mathcal{A}_{t}) \frac{1}{(t-n)!} \lambda^{t} \right) \Big|_{\lambda=0}$$

$$= \sum_{t=n}^{\infty} P((X_{1}, \dots, X_{n}) \in \mathcal{A}_{t}) \frac{1}{(t-n)!} \left(\frac{\mathrm{d}^{r}}{\mathrm{d}\lambda^{r}} \lambda^{t} \Big|_{\lambda=0} \right)$$

$$= \sum_{t=n}^{\infty} P((X_{1}, \dots, X_{n}) \in \mathcal{A}_{t}) \frac{t!}{(t-n)!(t-r)!} \mathbf{I}_{\{r\}}(t)$$

$$= P((X_{1}, \dots, X_{n}) \in \mathcal{A}_{r}) \frac{r!}{(r-n)!}$$

Thus for $r \geq n$,

$$P((X_1,\ldots,X_n)\in\mathcal{A}_r)=\frac{(r-n)!}{r!}\frac{\mathrm{d}^r}{\mathrm{d}\lambda^r}\left(e^{\lambda}\lambda^n P((Y_1,Y_2,\ldots,Y_n)\in\mathcal{A})\right)\Big|_{\lambda=0}$$

Proof (Theorem 2)

Let y_j be a nonnegative integer for $j = 1, 2, \cdots$. Then

$$P(Y_{1} = y_{1}, Y_{2} = y_{2}, ...) = \frac{e^{\left(-\sum_{j=1}^{\infty} \frac{\theta \lambda^{j-1}}{(j-1)!}\right)} \lambda^{\left(\sum_{j=1}^{\infty} (j-1)y_{j}\right)} \theta^{\left(\sum_{j=1}^{\infty} y_{j}\right)} \prod_{j=1}^{\infty} \left(\frac{1}{(j-1)!}\right)^{y_{j}}}{\prod_{j=1}^{\infty} (y_{j})!}$$
$$= \frac{e^{\left(-\theta e^{\lambda}\right)} \lambda^{\left(\sum_{j=1}^{\infty} (j-1)y_{j}\right)} \theta^{\left(\sum_{j=1}^{\infty} y_{j}\right)}}{\prod_{j=1}^{\infty} (y_{j})! ((j-1)!)^{y_{j}}}$$

and

$$\begin{split} P\left(\sum_{j=1}^{\infty} (j-1)Y_{j} = n-2, \sum_{j=1}^{\infty} Y_{j} = t\right) &= \sum_{\substack{(y_{1},y_{2},...,3)\\ j \neq 1}} \sum_{\substack{(y_{1},y_{2},...,3)\\ j \neq 1}} P(Y_{1} = y_{1}, Y_{2} = y_{2}, ...) \\ &= \frac{e^{\left(-\theta e^{\lambda}\right)} \lambda^{n-2} \theta t}{(n-2)! \ t!} \left(\sum_{\substack{(y_{1},y_{2},...,3)\\ \sum j \neq 1}} \left(\sum_{\substack{(y_{1},y_{2},...,3)\\ j \neq 1}} \left(\sum_{\substack{(y_{1},y_{2},...,3$$

It follows that for $\mathcal{A} \neq (0, 0, \dots)$

$$P((Y_1, Y_2, \dots) \in \mathcal{A})$$

= $\sum_{n=2}^{\infty} \sum_{t=0}^{\infty} P\left((Y_1, Y_2, \dots) \in \mathcal{A} \mid \sum_{j=1}^{\infty} (j-1)Y_j = n-2, \sum_{j=1}^{\infty} Y_j = t\right) P\left(\sum_{j=1}^{\infty} (j-1)Y_j = n-2, \sum_{j=1}^{\infty} Y_j = t\right)$

$$=\sum_{n=2}^{\infty}\sum_{t=0}^{\infty}\sum_{\mathcal{A}_{n,t}}\left(\frac{\frac{e^{\left(-\theta e^{\lambda}\right)_{\lambda^{n-2}\theta^{t}}}}{\prod\limits_{j=1}^{\infty}\left(y_{j}\right)!\left((j-1)!\right)^{y_{j}}}}{\frac{e^{\left(-\theta e^{\lambda}\right)_{\lambda^{n-2}\theta^{t}}}}{(n-2)!\,t!}t^{n-2}}\right)\left(\frac{e^{\left(-\theta e^{\lambda}\right)_{\lambda^{n-2}\theta^{t}}}}{(n-2)!\,t!}t^{n-2}\right)$$

