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1A Pre-algebra Topics (no calculators) 
  Fractions to add and express as the quotient of two relatively prime integers 
  Complex fractions and continued fractions 
  Decimals, repeating decimals 
  Percentage, interest, and discount 
  Least common multiple, greatest common divisor 
  Number bases; change of base 
  (extra) Modular arithmetic, number theory 
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2 Percentage, Interest, and Discounts 
 

2.1 Sales Tax 
 

If the ticket price of an item equals 𝑑 and the sales tax equals 𝑘% then the total price 𝑝 equals  
 

𝑝 = 𝑑 + (
𝑘

100
) ∙ 𝑑 = 𝑑 (1 +

𝑘

100
). 

 

2.2 Discounts (or Mark Downs) 

 

If the ticket price of an item equals 𝑑 and you receive a 𝑘% discount then the total price 𝑝 
equals  
 

𝑝 = 𝑑 − (
𝑘

100
) ∙ 𝑑 = 𝑑 (1 −

𝑘

100
). 

 

2.3 Increases (or Mark Ups) 
 
If the ticket price of an item was equal to 𝑑 and then the store applied a 𝑘% increase then the 
total price 𝑝 equals  
 

𝑝 = 𝑑 + (
𝑘

100
) ∙ 𝑑 = 𝑑 (1 +

𝑘

100
). 

 
Notice this acts the same way as a sales tax. 

  



mathcloset.com   5 

2.4 Multiple Discounts (Additive and Chained) 

 

Additive discounts of 𝑘1 and 𝑘2 percent applied to an original price of 𝑝0 calculates to the 
new price 𝑝1 
 

𝑝1 = (1 −
  𝑘1 + 𝑘2  

100
) 𝑝0 

 
 
while chained (or successive) discounts of 𝑘1 and 𝑘2 percent applied to an original price of 
𝑝0 calculates to the new price 𝑝1 
 

𝑝1 = (1 −
𝑘1
100

) (1 −
𝑘2
100

)𝑝0. 

 

Example 1. 
 
(Version 1) 
 
You go shopping and the shoes you are interested in buying have just gone on sale.  The store 
has advertised that the shoes you want are 20% off the marked price.  Additionally, you have a 
loyal customer card for this store that allows you can take 10% off the in-store price of 
everything in addition to any other sales going on.  How much will you pay for this pair of shoes 
whose price in the store is $100. 
 
(Version 2) 
 
You go shopping and the shoes you are interested in buying have just gone on sale.  The store 
has advertised that the shoes you want are 20% off the marked price.  Additionally, you have a 
coupon for this store that says you can take another 10% off the reduced price after the 20% 
mark down.  How much will you pay for this pair of shoes whose price in the store is $100. 
 
Solution 

 
Both versions of this problem represent successive discounts.  While sounding very similar to 
each other there is a difference you have to take into account. 
 
The store’s 20% off sale reduces the shoes from $100 to $80.  In Version 1 of the story your 
loyal customer card allows you to take (an additional) 10% off the in-store price of  
$100.  So you can use your loyalty card to save another $10 and buy the shoes for $70. 
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In Version 2, you get the same initial 20% off to reduce the shows from $100 to $80.  But then 
your coupon says you can take another 10% off the reduced price of $80.  So with the coupon 
you get another $8 off and are able to buy the shoes for $72. 
 
In Version 1 the calculations are 
 

$100 − (
20

100
)$100 − (

10

100
) ($𝟏𝟎𝟎) = $100 (1 −

20

100
−
10

100
) 

 
That is, in this version you add the 20% and 10% together to get a 30% discount. 
 
In Version 2 the calculations are 
 

$100 − (
20

100
)$100 − (

10

100
)($𝟏𝟎𝟎 − (

𝟐𝟎

𝟏𝟎𝟎
)$𝟏𝟎𝟎) = $100 (1 −

20

100
)(1 −

10

100
). 

 
∎ 

 
Version 1 is an example of additive discounts where both discounts are applied to the original 
selling price.  Version 2 is an example of chained discounts where the second discount coupon 
is applied to the discounted price obtained after using the first coupon.  Chained discounts are 
also called successive discounts. 
 
