Random Permutations

A permutation of the objects (1,...,n) defines a mapping. For example, the permutation
T = (3,1,2,4) of the objects (1 2,3,4) defines the mapping

1—3,2—1,3—2,4—4
This same mapping could also be represented in the form

(1—3,3—2,2—1) and (4 — 4)

or more succinctly as

(1,3,2), (4)

The separate parts are referred to as cycles of the permutation. As argued in Riordan, An
Introduction to Combinatorial Analysis, Chapter 4, The Cycles of Permutations, it is easy
to see that every permutation can be uniquely represented by its cycles provided we adopt
the convention that expressions such as (1, 3,2), (3,2, 1), and (2, 1, 3), which represent
the same cycle, are indistinguishable. We note that in the literature of cycles of
permutations it is standard notation to write a cycle with its smallest element in the first
position.

Clearly n! equals the total number of permutations of (1,...,n). Itis well known that
|s(n, )], the signless Stirling Number of the First Kind, counts the total number of
permutations of (1,...,n) with exactly ¢ cycles. The article A Review of the Stirling
Numbers, Their Generalizations and Statistical Applications, Charalambides, Ch. A.;
Singh, Jagbir; Communications in Statistics, Theory and Methods, Vol. 17, No. 8, 1988,
pages 2533--2595, is an excellent resource on Stirling Numbers.

If a permutation of (1,...,n) is selected uniformly at random from the set of all n!
permutations of (1,...,n), we will refer to this as a random permutation.

If a permutation of (1, ..., n) is selected uniformly at random from the set of all |s(n, )|
permutations of (1, ...,n) with ¢ cycles, we will refer to this as a random permutation
with ¢ cycles.

We will need the following definitions.



S : the infinite product space {0,1,... } x {0,1,...} x ---

S,¢ : the set of all vectors (S1,S2,...) in S™ such that 1s; +2s,+ ... =n
1sy + 2s: . =
Sy o the set of all vectors (S1,S9,... ) in S such that Lt st "
’ s1+s+ ... =1t
Forany A C §% define A, = AN §;Fand A, = AN ST,
We note that the condition that 1s; + 2s, + ... = n implies that s; = 0 for all j > n.

Hence all vectors in A4, and A, ; are of the form (ay,...,a,,0,0,...).

Forall A # (0,0, ...), let A, be the collection of n-dimensional vectors formed by
taking each infinite-dimensional vector in A,, and truncating after a,,. So for example,

(a1,...,0n,0,0,...)—=(a1,...,a,)

Define A, ; similarly. For notational consistency it is necessary to separate out the case

A=(0,0,...).

We will refer to a cycle with r elements as an r-cycle. A permutation of n elements with
ki 1-cycles, ..., k, n-cycles is said to be of cycle class (k1, - .-, kn).

Let X; equal the number of j - cycles in a random permutation of (1,...,n) with ¢
cycles.

We can construct the set of all permutations of a set of n elements into ¢ cycles such that
X) =xy,..., X, = x, in the following manner.

Take any one of the n! permutations of the n elements and use the first z; elements of
that permutation to fill the x; 1 - cycles, use the next 25 elements of that permutation to
fill the x5 2 -cycles, and so on. In total we would use the 1z 4+ 225 + ... +nx, =n
elements to fill the 1 + x2 + ... + =, cycles.

This assignment yields n! permutations but not all of these permutations are distinct. In
particular this count would assume that rearranging the x; j-cycles amongst themselves
leads to distinct permutations - which they do not. Furthermore this count would assume
that all rearrangements of the elements within a cycle leads to distinct permutations -
which they do not.

Therefore it is necessary to divide the count of n! by the number of ways to arrange the
Ly



j-cycles amongst themselves (j = 1,...,n) and by the number of ways to arrange the
elements in each cycle and not change the cycle.

It follows that there are

n! 1 € 1 T
!zt \ 1 n

permutations of a set of (1, ...,n) with cycle class (zy, ..., z,) provided
loy+... +nx, =nandz; € {0,...,n} V)

and

{ JAl!.ﬂj%Nﬂ(%)xl.“(%)l‘n 1z +...+nz,=n
[s(n,t)] w4 =t

P((X1, .0 X0) = (21, .0y 0)) = 0L nli

l 0 otherwise

If we define W, as the number of j-cycles in a random permutation of (1,...,n) then it
follows similarly that

[ (D)™ e,

0 otherwise

We note that it follows from the law of total probability that

1 1 wi 1 Wy,
= sl () -
lwy+.. +nwp=n wl L 'wn' ]- n

11,'7'6{0.1,.4.,1/}Vj

which is Cauchy's identity.

Theorem 1.



E(g*(Wy,...,W,)) = (%) dd:n ((%)E@(E,Yz, ---))>

where g(ay, as, ...) is any function and ¢* (a4, ...,a,) = g(ay,...,a,,0,0,...) and for

A £ (0,0,...)

A=0

P(Wy,..,W,) € A,) = ( ! ) dd:n ((ﬁ)P((YhYz,---) € A))

n!

A=0
where Y7, Y5, ... is an infinite sequence of independent Poisson random variables such
that

exp(%) (ﬁ)y
P(Y;=y) = ' ! y=0,1,2,...and j = 1,2, ...
. y!
Theorem 2.
ar dt 1\’ 1
E(¢"(X4,.... X)) = — E(g(Y1,Ys, ...
(X0, X)) = 05 ((1 /\> (t!|s(n,t)|> (9(¥2, Y2 )>> -
0=0
where g(ay, as, ...) is any function and ¢* (a4, ...,a,) = g(ay,...,a,,0,0,...) and for
A #£(0,0,...)

P((X1,.., Xn) € Ayy) = %dd—; ((1 i A)ﬂ(tws(;,tﬂ)zﬂ((iﬁ,i/g,...) € A)) .

where Y7, Y, ... is an infinite sequence of independent Poisson random variables such
that

expl ) (20’ |
PY;=y) = ] y=20,1,2,...and j = 1,2, ...

Now consider the set of all possible ways to distribute 7 distinguishable keys onto ¢
distinct key rings such that no key ring is left empty and where the position of keys on a
key ring matters, but only up to circular shifts. Suppose we pick a distribution from this
set uniformly at random.



LetUj, (j = 1,...,t) equal the number of keys on the j'* key ring. Then,

|
ﬂ ur+. . . Fup=n
s wefl,2,...} V)

0 else

Let V}, (j = 1,...,n) equal the number of (distinguishable) key rings containing j keys.
Then,

L/ vi+...Fop=t
[s(n,t)] ujel{o,i.“.?,z,} vj

ﬁ(%)ll(%)“t lvi+.. +nv,=n
P(( rl; 7‘/11) - (vlv -"7’U11,)) -

l 0 otherwise

We note that the above probability distribution is based on a model where the ¢ key rings
are distinguishable (e.g. different colors) but clearly the latter probability would be the
same if the ¢ key rings were the same color or not. However distributing n
distinguishable keys onto ¢ like key rings is equivalent to forming a permutation of
(1,...,n) with t cycles. Thatis, forall A, ; C S5,

P(( rl; 7‘/11) € An.f) — P((Xb -~-7X'n> € Aw,,t)

where as before the X, (j =1, ...,t) equal the number of cycles with j elements in a
random permutation of (1,...,n) with ¢ cycles.

We will need the following definitions.

U':  the t-dimensional product space {1,2,... } x --- x {1,2,...}

Ul : the set of all vectors (uy,...,u;) in U’ such that uy + ... +u; =n

Define 42 C U! as that set such that (V4,...,V,) € A,; & (U, ..., U;) € UD.

Theorem 3.



1 d"

P((X1,..., X,) € Apy) = —————((=In(1 — 0)) P((Y1.....Y;) € U™))

~ Hs(n,t)| don 0

where Y1, ..., Y; are iid logarithmic series random variables with parameter 0. That is,

Qv
( y(—In(1-0)) ye {1727}

0 else

Problem 1.

(a)

(b)

(©)

at

The probability that a random permutation of (1,2, ..., n) contains exactly k
cycles of length 5 equals

=3

]

a2 ()G5)

This result was derived by Goncharov, V.L. (1944), Some Factors from
Combinatorics, Izv. Akad. Nauk SSSR, Ser. Mat. 8, 3-48. Translated from
Russian in Goncharov, V.L. (1962), On the Field of Combinatory Analysis,
Translations from American Mathematical Society, 19, 1-46.

References

The probability that a random permutation of (1,2, ...,n) into ¢ cycles will
contain exactly k cycles of length j is

o 2 O () ()

i=k

The probability that a random permutation of (1,2, ...,n) into ¢ cycles contains

least k£ cycles of length j is



(d)

(e)

|S(7i )] ;(—1)” (; B 11) (:;J |S(n<;ij;;)!— i)l

and the probability that a random permutation of (1,2, ..., n) contains at least &
cycles of length j is

5] ,
20 (75)

The r*" descending factorial moment of the number of cycles of length jin a
random permutation of (1,2,...,n), is

1 ogrSFJ
jT'

and the r'* descending factorial moment of the number of cycles of length j in a

random permutation of (1,2, ..., n) with ¢ cycles is
n! |s(n — jryt —r)| .
— r+1<t<n-—r(j—1)
(n— Jr)li" |s(n, 1)
References

The first of these two results can be found in Riordan, J. An Introduction to
Combinatorial Analysis, page 84, Problem 12.

The probability that a random permutation of (1,2, ...,n) contains exactly k;

cycles of length j;,exactly k, cycles of length j,, ..., and exactly k, cycles of
length 7, is

Z Z(_l)(il-&-...—i-ip)—(kl-&-...+k,.)(il)H.(ir) 1 | |
oE kq k, il .Z'T!j%ll ... j;j

F Ry i <n

112k, >k




Problem 2.

The " descending factorial moment of the number of cycles in a random
permutation of (1,2,...,n) is

rl
Lol 1+ 1)

References

This result can be found in Riordan, J. An Introduction to Combinatorial

Analysis,
page 71, equation (12).

Problem 3.

The number of permutations of (1,2, ...,n) which have k cycles, none of which
is
an r cycle is

References

Riordan, J. An Introduction to Combinatorial Analysis, page 73, equation (18) is
the special case » = 1. In the case r = 1 these numbers are referred to as the
Associated Stirling Numbers of the First Kind.

Riordan gives a recurrence relation for general r in Problem 16(a), page 85.

Problem 4.

(a) The probability that exactly k£ cycle lengths are multiples of m in a random
permutation of (1,2, ..., n) with ¢ cycles is



(b)

(c)

(d)
of

n—t+j

- k Lf (_1>j—k(}j;) (m)mm [s(n— mi t — j)

j i=j

The probability that every cycle length in a random permutation of (1,2, ...,n)
with ¢ cycles is a multiple of m (taking £ = ¢ in above problem) simplifies to

|s(,ﬁ t)‘ n 1

m’

|s(n,t)] (%)' mt

References

L. Carlitz, Set Partitions, Fibonacci Quarterly, Nov. 1976, pages 327-342 gives
the formula in 4(b) for the case m = 2.

Riordan, An Introduction to Combinatorial Analysis, Problem 18, pages 86-87,
gives a table of the values of the above for m = 2and n < 8.

The number of permutations of (1, ..., n) where every cycle length belongs to the
set {s,s +m, s+ 2m, ...} for some integers s and m, 0 < s < m is

-

dn m—1 1 m
l
"o ]_HO (1 - ga’e)

0-0
where ¢ = e2™i/™,

The number of permutations of (1, ..., n) where every cycle length is a multiple

m (special case of 4(c) with s = 0) equals

| % %_1
n! n
m

References

This result can be found in Sachkov, Probabilistic Methods in Combinatorial
Analysis, Chapter 5, “Random Permutations”, page 151.




(e)

U

Notes:

Goulden and Jackson, Combinatorial Enumeration, Wiley-Interscience Series in
Discrete Mathematics, 1983, Problem 3.3.12(a), page 188 give the answer in the
form

Bolker and Gleason, Counting Permutations, Journal of Combinatorial
Theory, Series A, Vol. 29, 1980, pages 236-242 give the answer in the form

. . [ 1 mdivides j
[T~ 340, where 0,0 ={ 13

J=1

The number of permutations of (1, ..., n) where every cycle length belongs to the
set {2, 2 +m, % 4+ 2m, ... } for even m (special case of 4(c) with s = 2 and
even m) equals

provided 7 divides 7.
References
This result can be found in Sachkov, Probabilistic Methods in Combinatorial

Analysis, Chapter 5, “Random Permutations”, page 151. However there is a
misprint where the above sum starts at j = 1 instead of j = 0.

The number of permutations of (1, ..., n) where no cycle is a multiple of m is

5] Al
n! Z(-1>L(T;)
=0

References



This result can be found in Goulden and Jackson, Combinatorial Enumeration,
Wiley-Interscience Series in Discrete Mathematics, 1983, Problem
3.3.12(b), page 188.

() The probability that a random permutation of (1,2, ...,n) contains an even
number of cycles all of which have odd length equals
n 1\"
n/2)\ 2
References
This result can be found in Wilf, generatingfunctionology, 2nd edition, page 84.
Problem 5.
Let ¢© (¢?) equal the number of even (odd) permutations of (1,2, ...,n) and let
E,(,P% (55;’,2) equal the number of even (odd) permutations of (1,2, ...,n) with k
cycles.
(@)
e 1 n=1 4 = 0 n=1
Cp, = %y n_2 an C, = %1 ’I’I,ZQ
References

(b)

This result can be found in Riordan, John, An Introduction to Combinatorial
Analysis, Problem 20, page 87-88.

Note:

The “standard” proof wherein one demonstrates a bijection by switching the

position of elements 7 — 1 and n in any permutation and noting that the parity

changes is a much simplier proof but the present approach illustrates another
aspect of Theorem 1.



o) _ s(n, k)| + s(n,k) [ |s(n, k)] n—Fk iseven
L 2 — 10 n — kis odd
and
50) _ s(n, k)| — s(n, k) _JO n — k is even
mk 2 ~ ls(n, k)| n—kisodd
References

This result can be found in Sachkov, Probabilistic Methods in Combinatorial
Analysis, page 158.

Note:

Applying Theorem 2 is a useful demonstration but a simplier proof follows from
the observation that for fixed n and ¢ such that 1z, + ... + nx,, = n and
1+ ... +x, =twithz; € {0,1,...,n}Vj, then

To+ 24+ X6+ ... 1Seven < n — tis even.

It follows from this observation that

0 _ b (VLY
é—n’k B lwl+;wnn l’l!' : an! (]') n

@+ =t
Lotz +T+...=even
.L‘je{O,l“...n}Vj

([ ()" n—t=even

Loy +...Anep=n i
== T+ =t

,z'jE{O,l“...n}Vj

0 n —t = odd
~ [ Is(n,t)] n—t=-even

0 n —t = odd

Problem 6.

(a) How many permutations of (1,2, ..., n) are there for which the longest run of



1-cycles is less than or equal to k£ ?

(b) How many permutations of (1,2,...,n) with ¢-cycles are there for which the
longest run of 1-cycles is less than or equal to k& ?

(¢) How many permutations of (1,2, ...,n) are there which have exactly r runs of

length k of 1-cycles?

(d) How many permutations of (1,2, ...,n) with ¢-cycles are there which have

exactly
r runs of length k of 1-cycles?

Problem 7.

. 1 if X j =0
Define W; = { 0 else
1 ifX; >0
Define T; = { 0 else
(a) How many permutations of (1,2, ...,n) are there for which exactly r of the
values

in the cycle class (ki, ..., k,) equal v? ie. NWi+... + W, =1r)
(b) E(( . +Wn)m)
¢ PTi+...+T,=r)

(d) E((T1 o+ Tn)m)

Problem 8.

How many permutations of (1,2, ...,n) are there for which all cycle lengths are

between [ and v inclusive?

e, (Xi+... + X )+ Xy +... +X,) =0



Problem 9.

(a)

(b)

(©)

(d)

Suppose a permutation of (1,2, ..., n) is picked at random form the set of all n!
permutations of (1,2, ...,n) and from this permutation a cycle is picked at
random. Let W represent the length of this cycle.

Find P(W = w) and E(W(,)).

Suppose a permutation of (1,2, ..., n) is picked at random form the set of all

permutations of (1,2, ...,n) with ¢ cycles and from this permutation a cycle is
picked at random. Let W represent the length of this cycle.

Find P(W = w) and E(W,,))

Suppose a cycle is picked at random from the set of all cycles. (explain).
Let IV represent the length of this cycle.

Find P(W = w) and E(W;))

Suppose a permutation of (1,2, ..., n) is picked at random and an element is
picked at random from that permutation. Let W represent the length of this cycle
containing the randomly picked element.

Find P(W = w) and E(W))

Goulden & Jackson, page 190, Problem 3.3.19.
Show that the number of permutations of (1,2, ...,n) in which the cycle
containing n has length m, is (n — 1)!, foranym = 1,...,n.

Lovasz, page 29, problem 3. Shows that the probability that the cycle containing
“1” has length £ is % fork=1,2,...,n.

Hence expectation follows immediately.

Grusho, A.A. Properties of random permutations with constraints on the
maximum cycle length, Probabilistic Methods in Discrete Mathematics,
(Petrozavodsk, 1992), pages 60-63 considers this problem with the additional
constraint that no cycle can have length greater than c.




Also look at other problems similar to this covered in section on Random Set

Partitions
Problem 10.
P(X2+X4—|—X6—|— :’T’)
Problem 11.
Determine the number of permutations of (1,2, ..., n) for which the number of

r-cycles equals the number of s-cycles.

References

This problem is discussed in Riordan, John, An Introduction to Combinatorial
Analysis, Problem 15(b), page 84-85.

Problem 12.

Determine the number of permutations of (1,2, ...,n) which have no
j-cycles for any j > 2.

References

This problem is discussed in Riordan, John, An Introduction to Combinatorial
Analysis, Problem 17, page 85-86.

Problem 13.

Determine the number of even (odd) permutations of (1,2, ..., n) which have no
1-cycles.



References

This problem is discussed in Riordan, John, An Introduction to Combinatorial
Analysis, Problem 21, page 88-89.

Problem 14.

Show that the number of permutations of (1,2, ...,n) which have k cycles, none
of whichis a 1 cycle, 2 cycle, ..., or r cycle is

Howard, F. T. refers to these numbers as the r-associated Stirling Numbers of
the First Kind in Fibonacci Quarterly, Associated Stirling Numbers, Vol 18, no.
4, 1980, pages 303-315.

Problem 15.

Record values.

Goldie, Charles (1989). “Records, permutations and greatest convex minorants”,
Mathematical Proceedings of the Cambridge Philosophical Society, 106, no. 1,
pp. 169-177.

“Let II be a random element of S,,, the set of permutations of N,,, all n!
elements of S, being equally likely. II may be written as a product of
cycles. Let us say that ¢ € N, is a new-cycle index if ¢ does not belong to
the cycles containing 1, ...,¢ — 1. The random set of new-cycle indices is
denoted C. It always contains 1. Stam, theorem 3) has shown that the
events ¢ € C are independent, with respective probabilities 1/i.

[Stam, A.J. (1983). “Cycles of random permutations”, Ars Combinatoria,
16, pages 43-48]



Let F be the set of record times. That is,
F:={€eN,: X; =max(Xy,..., X))}
Let R be the set of record values. That is,
R: ={X;:ieF}

Let X%n), ..., X" be the order statistics of X, ..., X,,

Theorem 3.1 The events { X f”) € R}, i =1,...,n are independent with
probabilities
, 1
P(X"eR) = ——
n+1—1

Proof

X" e R ifand only if X" occurs before X", ... X" in the finite

1 1
sequence X1, ..., X,,. Whatever order X,(i)l X oceur in among
themselves, there is probability 1/(n + 1 — ) that Xi(") occurs earlier.
Thus given information on which of X Z(Z)l, ... X" are record values,

there is always probability 1/(n + 1 — ) that X,L@ is a record value.

(?) I give this argument here because I wonder if this argument is (1) rigorous and (2)
can be used to prove the hook length formula. Note that in case where

X1, ..., X, is a permutation of 1, ... ,n, then X](."’) = j.

Let

(n)
I = 1 Xj ER
' 0 else

Consider P([; =1 |11y =1,...,I, =1)

We are given that X (n) ,Xﬁbn) are record values so we know

P
that

X gi)loccurs before X SZ)Q, ....X{" in the finite sequence X7, ..., X,,



and

X gi)goccurs before X 51)3, ...,X™ in the finite sequence X7, ..., X,

and

X" occurs before X{"in the finite sequence X1, ..., X,,

but (as the argument goes) that tells us nothing about whether Xyl) occurs

before X ;Tl, -, X" in the finite sequence X1, ..., X,. The

conditioning

(n)

PP ,Xén) relative to each other.

only tells us about the position of

Therefore

and subsequently
PL=1L=1,..,1,=1)

=P(I,=1)P(I,.1=1|I,=1)-PLi=1|L=1,...,I,=1)
= P(I, = 1)P(I_,=1)---P( = 1)

which shows independence.

Karamata-Stirling laws.

The K'S,, probability law is defined to be that of Z; + ... 4+ Z,, where
Zy..., 2y are independent and P(Z; = 1) = 1/i, P(Z; =0)=1— 1/i.
Explicitly,

P(Zy+...+7,=k)

I
—
oy

|
S
—_

S
~

K S,, is the distribution of
(i) the number of cycles in a random permutation of n objects
(i) the number of records in n exchangeable unequal r.v.s.
(iii) the number of sides in the gem of an n-step random walk with



exchangeable rationally independent increments”

Problem 16.