$$= \sum_{n=3}^{\infty} \sum_{t=1}^{\infty} \sum_{\mathbb{A}_{n,t}}^{\infty} \left(\frac{\frac{t!(n-2)!}{y_1!\cdots y_{n-1}!(0)^{y_1}\cdots ((n-2)!)^{y_{n-1}}}}{t^{n-2}} \right) \left(\frac{e^{\left(-\theta e^{\lambda}\right)}\lambda^{n-2}\theta^t}{(n-2)!\,t!} t^{n-2} \right)$$
$$= \sum_{n=3}^{\infty} \sum_{t=1}^{\infty} P((X_1, \dots, X_{n-1}) \in \mathbb{A}_{n,t}) \left(\frac{e^{\left(-\theta e^{\lambda}\right)}\lambda^{n-2}\theta^t}{(n-2)!\,t!} t^{n-2} \right)$$

Therefore

$$e^{\theta e^{\lambda}} P((Y_1, Y_2, \dots) \in \mathcal{A}) = \sum_{n=3}^{\infty} \sum_{t=1}^{\infty} P((X_1, \dots, X_{n-1}) \in \mathbb{A}_{n,t}) \left(\frac{t^{n-2}}{(n-2)! t!}\right) \lambda^{n-2} \theta^t$$

and

$$\frac{d^{r-2}}{d\lambda^{r-2}} \frac{d^s}{d\theta^s} \left(e^{\theta e^{\lambda}} P((Y_1, Y_2, \dots) \in \mathcal{A}) \right) \Big|_{\substack{\lambda=0\\ \theta=0}}$$

= $\sum_{n=3}^{\infty} \sum_{t=1}^{\infty} P((X_1, \dots, X_{n-1}) \in \mathbb{A}_{n,t}) \left(\frac{t^{n-2}}{(n-2)! t!} \right) r! s! \mathbf{I}_{\{r\}}(n) \mathbf{I}_{\{s\}}(t)$

Therefore, for $\mathcal{A} \neq (0, 0, \dots)$

$$P((X_1, \dots, X_{n-1}) \in \mathbb{A}_{n,t}) = \left(\frac{1}{n^{t-2}}\right) \left(\frac{d^{n-2}}{d\lambda^{n-2}} \frac{d^t}{d\theta^t} \left(e^{\theta e^{\lambda}} P((Y_1, Y_2, \dots) \in \mathcal{A})\right)\Big|_{\lambda=0\atop \theta=0}\right)$$

and finally,

$$P((X_1,...,X_{n-1})\in\mathbb{A}_{n,n}) = \left(\frac{1}{n^{n-2}}\right) \left(\frac{d^{n-2}}{d\lambda^{n-2}} \frac{d^n}{d\theta^n} \left(e^{\theta e^{\lambda}} P((Y_1,Y_2,\ldots)\in\mathcal{A})\right)\Big|_{\lambda=0\atop \theta=0}\right)$$

Solutions

Problem 1

$$P((X_1,...,X_n) \in \mathcal{A}_{2n-2}) = \frac{(n-2)!}{(2n-2)!} \frac{d^{2n-2}}{d\lambda^{2n-2}} \left(e^{\lambda} \lambda^n P((Y_1,...,Y_n) \in \mathcal{A}) \right) \Big|_{\lambda=0}$$

$$\begin{aligned} P((Y_1,...,Y_n) &\in \mathcal{A} \) \\ &= P(Y_1 = k \text{ and } Y_j \in \{1,2,...\}, \ j = 2,3,... \) \\ &= \frac{e^{-\frac{\lambda}{n}} (\frac{\lambda}{n})^{k-1}}{(k-1)!} \times 1 \end{aligned}$$