Example 2. 
 
A DVD player with a list price of $100 is marked down 30%.  If John gets an employee discount 
of 20% off the sale price, how much does John pay for the DVD player? 
 
Solution 

 
First, we need to figure out whether these are additive or chained discounts.  The story says 
that John gets a second discount off the sale price.  So this is an example of a chained discount. 
 

𝑝1 = (1 −
30

100
) (1 −

20

100
) ($100) = $56. 

∎ 

 
Example 3. 
 
Mrs. Dorgan’s gross monthly income is $5,000. If 15% is withheld for income taxes, 7% for 
social security, and 2% for insurance, what is her net monthly income (after deducting these 
expenses)? 
 
Solution 
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Are these additive or chained discounts?  Each withholding is based on her gross monthly so 
these are additive discounts. 
 

𝑝1 = (1 −
 15 + 7 + 2 

100
) ($5000) = $3800 

∎ 

 

2.5 Multiple Increases 
 

We also can have both additive and chained percent increases. 
 

Additive increases of 𝑘1 and 𝑘2 percent applied to an original price of 𝑝0 calculates to the 
new price 𝑝1 
 

𝑝1 = (1 +
  𝑘1 + 𝑘2  

100
) 𝑝0 

 
 
while chained (or successive) increases of 𝑘1 and 𝑘2 percent applied to an original price of 𝑝0 
calculates to the new price 𝑝1 
 

𝑝1 = (1 +
𝑘1
100

) (1 +
𝑘2
100

)𝑝0. 

 
 
Example 4. 
 
You got a 3% salary raise in each of your first two years at your first job after college.  Your 
starting salary was $50,000.  How much are you earning after your two raises? 
 
Solution 

 
Are these additive or chained percent increases?  When you get a raise you get a percent 
increase on your current salary, not your starting salary.  That is, pay raises are chained 
increases. 
 

𝑝1 = (1 +
3

100
)(1 +

3

100
) ($50,000) = $53,045.00. 

∎ 
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Example 5. 
 
Suppose you make $100,000 a year.  Additionally, the company you work for puts an extra 
25% of your salary into a separate company retirement plan   Furthermore the company 
subsidizes your medical insurance in the amount of another 20% of your salary.  If you take into 
account the money this company pays in salary, retirement and medical benefits, how much are 
you really making each year? 
 
Solution 

 
Are these additive or chained percent increases?   They are additive increases because the 
company is only putting the 25% towards retirement on your salary of $100,00, not 25% on 
your salary after taking your medical benefits into account (i.e. $120,000). 
 

𝑝1 = (1 +
25

100
+
20

100
) ($100,000) = $145,000 

∎ 

 
 
Example 6.    (modified from a problem in Meet 1A ,1991-92) 
 
Suppose you currently make $100,000 a year and your fringe benefits (retirement, insurance, 
etc.) comes to 45% of your salary.  If you receive a 5% raise at the end of the year and your 
fringe benefits stays at 45% of your (new) salary, how much extra will the company be 
spending on you next year over this year. 
 
Solution 

 
Based on the answer in Example 5, this company is spending $145,000 on you currently.  If you 
get a 5% raise it is applied on your salary only, not your salary plus fringe benefits.  But then 
your fringe is calculated on your new salary.  So your fringe and salary increase are chained. 
 

𝑝1 = ($100,000)(1 +
5

100
)(1 +

45

100
) = $152,250 

 
So the company will spend an additional $7,250 next year on you. 

∎ 

 

2.6 Chained Discounts Combined with Chained Increases 

 
If the value (or cost) of an item originally equaled 𝑑 and increases in value (or cost) by  𝑘1% and 
then by 𝑘2% and then by another 𝑘3% and then decreases in value (or is discounted) by 𝑘4% 
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and then by 𝑘5% and then by 𝑘6%.  If we are to assume that both the discounts and increases 
were chained, then the final value 𝑝 of this item would equal 
 

𝑝 =  𝑑 (1 +
𝑘1
100

)(1 +
𝑘2
100

)(1 +
𝑘3
100

)(1 −
𝑘4
100

)(1 −
𝑘5
100

)(1 −
𝑘6
100

). 

 
Important Note:  When calculating chained increases and/or decreases applied over time, the 
order in which these increases and decreases are calculated does not change the above 
formula. 
 

2.7 Discount Coupon Combined with Sales Tax 
 
Example 7. 
 
You have a 6% off coupon for a $50 item you just bought.  However, the state you live in 

applies a 6% sales tax on this item.  What does your total cost come to? 

Solution 

 
You really don’t have enough information to solve this problem.  In some states they apply the 

sales tax on the amount you pay after applying the coupon (i.e. the coupon and tax are 

chained).  But other states apply the sales tax on the original cost of the item (i.e. additive 

increase and decrease). 

If your state charges sales tax only on the reduced price, then you pay 

𝑝1 = (1 −
6

100
)(1 +

6

100
) ($50) = $49.82 

However, if your state charges sales tax on the original selling price, then you pay 

𝑝1 = (1 +
6

100
−

6

100
) ($50) = $50 

∎ 

 
Example 8.  (2010-11 Meet 1, Individual Event A) 
 
I’m out for lunch at my favorite café, but I only have $15.00.  If the soup-and-sandwich combo I 

want to order costs $13.00, and sales tax is 7%, what is the minimum whole-number percent-

off discount coupon I must hold in my wallet to allow me to still leave an 18% tip?   (Note: tax 

and tip are applied after the coupon, but not to each other.) 

Solution 
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The question writers were careful to spell out that both the tax and the tip were applied after 

the coupon but not to each other. 

So we have a problem which is part additive and part chained! 

The tax and tip are additive because both are applied to the same amount, namely the amount 

you owe after applying the coupon.  So, in effect we are paying an extra (18 + 7)% = 25% to 

cover tax and tip combined.  But this 25% increase is chained to whatever percent discount we 

will ultimately get from our coupon because we are applying this 25% increase after applying 

the discount coupon. 

Suppose our discount is for 𝑥% off.  We want to find 𝑥 so that 

13 (1 −
𝑥

100
)(1 +

25

100
) = 15 

 

Solving for 𝑥 we get 𝑥 = 100/13 ≈ 7.69.  So to come to exactly $15 we would need a 

(100/13)% off coupon.  But the problem required that our coupon was an integer amount.  So 

to make sure we don’t go over $15 we need at least an 8% off coupon. 

∎ 

 

2.8 Percent Change 

 
If the amount of an object (for example, the number or the price) changes from 𝑎 to 𝑏, then we 
say that there was a 
 

(
 𝑏 − 𝑎 

𝑎
) × 100 % 

 
change in the amount of that object. 
 
 
Example 9. (modified from a problem in Meet 1A ,1991-92) 
 
Suppose that Elizabeth is given an annual salary increase of 6% every January 1.  By what 

percentage will her salary increase over the next 10 years? 

 

Solution 

Salary increases are chained.  So if we let 𝑝 represent Elizabeth’s salary today then her salary in 

10 years will be 
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𝑝 (1 +
6

100
)
10

= 1.79𝑝. 

So her percent change (increase) in salary will be 

(
 𝑏 − 𝑎 

𝑎
) × 100 % = (

 1.79𝑝 − 𝑝 

𝑝
) × 100 % = 79%. 

∎ 

 

Example 10. (Indiana State Mathematics Contest, 2006, Pre-Algebra, Problem 12) 
 
The length of a rectangle is increased by 30% and its width is decreased by 10%.  This increases 
the area by what percent? 
 
Solution 

 
Let 𝑥1 be the length of the original (old) rectangle and let 𝑦1 be the width of the original (old) 
rectangle. 
 
Let 𝑥2 be the length of the modified (new) rectangle and let 𝑦2 be the width of the modified 
(new) rectangle. 
 
We are given that there was a 30% increase in the length. 
 
30% increase in length 
 

⟹ (
 new length− old length 

old length
) × 100 % = 30% 

 

⟹ (
 𝑥2 − 𝑥1 

𝑥1
) × 100 % = 30% 

 

⟹ (
 𝑥2 − 𝑥1 

𝑥1
) =

 30% 

100%
=

30

 100 
=
3

10
 

 

⟹
 𝑥2 

𝑥1
− 1 =

3

10
 

 

⟹
 𝑥2 

𝑥1
= 1+

3

10
 

 

⟹
 𝑥2 

𝑥1
=
13

10
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⟹ 𝑥2 = (
13

10
) ∙ 𝑥1. 

 
 
We are also given that there was a 10% decrease in the width. 
 
 
 

⟹ (
 new width− old width 

old width
) × 100 % = −10% 

 

⟹ (
 𝑦2 − 𝑦1 

𝑦1
) × 100 % = −10% 

 

⟹ (
 𝑦2 − 𝑦1 

𝑦1
) =

−10% 

100%
=
−10  

 100 
=
−1  

10
 

 

⟹
 𝑦2 

𝑦1
− 1 =

−1  

10
 

 

⟹
 𝑦2 

𝑦1
= 1 −

1

10
 

 

⟹
 𝑦2 

𝑦1
=
9

10
 

 

⟹ 𝑦2 = (
9

10
) ∙ 𝑦1. 

 
 
The problem asks us to determine the percent increase in area. 
 
 

% increase in area =
  new area − old area  

old area
 × 100 % 

 
=
  𝑥2 ∙ 𝑦2  −   𝑥1 ∙ 𝑦1  

𝑥1 ∙ 𝑦1
 × 100% 

 
=
  𝑥2 ∙ 𝑦2  −   𝑥1 ∙ 𝑦1  

𝑥1 ∙ 𝑦1
 × 100% 

Notice this negative sign! 
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=
  (
13
10 ∙ 𝑥1) ∙  (

9
10 ∙ 𝑦1)  −  𝑥1 ∙ 𝑦1  

𝑥1 ∙ 𝑦1
× 100% 

 

=

  ((
13
10) ∙ (

9
10) ∙  𝑥1 ∙ 𝑦1) − 𝑥1 ∙ 𝑦1   

𝑥1 ∙ 𝑦1
× 100% 

 

=

  ((
13
10) ∙ (

9
10) −  1)  

1
× 100% 

 
= (

17

100
) × 100% = 17%. 

 

3 Primes and Prime Factorizations 
 

3.1 Factor Trees 
 
Example 11.  Use a factor tree to break 54 down into its prime factors. 
 

 
                                                  
 
So  54 = 2 × 3 × 3 × 3 =  21 × 33. 
 
 
Example 12.  Use a factor tree to break 36 down into its prime factors. 
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So  36 = 2 × 2 × 3 × 3 =  22 × 32. 
 
 

3.2 Listing All Factors of a Number 
 

Theorem 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Example 13.  Make a list of all factors of 18 = 21 × 32. 
  
 

20 × 30 = 1 20 × 31 = 3 20 × 32 = 9 

21 × 30 = 2 21 × 31 = 6 21 × 32 = 18 

 

 
If the prime factorization of 𝑎 is given by  
 

𝑎 = 2𝑚1 × 3𝑚2 × 5𝑚3 × 7𝑚4 × 11𝑚5 ×⋯ 

 
then the set of all factors of  𝑎 consists of all numbers of the form 
 

2𝑐1 × 3𝑐2 × 5𝑐3 × 7𝑐4 × 11𝑐5 ×⋯ 

 
where 0 ≤ 𝑐1 ≤ 𝑚1, 0 ≤ 𝑐2 ≤ 𝑚2, 0 ≤ 𝑐3 ≤ 𝑚3,…  
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Example 14.  Make a list of all factors of 24 = 23 × 31.  
 
 
 
 
 
 
 
 
 
 
Example 15.  Make a list of all factors of 120 = 23 × 31 × 51. 

 
 

20 × 30 × 50 = 1 20 × 30 × 51 = 5 

20 × 31 × 50 = 3 20 × 31 × 51 = 15 

21 × 30 × 50 = 2 21 × 30 × 51 = 10 

21 × 31 × 50 = 6 21 × 31 × 51 = 30 

22 × 30 × 50 = 4 22 × 30 × 51 = 20 

22 × 31 × 50 = 12 22 × 31 × 51 = 60 

23 × 30 × 50 = 8 23 × 30 × 51 = 40 

23 × 31 × 50 = 24 23 × 31 × 51 = 120 

 
 

3.3 Counting the Number of Divisors of 𝒏 

 
Theorem 2 (Counting the Number of Divisors of 𝒏) 
 

Let 𝜏(𝑛) represent the number of divisors (factors) of the positive integer 𝑛.   If  

𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑘
𝑎𝑘  is the unique prime factorization of 𝑛, then  

 
𝜏(𝑛) = (𝑎1 + 1)(𝑎2 + 1)⋯(𝑎𝑘 + 1). 

 
∎ 

 

Example 16. 

20 × 30 = 1 20 × 31 = 3 

21 × 30 = 2 21 × 31 = 6 

22 × 30 = 4 22 × 31 = 12 

23 × 30 = 8 23 × 31 = 24 
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Applying Theorem 2 we can see that 6 = 21 × 31 has (1 + 1) × (1 + 1) = 4 factors.  These 
four factors are {1,2,3,6}. 
 
Again, applying Theorem 2 we can see that 8 = 23 has (3 + 1) = 4 factors.  These four factors 
are {1,2,4,8}. 
 
Once again, applying Theorem 2 we can see that 60 = 22 × 31 × 51 has (2 + 1) × (1 + 1) ×
(1 + 1) = 12 factors.  These twelve factors are {1,2,3,4,5,6,10,12,15,20,30,60}. 
 
The power of Theorem 2 really reveals itself for counting the number of factors for “large” 
numbers.   
 
For example, it would be quite tedious to count the number of factors of 12600 by writing out 
a complete list.  By Theorem 2 we can see that 12600 = 23 × 32 × 52 × 71  has 
(3 + 1) × (2 + 1) × (2 + 1) × (1 + 1) = 72 factors. 

∎ 

 

Theorem 3 

 
Here we will list several interesting consequences of Theorem 2. 

𝜏(𝑛) is odd if and only if 𝑛 is a perfect square 

𝜏(𝑛) = 2 if and only if 𝑛 is a prime number 

𝜏(𝑛) = 3 if and only if 𝑛 = 𝑝2 for some prime number 𝑝. 

 

∎ 

 
Example 17. 
 
Explain why 𝜏(𝑛) is odd if and only if 𝑛 is a perfect square. 
 
Solution 

We know from Theorem 2 that if 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑘
𝑎𝑘  is the prime factorization of 𝑛, then  

 
𝜏(𝑛) = (𝑎1 + 1)(𝑎2 + 1)⋯(𝑎𝑘 + 1). 

 
It follows that 𝜏(𝑛) is odd if and only if all of the factors (𝑎1 + 1), (𝑎2 + 1),… , (𝑎𝑘 + 1) are odd 
numbers. [If any of these factors is even then the product would be even.]  But (for example), 
(𝑎1 + 1) is odd if and only if 𝑎1 is even. 
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So, 𝜏(𝑛) is odd if and only if 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑘  are all even numbers.  Let 𝑏𝑗 = 𝑎𝑗/2.  Because 𝑎𝑗 is 

even we have that 𝑏𝑗  is an integer. 

 
Therefore,  
 

𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑘
𝑎𝑘 = (𝑝1

𝑏1 ⋅ 𝑝2
𝑏2⋯𝑝𝑘

𝑏𝑘)(𝑝1
𝑏1 ⋅ 𝑝2

𝑏2⋯𝑝𝑘
𝑏𝑘) = (𝑝1

𝑏1 ⋅ 𝑝2
𝑏2⋯𝑝𝑘

𝑏𝑘)
2
. 

 
That is, 𝑛 is a perfect square. 

∎ 

 
 

3.4 Expressing 𝒏 as the product of two distinct integers 
 

Theorem 4  (Counting the number of possibilities) 
 
Let 𝑙(𝑛) equal the number of ways to express the positive integer 𝑛 as the product of two 
distinct positive integers (including 𝑛 × 1).   Assume we do not want to treat 𝑎 × 𝑏 = 𝑛 and 
𝑏 × 𝑎 = 𝑛 as different products. 
 
Then there are two cases to consider in finding a formula for 𝑙(𝑛), the number of ways to 
express 𝑛 as the product of two distinct positive integers. 
 

Formula for 𝒍(𝒏).  
 
Case 1.  𝑛 is a perfect square (equivalently, if 𝜏(𝑛) is odd).  In this case, 
 

𝑙(𝑛) =
𝜏(𝑛) + 1

2
. 

 
 
Case 2.  𝑛 is not a perfect square.  In this case, 
 

𝑙(𝑛) =
𝜏(𝑛)

2
. 

 
In both cases we use 𝜏(𝑛) to represent the number of positive divisors of 𝑛. 

 
∎ 

 
The next two examples will help to clarify where this formula for 𝑙(𝑛) comes from. 
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Example 18. 
 
How many ways are there to write 10800 as the product of two distinct positive integers 
(including 10800 × 1)?  Assume we do not want to treat 𝑎 × 𝑏 = 10800 and 𝑏 × 𝑎 = 10800 as 
different products. 
 
Solution 

The prime factorization of 10800 is 10800 = 24 ⋅ 33 ⋅ 52.  Therefore 𝜏(10800), the number of 
divisors (factors) of 10800 equals (4 + 1)(3 + 1)(2 + 1) = 60. 
 
The set 𝒟 of all 60 divisors would look something like this: 
 

𝒟 = {1,2,3,4,5,6, … ,2700,3600,5400,10800}. 
 
Clearly if 𝑎 and 𝑏 are positive integers such that  𝑎 × 𝑏 = 10800 then 𝑎 and 𝑏 are both 
elements of 𝒟. 
 
Furthermore, each divisor in this list of 60 numbers can be paired with a different divisor in this 
list to form a product of two positive integers equaling 10800. 
 
For example, the divisor 12 can be paired with the divisor 10800/12 = 900.  This gives us 
𝜏(10600) = 60 pairs of divisors whose product equals 10600. 
 
But this double counts each possible pair!  That is, this method would count both 12 × 900 as 
well as 900 × 12 – which we do not want to do. 
 
So, there are only 𝜏(10600)/2 = 60/2 = 30 ways to write 10800 as the product of two 
positive integers. 

∎ 

 
Example 19. 
 
How many ways are there to write 36 as the product of two distinct positive integers (including 
36 × 1)?  Again, assume we do not want to treat 𝑎 × 𝑏 = 10800 and 𝑏 × 𝑎 = 10800 as 
different products. 
 
Solution 

 
The prime factorization of 36 is 36 = 22 ⋅ 32.  Therefore 𝜏(36), the number of divisors (factors) 
of 36 equals (2 + 1)(2 + 1) = 9. 
 



mathcloset.com   19 

The complete set 𝒟 of all 9 divisors would be: 
 

𝒟 = {1,2,3,4,6,9,12,18,36}. 
 
Looking back at Example 18 be saw that each divisor in the list of 60 could be paired with a 
different divisor to form a product of 10800 to form 60/2 = 30 distinct pairs. 
 
Is that true in this example?  No.  We can (1,36), (2,18), (3,12), (4,9) but that leaves us trying 
to pair 6 with itself – which we don’t want to do.   
 
So, in this example where are (𝜏(36) − 1)/2 = (9 − 1)/2 = 4 ways to express 36 as the 
product of two distinct positive integers. 

∎ 

 
 
What was the critical difference between Example 18 and Example 19?   
 
Whenever 𝜏(𝑛) is even, such as the case 𝜏(10600) = 60, then every number in the list of 
divisors can be paired with a distinct divisor from that list to form a product equaling 𝑛. 
 
But when 𝜏(𝑛) is odd, such as the case 𝜏(36) = 9, then the median number in the list of 
divisors cannot be paired with a distinct divisor from that list to form a product equaling 𝑛. 
  
So, the critical point in finding a formula for 𝑙(𝑛), the number of ways to express 𝑛 as the 
product of two distinct positive integers, was whether 𝜏(𝑛) is even or odd.  But from Theorem 3 
we know that 𝜏(𝑛) is odd if and only if 𝑛 is a perfect square.  This explains how we came to 
Theorem 4. 
 

Example 20. 
 
How many ways can 𝑛 = 30 be written as a product of two positive integers, including 30 and 
1?   
 
Solution 

 
We see that 30 = 21 ∙ 31 ∙ 51 = 2 ∙ 3 ∙ 5 and hence  
 

𝜏(30) = (1 + 1)(1 + 1)(1 + 1) = 8. 
 
Furthermore 30 is not a perfect square, so 
 

𝑙(30) =
𝜏(30)

2
=
8

2
= 4. 
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So there are exactly 4 ways to write 30 as the product of two positive integers.  They are 
 

30 = 1 × 30,   30 = 2 × 15,   30 = 3 × 10,  and  30 = 5 × 6. 
∎ 

 

3.5 Prime Factorization of 𝒏! 
 

3.5.1 Power of 𝒑 in the prime factorization of 𝒏! 
 

Example 21. 
 
How many times does the prime 3 occur as a factor in the prime factorization of 100! ? 
 
Solution 

 
Consider what 100! looks like. 
 

100! = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 ⋅ 7 ⋅ 8 ⋅ 9 ⋅ 10 ⋅  ⋯ ⋅ 97 ⋅ 98 ⋅ 99 ⋅ 100. 
 
We can see that 3 occurs as a factor in every number in the set 𝒜 = {3, 6, 9, 12,… , 99}.  We 
note that 99 = 3(33) and this tells us that there are 33 elements in set 𝒜. 
 
But 33 is an undercount of the total number of times 3 occurs as a factor in the prime 
factorization of 100! because 3 occurs more than once in every number in the set ℬ =
{9, 18, 27,… ,99}.  We note that 11 elements in the set ℬ. 
 
Is 33 + 11 = 44 the total number of times 3 occurs as a factor in the prime factorization of 
100! ?  No.  This is still an undercount because 3 occurs more than twice in every number in the 
set 𝒞 = {27, 54, 81}. 
 
Is 33 + 11 + 3 the correct count?  No, this is still an undercount because 3 occurs more than 
three times in every number in the set 𝒟 = {81}.  Are there any positive integers less than or 
equal to 100 where 3 occurs as a factor more than four times?  No, because 35 > 100. 
 
So, the correct count is 
 

𝑁(𝒜) + 𝑁(ℬ) + 𝑁(𝒞) + 𝑁(𝒟) = 33 + 11 + 3 + 1 = 48. 
 
The prime 𝑝 = 3 occurs a total of 48 times in the prime factorization of 100!.  Another way of 
saying this is that if we write out the prime factorization of 100!, 
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100! = 2𝑎1 ⋅ 3𝑎2 ⋅ 5𝑎3 ⋅ 7𝑎4 ⋅ 11𝑎5 ⋅  ⋯ ⋅ 89𝑎24 ⋅ 97𝑎25 
 
then 𝑎2 = 48. 

∎ 

 

The generalization of Example 21 to any prime 𝑝 is known as Legendre’s Theorem. 

 

Theorem 5 (Legendre’s Theorem) 

 

Let 𝑛 be a positive integer.  Then the power of the prime 𝑝 ≤ 𝑛 occurring in the prime-power 
factorization of 𝑛! is 
 

⌊
𝑛

𝑝
⌋ + ⌊

𝑛

𝑝2
⌋ + ⌊

𝑛

𝑝3
⌋ + ