Random Partition of a Set  2/28/01

A partition of the set V is a collection of disjoint nonempty sets whose union equals V.

e.g. The 5 partitions of the set V = {1,2,3} are

{1,2,3} [{12},{3} [{13},{2}]
{2,3} {1} | {1},{2},{3}

We refer to each nonempty subset making up a partition of the set V as a block. For any
partition of the set 1 we refer to the number of blocks that have cardinality j as the
multiplicity of j in that partition.

It is well known that 3, the n!” Bell Number, counts the total number of partitions of a
set of n elements and that S(n, k), the Stirling Number of the Second Kind, counts the
total number of partition of a set of n elements into exactly £ blocks. The article A
Review of the Stirling Numbers, Their Generalizations and Statistical Applications,
Charalambides, Ch. A.; Singh, Jagbir; Communications in Statistics, Theory and Methods,
Vol. 17, No. 8, 1988, pages 2533--2595, is an excellent resource on both Bell and Stirling
Numbers.

Let V,, be any set of n (distinct) elements. If a partition of the set V), is selected uniformly
at random from the set of all 3,, partitions of V,,, we will refer to this as a random
partition of V,,. If a partition of V), is selected uniformly at random from the set of all
S(n, k) partitions of V,, with & blocks, we will refer to this as a random partition of V),
with & blocks.

We will need the following definitions.

S* :  the infinite product space {0,1,...} x {0,1,...} x ---

Spe i the set of all vectors (S1,S9,...) In S such that 1s; +2s9+ ... =n
o oo 1si +2s94+ ... =n
See, o the set of all vectors (s,S,...) in S* such that
7 S1+8 4+ ... =1

Forany A C S* define A, = AN §;*and A,;, = AN S

n,t



We note that the condition that 1s; + 2s, + ... = n implies that s; = 0 for all j > n.
Hence all vectors in A,, and A, ; are of the form (a,.,...,a,,0,0,...).

Forall A # (0,0,...), let A, be the collection of n-dimensional vectors formed by taking
each infinite-dimensional vector in A,, and truncating after a,,. So for example,

(a1,...,0,,0,0,...)=(ay,...,ay)

Define A,, ; similarly. For notational consistency it is necessary to separate out the case
A=(0,0,...).

Let X; equal the multiplicity of j in a random partition of a set of n elements into ¢ blocks.

We can construct the set of all partitions of a set of n elements into ¢ blocks such that
Xy =x1,...,X, = z, in the following manner.

Take any one of the n! permutations of the n elements and use the first z; elements of
that permutation to fill the first z; blocks, use the next 2z, elements of that permutation
to fill the next x5 blocks, and so on. In total we would use the

1z + 229 + ... + nx,, = n elements to fill the x; + zo + ... + x,, = ¢ blocks.

This yields n! set partitions but not all of these set partitions are distinct. In particular this
count would assume that rearranging the x; blocks of cardinality j amongst themselves
leads to distinct set partitions - which they do not. Furthermore this count would assume
that rearranging elements within a block leads to distinct set partitions - which they do
not. Therefore it is necessary to divide the count of n! by the number of ways to arrange
the z; blocks of cardinality j amongst themselves (j = 1,...,n) and by the number of
ways to arrange the elements in each block.

It follows that there are

n! 1\ 1\™
r!-x,! (i) T\l

partitions of a set of n elements into ¢ blocks such that X; = =4, ..., X,, = z,, provided
ley +... +nz,=n, 21+ ... +z, =t,andz; € {0,...,n} Vj

and
|{ Tlln—IT“'(%)Tl(%)Tn lzy+.. . +ne,=n
S(n,t) rT1++rnn:f
P((X17 .,Xn) — («:El, ...,,f[,'n)) = { ]6{01 v
I\ 0 otherwise



If we let 1W; equal the multiplicity of j in a random partition of a set of n elements then it
follows similarly that

G w;€{0,1,...,n}Vj
P((Wyy oy W) = (w1, ey wy)) = 1 : :
I\ 0 otherwise

Theorem 1.

N——

1 dr dt )
E(g" (X1,..., Xy)) = (ﬂs(n’t)> (Cwﬁ(e@(e “VE(g(W1, Y2, ...))

where g(ay, as, ...) is any function and ¢* (a4, ..., a,) = g(ay,...,a,,0,0,...) and for
A #(0,0,...)

1 & d
P((Xla ...,Xn) S An,t) = <W> <d)\n, ﬁ(ee(e _1)P((}/1’}/2’ ) < A)> ’A—U)

where Y1, Y5, ... is an infinite sequence of independent Poisson random variables such
that

P(Yj:y):T y=0,1,2,...,.and j=1,2,... N
Theorem 2.
. 1 d"™ [ (o
E(g" (Wi, ..., W) = (ﬁ—> ((W (e VE(9(13, Y5, --)) )
n A=0

where g(ay, as, ...) is any function and ¢* (a4, ..., a,) = g(ay,...,a,,0,0,...) and for
A #(0,0,...)

P((Wh, ..., W,) € A,) = (é) (dd; (I P((Vi, Vs, .) € 4))

»



where Y1, Y5, ... is an infinite sequence of independent Poisson random variables such
that

PY;=y) = ——"2 y=0,1,2,...andj=1,2,... N

Now suppose we randomly distribute n distinct objects into ¢ distinct urns such that
objects are distributed independently and are equally likely to go into any of the ¢ urns. If
one or more urns are still empty after this distribution we empty all of the urns and start
the distribution process over. The distribution process stops as soon as we obtain a
distribution of the n objects where each of the ¢ urns has at least one object.

Let U;, (j = 1,...,t) equal the number of objects in the ;' urn after the distribution
process has stopped. Then,

_n ur+...fur=n

{( ul-w1S(nt)  wie{1,2,...} V)

0 else

Let V}, (5 =1,...,n) equal the number of (labeled) urns containing j objects after the
distribution process has stopped. Then,

_nl_(1\U1,, (1)
' -up)! (1') (n') lvi+...4+nv,=n
v]+...+op=t
{ S(Tl,t) I,‘J’El{(],l.,”,nn}vj

( otherwise

We note that the above probability distribution is based on a model where the ¢ urns are
distinguishable (labeled) but clearly the latter probability would be the same if the ¢ urns
were not labeled. However distributing » distinguishable objects into ¢ like (unlabeled)
urns is equivalent to partitioning a set of n objects into ¢ blocks. That is

P((‘/la ey ‘/n) S An,t) - P((Xla ---7Xn) S An,t)

where as before the X, (j = 1,...,t) equal the number of blocks with j elements in a
random partition of a set of n elements into ¢ blocks.



The distinction between the two probabilities is that in the case of labeled urns there are
tS(n,t) possible distributions and in the case of unlabeled urns there are only S(n, t)
possible distributions.

We will need the following definitions.

U':  the t-dimensional product space {1,2,...} x --- x {1,2,... }

U! . the set of all vectors (uy,...,u;) in U’ suchthat w; + ... +u; =n
Define 442 C U as that set such that (Vi, ..., V,) € A, & (Uy, ..., U;) € Us.

Theorem 3.

P((X1, .oy Xp) € Ayy) = md‘i ((eA —1)'P((V1,...Y)) € uA))

A=0

where Y1, ..., Y; are iid zero-truncated Poisson random variables with parameter A. That
is,




Applications

Problem 1.

(@)

(b)

(©)

Show that the number of partitions of a set of »n elements into ¢ blocks containing
exactly & blocks of cardinality v equals

min(.[21])

ik n' . .
—1) 4 S(n —wvj,t—
2, <l<:! (j_k)!(u!)ﬂ(n—vj)!> (n=vjt =)

J=k

Show that the number of partitions of a set of n elements containing exactly &
blocks of cardinality v equals

provided vk < n.

Show that the number of partitions of a set of n elements containing at least &
blocks of cardinality v equals

provided vk < n.

We note that the special case of (c) where & = 1 is in agreement with Haigh, J., Random
Equivalence Relations, Journal of Combinatorial Theory, Series A, Vol. 13, 1972, pages
287-295.

Problem 2.

(@)

Show that the k" factorial moment of the number of blocks containing v elements
in a random partition of a set of n elements into ¢ blocks equals

6



n! S(n — vk, t — k)
(n—vk)l(w)*  S(n,t)

provided v < {#J and ¢t > k

We note that the special case where k£ = 1 is in agreement with Proposition 2.4 in
Recski, A., On Random Permutations, Discrete Mathematics, 16, 1976, 173-177.

(b)  Asacheck on the result in (a) verify that >~ (") %j:;” =t
v=1 "

(c) Show that the k" factorial moment of the number of blocks containing v elements
in a random partition of a set of n elements equals

TL' ﬁn—vk

(n — vk)!(W)" B

provided v < {%J

We note that the special case where k£ = 1 is in agreement with Proposition 1.1 in
Recski, A., On Random Permutations, Discrete Mathematics, 16, 1976, 173-177.

Problem 3.

(@) Show that the expected number of multiplicities in a random partition of a set of n
elements into ¢ blocks that equal & is

n - min(t,[ = ])

ik n! S(n —wvj,t —j)
Z Z (=1) <l<:!(j—k)' > S(n,t)

=1 =k (WD) (n — vj)!

(b) Show that the expected number of multiplicities in a random partition of a set of n
elements that equal % is

n min(t,[ = ])

” oy n! S(n —vj,t — j)

s L () (n — vj)!

Problem 4.



Show that the expected number of blocks in a random partition of a set with n elements
equals

ﬁn—&—l - ﬂn

ﬁ n

in agreement with L. H. Harper, Stirling Behavior is Asymptotically Normal, Annals of
Mathematical Statistics, Vol 38, 1967, pages 410-414.

Problem 5.

(a) Suppose that a partition is picked uniformly at random from the set of S(n, t)
partitions of a set of n elements into exactly ¢ blocks and from that partition a
block is then picked uniformly at random. Show that the expected size of this
block is

n
¢

(b) Suppose that a partition is picked uniformly at random from the set of 3,
partitions of a set of n elements and from that partition a block is then picked
uniformly at random. Show that the expected size of this block is

E n S(n’ t)
ﬁn t=1 t

(c) Suppose that a block is picked uniformly at random from the set of all ZtS(n, t)

t=1
blocks in the 3, partitions of a set of n elements. Show that the expected size of
this block is
nﬁn
ﬁn—&—l - ﬂn

(d) Suppose that a partition is picked uniformly at random from the set of S(n,t)
partitions of a set of n elements into exactly ¢ blocks and from that partition an
element is selected uniformly at random. Show that the expected size of the block
containing the selected element is



(e)

(n—1)S(n—1,t)
S(n,t)

+1

Suppose that a partition is picked uniformly at random from the set of 3,
partitions of a set of n elements and from that partition an element is selected
uniformly at random. Show that the expected size of the block containing the
selected element is

(TL - 1)ﬁn—1

+1
ﬁn

Problem 6.

Show that the number of partitions of a set of »n elements into ¢ blocks where
exactly r of the ¢ blocks have an even number of elements is

H(GEL Ze () e

The special case » = ¢ (all blocks have an even number of elements) simplifies to

LS

J=0

and the special case » = 0 (all blocks have an odd number of elements) to

L) ()

k=0

in agreement with (2.24 and 2.25) of Set Partitions, L. Carlitz, Fibonacci
Quarterly, Nov. 1976, pages 327 — 342, apart from an obvious typo in equation
2.24.

Problem 7.

Suppose that a partition is picked uniformly at random from the set of 3,
partitions of a set of n elements and from that partition a block size is picked

9



uniformly at random from the set of all block sizes in that partition. Show that the
expected size of the selected block size is

10



Proof (Theorem 1)

Consider an infinite sequence Y7, Y5, ... of independent Poisson random variables where

P(Y;=y) = ———"— y=0,1,2,..andj=12,..
y:
Let y; be a nonnegative integer for j = 1,2,---. Then
iﬁ) (fﬁﬂﬁ) 0 Yj
L)) )
P(lezyb}/?:y%'“): 00 -
I1(y;)!
j=1
o +1)>\<]leyj>ﬁ (%)yj
I1(y;)!
j=1
and
P(Zm ~ n) =Y D) PMVi=y, Yo =)
j=1 (yolc,yz,»-«)a
ajyj:n

ey {Z ,I(}l(f) \I\I
B n! I Gy m- IO_O[ )1 I
LT L))
e,
n:

It follows that for A # (0,0,...)

11
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Therefore
PNV ) €4) = S P(Wh W) € ) ()1
n=1 '
and
dr (e(eA_l)P((Y'l YVQ )GA))
% Yo, ... -

ZE)XM@HWWQEAM(%OMWKW

n=1

Therefore, for A # (0,0,...)

PM%,”WDGAQZ(%ﬁ(i;@wﬁﬁﬂﬂﬁinjeAD
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Proof (Theorem 2)

Consider an infinite sequence Y7, Y5, ... of independent Poisson random variables where

) ( .w)

|
P(Y;=y) = - y=0,1,2,...and j =1,2,...
y:
Let y; be a nonnegative integer for j = 1,2,---. Then
(£9),8), )5
e j=1 j=1 )\ j=1 1_[1(?)
P(lezybYVQ:yQV"): 00 -
(yj)'
j=1
ee(—aﬂ)e(?f” A(lej%) I (]l)"
I1(y;)!
j=1
and
P(Zij =n and ZY] = t) = ZZP(E =y1,Y2 = Ya,...)
j=1 j=1 (y1,92,---)3
g?ljyj:n
(11(2)"
B e@(—eA—H) Ot \ ll }:[1(] I
n! (JL Y2 k IO_O[ ' }
Eur j=1
Ejr
0(—e*+1) ot A"
7% S(n,t)

n!

It follows that

13



n=0 t=0 j=1 j=1 j=1
9(7(: H)G,)\nfj (ﬂw \
0 Jf[l(yj)! i ef(=e*+1) gt \n
— Z Z 9(—M+1) . | nl S(n,t)
n=0 t=0 A, A S(n,t)}l
gy () G (e
a n=1 t=1 A, S(n’t) n! ’
x X e@(—eA—&-l) Qt)\n
=3 ) P((X1,...,X,) € Ayy) (Tsm,t)>
n=1 t=1 :

and
d” d* ¢ )
v (PO ) e )|
ke S(n,t
= Z ZP((Xl, ey Xp) € An,t) (n' )>7’!3”{7-} (n)l{s} (1)
n=1 t=1 !

Therefore, for A # (0,0,...)

1 dn dt N
P((Xy,....,X,) € Apy) = <m> <d)\nﬁ(ee(e _1)P((Y1’Y2’ o) € A)> A—()) =

14



Proof (Theorem 3)

P((X1,..., X)) € Any)
= P((‘/Yl, ..-,‘/n) 6 ATL,t)

= P((Uy,...,U)) € U)

But by the Zero-Truncated Poisson Randomization Theorem,

1 d7L
PO, U0) €UR) = fr50 =5

((* = 1) PV Y0 € Ub))

A=0

where Y1, ..., Y; are iid zero-truncated Poisson random variables with parameter A. That
is,

15



Solutions

Problem 1(a)

This problem can be handled by a direct application of the inclusion-exclusion principle
but we will apply Theorem 1 to illustrate its use.

Clearly the solution equals S(n,t)P(X, = k). Now define

A, = {(a1,a9,...,ay)|lay + ... +na, =n,a; + ... +a, =tand a, = k}
A, ={a1,a9,...,0,,0,0,... |1y + ... +na, =n,a1 + ... +a, =tand a, = k}

-A - {a11a21- coylpy Qpy 1y, 42y - - - | a, = k}
Then by Theorem 1,

P(X,=k)=P(Xy,....X,) € Ay)

_(_1 d" d" (o)
B <t!S(n,t)> <d)\” 9! (e P, Y2, ) € “4)> -

where
P((1,Y,...) € A) = [ [[P(vie{0L...}) | P(V, = k)
1%V
Lyt
= P(Y,=k) = e
Therefore,

1 ar dt | (e P(i?jv)(ﬂ)k
n t er—1) vl
P(X,=k)= (t!S(n,t)) axtag | © =) k!

1 YO aa [ 0(A1-2) oy ok
- (t!S(n,t)) 3] (d,\nw(@( )Qk)\ >




Z (_1)j(5_!)j (t;'k)' S(i,t;k—j) )\i)\vj)\vk) )
A=0

> ,<—1>j(5—!)j%—S“’t;’f—ﬁWﬂM) )
A=0

o0 (1NG (k) S(it—k—j
Y () L '{z’+v(j+k)}(”))

1\ k t—k o0 . . . .
o J (t=k)! S(it—k— .
= (st5)nils (= 3 (-1(h) L sk g .{H_W}@))
7=0 i=t—k—j
*lvk sy j i (t—k)! S(n—v(j+k)t—k—j .
= (5(711,15)> k!((zltgk)! <%(_1)j(f_ﬂ)j s j!k) ( (ngm}i))! Dt by gy (= 0(G + k))>
j:

(1)k (min(t—k,{g"*(tll)k—tp . - . . \

l j t—k)! n—v(j+k),t—k—j

= ( ; )k!(i”—k)! k Z% (1) ()’ ( j!) ( (ng;Zj—&)-k))! d ”!}
‘7:

Therefore the number of partitions of the set of n elements into ¢ blocks which contain
exactly & blocks of cardinality v is

min (¢, | 3= ])

ik n' . .
-1 4 S(n —wvj,t—
2, <l<:! (j—k)!(v!)ﬂ(n—vj)!> )

=k

Problem 1(b)
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P(Wh,....W,) €A,) = ([fl) (dd/\n" (e(eA_l)P((Yl’YQ"”) < A)) ‘,\:0)

Clearly the solution equals 3, - P(W, = k). Now define

A, = {(ay,a9,...,a,)|1a; + ... + na, =nanda, = k}
A, ={ay,a9,...,a,,0,0,...|1a; + ... +na, =nanda, = k}

-A - {alaa%--- WApy Q415 Ap4-25 - - - | a, = k}

Then by Theorem 2,

PW,=k)=P((Wq,..,W,) €A,)

() (e e

»

Therefore,

S50 (a)*
v == (1) (0 )

)

o0 00 B
.Z Z(_l)ji!ﬂ({;!)f”! I{i+v(j+k)}(”))

- Shy j B i+ov(J
- (»””i) (u!)l’“k! (dd)\" (Z Z(_l)jw)\ + (a+k))

18



00 00 B .
- (ﬂi) (1;!)1’%! (Z Z(_l)ji!ﬂ(v!)m! I{”_”(j*k)}(z))

e j ﬁnfxfj : .

=,
- (ﬂln) % ( £ (_1)j (7L—1;(;'-n§—7/;)(§!r;!)(1;!)j+kn! |{0,1,,..}(7”L o Uk)

["3%] .
n! H
= (ﬂl) > (=15 O (n—o(j+k))! Bn-v(jrk) provided n — vk >0

Therefore the number of partitions of the set of n elements which contain exactly & blocks
of cardinality v is

)k n! |
j—k( D (k:! (G — ) (0!’ (n — vj>!>ﬁ

provided n — vk > 0 O

Problem 1(c)

By Theorem 3, the number of partitions of a set of n elements into ¢ blocks containing at
least £ blocks of cardinality v equals

i d7l
t! dA»

(=)' P((V.. Vi) € U))

A=0

where
Ut = {(uy,...,u;) € U" | at least k of the ¢ values (uy,...,u,) equal v}

and Y7, ...,Y,, are iid zero-truncated Poisson random variables with parameter A\. That is,

19



Summing this result over all ¢ yields the total number of partitions of a set of n elements
containing at least & blocks of cardinality v.

However as an application of the Zero-Truncated Poisson Randomization Theorem we
showed that the number of ways that n distinguishable balls can be distributed among ¢
distinguishable urns such that at least £ urns will contain v balls and no urn is left empty
equals

L ((e’\ 1) P((Vh,....Y;) € uA)) ‘A:o

— s Jj—k n! ¢! . .
- L (=1) (j(k—l)‘(j—k)‘(v!)j(n—vj)!)S(n )

Dividing this result by ¢! and summing this result over all possible values of ¢ gives

n—vk+k Min (t, L%D

Jj—k n! : :
(=1) (j <k—1)'<j—k>!<v!>f<n—vj>!)S (n=vj,t=Jj)

t=k j=k

|_,"J n—vk+j

— _1\Jk n! ’ i
_jgk t;] (=1) (j(k—1)!(j—k)!(u!)f(n—uj)!)S(” vj, t = j)

,_
<3
[

n—vk+j
Jj—k n! : :
(=1) (j(k—l)!(j—k)!(v!)j(n—vj)!) ( >, S(n—vjt— J))

t=j

o
Il
o

,_
<3

o _1\Ji—k n! , .
- ; ( 1) (j (k=D)!1(5—k)! (v (n—vj)! ) ﬁ”_”] o

Il
e

Problem 2(a)
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It is well known and easy to verify that the k' factorial moment of a Poisson random
variable with parameter 7 is just 7%. Therefore it follows from Theorem 1 that if we
define Y, ~ Poisson(%}-) then

E(X, (X, — 1)--(X, — k+1))

= (ash) (et (VBT = ) = 4 1)

— 1 d" d' ( 6(e*-1) (0A°\F
- (t!S(n,t)) (d)\"w(e( 1 (1;_') ) 23)

- (m) <(t£!’f)!) (dd/\n" ((6/\ B 1)t ' (;\" )k) ‘,\:0) Wy ()

A=0 >
0=0

}Sut—kMﬁM)

) Lk htr,.. 1 (F)

A=0

-k

- ((vw’“ém,t)) (

J

_Zt: %S(];t— k’) I{n Uk}( ))I{k k41, }(t)

n! S(n—vk,t—k
= - vk)' o (S(n,t) : Lt kpkrr,.. y (0 — k) Lk gpn, 3 (F)

n! S(n—vk,t—k)
(n—vk)!())* S(n,t)

provided v < | %= | and ¢t > k.

Problem 2(b)

As a check on our work we note that X; + ... + X,, = t and hence

21



n

t = E(X1 4 ... +Xn) - ZE(XU)

v=1
which can serve as a check on the above result for E(X, ). We note that

n n

¥ () M = sumy (WS- vt =)

v=1 V=

= S(Tll,t) (S(n+1,t) —S(n,t—1))

= sup(tS(n.t) =t.

In this proof we used two well known recurrence relations for the Stirling Numbers of the
Second Kind. Namely,

n

S(n—l—l,k—i—l):Z(n

r=k r

)S(r,k)
and

S(n+1,k) = S(n,k — 1) + kS(n, k)

Problem 2(c)

By Theorem 2, if we define Y, ~ Poisson(2;) then

EW, (W, —1)---(W, =k +1))

- (ﬁl) (dd;n (e(eA_l)E(Yv(Yv 1Yo —k+ 1))) ‘)\:O)
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- (ﬂl) (dd;n (e(eu) (?T')k) ‘)\:0)
_ (ﬂi) (J)k (dd;n (g%ﬁj)\“k—&-j)

00 3; .
(4)zi (& -0

_ n! enfx,'k 1
T (n—vk)!(o))* »»‘en prOVIded S LQJ

)

Problem 3(a)

We have defined the random variable X, as the multiplicity of v in a random partition of a
set of n elements into ¢ blocks. It follows that

Zl{k} (Xy)
v=1

is the number of multiplicities that equal & in a random partition of a set of n elements into
t blocks. The problem asks for the expected value of this sum. However

E (Zl{k} (Xv)) - ZP(XU = k)

and from Problem 1(a)

min (¢, | 3= ])

P(X,=k) = ; S (k! (G — k) (o) (n — vj)!

n! S(n —vj,t —j)
> S(n,t)

Hence the expected number of multiplicities equaling % in a random partition of a set of n
elements into ¢ blocks is

n o min(t[255])

o n! S(n —vj,t — j)
2, 2 (D (k!(j—k:)!(v!)j(n—vj)!> S(n,1) -

v=1 J=k

Problem 3(b)
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We have defined the random variable W, as the multiplicity of v in a random partition of a
set of n elements. It follows that

v=1

is the number of multiplicities that equal £ in a random partition of a set of n elements.
The problem asks for the expected value of this sum. However, if we let T" equal the
number of blocks in a random partition, then

Problem 4

Let 7" equal the number of blocks in a random partition of a set with n elements.

E(T) = SStP(T = 1)

n

= L3 (S(n+1,t) = S(n,t — 1))

Mn

t=1

= ﬁ%((%l (m+1,t) = S(n+1,n+ 1)> — (T%IS(n,t— 1) —S(n,n)>>

= t=1
= ﬁ%((ﬁn-ﬁ-l — 1) - (ﬂn - 1))

— But1—Bn D

ﬁn
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Problem 5(a)

The given two step procedure for selecting a block is equivalent to selecting a block
uniformly at random from the set of all ¢S5 (n, t) blocks making up the S(n,t) partitions of
a set of n elements into exactly ¢ blocks. As before, we let X; equal the multiplicity of j
in a random partition of a set of n elements into ¢ blocks. Then,

number of blocks of size v among the set of all ¢S (n,t) blocks

P(Lt = ’U) = tS(n,t)

S kP(X,=k)S(n.t)
- tS(n,t)

= B () Sncntl)

It follows that

E(L) = S wP(L; = v)

v=1
t—1)
—Zv(ﬁ) S

= nt Z”(z 11;) (n—v,t—l)

n—1
= tS(ln ) UZ:OTL(”U,l)S(v’,t —1)
= tS&,t)S(n’t) a O
Problem 5(b)

Let 7" represent the number of blocks in a randomly selected partition. Then

E(L) = E(E(L|T))
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Problem 6

From Theorem 3 the solution will equal

i d7l
t! dA»

(=)' P((V.. Vi) € U))

A=0
where
Ut = {(uy,...,u;) € U" | exactly r of the ¢ values (u, ..., u,) are even numbers}

and Y7, ...,Y,, are iid zero-truncated Poisson random variables with parameter A\. That is,

The zero-truncated Poisson distribution is a member of the Power Series Family with

= ;,, b(A\) = e* — 1,and 7 = 1. Hence from Theorem PSMM, taking m = 2, we

f|nd 6 =1and
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Problem 7

27



28



Notes:

For using Derive, define
S(a,b) = (1 — chi(0,a,00,0))(1 — chi(0,b,00,0)) + Stirling2(a,b)

because Derive mistakenly defines Stirling2(0,0) = 0.

dt axr k t' t—k
@(6 T ) L = (t _ k‘)'a I{k,k+1,}(t)
and
1 A k = 1 n
(=17 = ;ﬂsm,k;)x
and
A <1
A1) n
6( ) - Zoﬁﬁn)\
Also read

Arratia, R. and Tavare, S. (1992). “Independent process approximations for random
combinatorial structures.” Advances in Mathematics. ???
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p © k™ Descending Factorial Moment of X E(X(X —1)--+(X — k+ 1))

Suppose X ~ Poisson(\). Then

i = ij(j— 1)-(j — k+ 1)P(X = j)

o0

= g](] - 1)(] —k + 1)P(X _ ])
— i](] - 1)(] _ k? + 1)6*;!)\1'

85 ANk .
=N =X
i=k
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