$$P((X_{1},...,X_{n}) \in \mathcal{A}_{2n-2})$$

$$= \frac{(n-2)!}{(2n-2)!} \frac{d^{2n-2}}{d\lambda^{2n-2}} (e^{\lambda} \lambda^{n} P((Y_{1},...,Y_{n}) \in \mathcal{A}))|_{\lambda=0}$$

$$= \frac{(n-2)!}{(2n-2)!} \frac{d^{2n-2}}{d\lambda^{2n-2}} \left(e^{\lambda} \lambda^{n} \frac{e^{-\frac{\lambda}{n}} (\frac{\lambda}{n})^{k-1}}{(k-1)!} \right) \Big|_{\lambda=0}$$

$$= \frac{(n-2)!}{(2n-2)!} \left(\frac{1}{n^{k-1}(k-1)!} \right) \frac{d^{2n-2}}{d\lambda^{2n-2}} \left(e^{\lambda (\frac{n-1}{n})} \lambda^{n+k-1} \right) \Big|_{\lambda=0}$$

$$= \frac{(n-2)!}{(2n-2)!} \left(\frac{1}{n^{k-1}(k-1)!} \right) \left(\frac{n-1}{n} \right)^{((2n-2)-(n+k-1))} \frac{(2n-2)!}{((2n-2)-(n+k-1))!}$$

provided $2n-2 \ge n+k-1$

$$= \frac{(n-2)!}{(2n-2)!} (n-1)^{n-k-1} \left(\frac{1}{n}\right)^{(n-2)} \frac{(2n-2)!}{(n-k-1)!(k-1)!}$$

 $=rac{\binom{n-2}{k-1}(n-1)^{n-k-1}}{n^{n-2}}$

Therefore, the number of labeled trees on n vertices such that v_1 has degree k equals

$$\binom{n-2}{k-1}(n-1)^{n-k-1}$$

Problem 2

$$P((Y_1,...,Y_n) \in \mathcal{A})$$

$$= P(\text{exactly } k \text{ of } (Y_1,...,Y_n) \text{ equal } 1)$$

$$= \binom{n}{k} (P(Y_1 = 1))^k (1 - P(Y_1 = 1))^{n-k}$$

$$= \binom{n}{k} \left(\frac{e^{-\frac{\lambda}{n}} (\frac{\lambda}{n})^{1-1}}{(1-1)!} \right)^k \left(1 - \frac{e^{-\frac{\lambda}{n}} (\frac{\lambda}{n})^{1-1}}{(1-1)!} \right)^{n-k}$$

$$= \binom{n}{k} \left(e^{-\frac{\lambda}{n}} \right)^k \left(1 - e^{-\frac{\lambda}{n}} \right)^{n-k}$$

$$= \binom{n}{k} \sum_{j=0}^{n-k} (-1)^j \binom{n-k}{j} \left(e^{-\frac{\lambda}{n}} \right)^{k+j}$$

Therefore,

$$P((X_{1},...,X_{n}) \in \mathcal{A}_{2n-2})$$

$$= \frac{(n-2)!}{(2n-2)!} \frac{d^{2n-2}}{d\lambda^{2n-2}} (e^{\lambda} \lambda^{n} P((Y_{1},...,Y_{n}) \in \mathcal{A}))|_{\lambda=0}$$

$$= \frac{(n-2)!}{(2n-2)!} {n \choose k} \sum_{j=0}^{n-k} (-1)^{j} {n-k \choose j} \left(\frac{d^{2n-2}}{d\lambda^{2n-2}} \left(e^{\lambda \left(\frac{n-k-j}{n} \right)} \lambda^{n} \right) \Big|_{\lambda=0} \right)$$

$$= \frac{{n \choose k}}{n^{n-2}} \sum_{j=0}^{n-k} (-1)^{j} {n-k \choose j} (n-k-j)^{(n-2)}$$

$$= \frac{n!}{k!n^{n-2}} \left(\frac{1}{(n-k)!} \sum_{j=0}^{n-k} (-1)^{j} {n-k \choose j} (n-k-j)^{(n-2)} \right)$$

$$= \frac{n!}{k!n^{n-2}} S(n-2,n-k)$$

Hence, the number of labeled trees with n vertices such that exactly k vertices have degree $1 \ {\rm equals}$

$$\frac{n!}{k!} S(n-2, n-k)$$

Problem 3(a)

We begin by noting that

$$c_1 + \ldots + c_{n-1} =$$
total number of vertices $= n$

and

 $0c_1 + 1c_2 + \dots + (n-2)c_{n-1}$ = $(1c_1 + 2c_2 + \dots + (n-1)c_{n-1}) - (c_1 + \dots + c_{n-1})$ = sum of all degrees - total number of vertices = 2(number of edges) - total number of vertices= 2(n-1) - n= n-2

Also,

$$P((Y_{1},...,Y_{n}) \in \mathcal{A})$$

$$= P\left(\bigcap_{i=1}^{n-1} (c_{i} \text{ of } (Y_{1},...,Y_{n}) \text{ equal } i)\right)$$

$$= \frac{n!}{c_{1}!\cdots c_{n-1}!} (P(Y_{1} = 1))^{c_{1}}\cdots (P(Y_{1} = n - 1))^{c_{n-1}}$$

$$= \frac{n!}{c_{1}!\cdots c_{n-1}!} \left(\frac{e^{-\frac{\lambda}{n}}(\frac{\lambda}{n})^{1-1}}{(1-1)!}\right)^{c_{1}}\cdots \left(\frac{e^{-\frac{\lambda}{n}}(\frac{\lambda}{n})^{(n-1)-1}}{((n-1)-1)!}\right)^{c_{n-1}}$$

$$= \frac{n!}{c_{1}!\cdots c_{n-1}!(0!)^{c_{1}}(1!)^{c_{2}}\cdots ((n-2)!)^{c_{n-1}}n^{0c_{1}+1c_{2}+\ldots+(n-2)c_{n-1}}} \left(\lambda^{0c_{1}+1c_{2}+\ldots+(n-2)c_{n-1}}e^{-\frac{\lambda}{n}(c_{1}+\ldots+c_{n-1})}\right)$$

$$=rac{n!}{c_1!\cdots c_{n-1}!(0!)^{c_1}(1!)^{c_2}\cdots ((n-2)!)^{c_{n-1}}n^{n-2}}(\lambda^{n-2}e^{-\lambda})$$

Therefore,

$$\begin{aligned} P((X_1, \dots, X_n) \in \mathcal{A}_{2n-2}) \\ &= \frac{(n-2)!}{(2n-2)!} \frac{d^{2n-2}}{d\lambda^{2n-2}} (e^{\lambda} \lambda^n P((Y_1, \dots, Y_n) \in \mathcal{A}))|_{\lambda=0} \\ &= \frac{(n-2)!}{(2n-2)!} \frac{n!}{c_1! \cdots c_{n-1}! (0!)^{c_1} (1!)^{c_2} \cdots ((n-2)!)^{c_{n-1}} n^{n-2}} \frac{d^{2n-2}}{d\lambda^{2n-2}} (e^{\lambda} \lambda^n \lambda^{n-2} e^{-\lambda})|_{\lambda=0} \\ &= \frac{(n-2)!}{(2n-2)!} \frac{n!}{c_1! \cdots c_{n-1}! (0!)^{c_1} (1!)^{c_2} \cdots ((n-2)!)^{c_{n-1}} n^{n-2}} \frac{d^{2n-2}}{d\lambda^{2n-2}} (\lambda^{2n-2})|_{\lambda=0} \\ &= \frac{n! (n-2)!}{c_1! \cdots c_{n-1}! (0!)^{c_1} (1!)^{c_2} \cdots ((n-2)!)^{c_{n-1}} n^{n-2}} \end{aligned}$$

and the result follows by multiplying through by n^{n-2} , the total number of labeled trees on n vertices.

Problem 3(b)

This follows immediately from 3(a) by considering the identity

$$\sum_{\substack{c_1+\ldots+c_{n-1}=n\\1c_1+\ldots+(n-1)c_{n-1}=2(n-1)\\c_i\in\{0,1\ldots\}}} P((X_1,\ldots,X_n)\in\mathcal{A}_{2n-2}) = 1$$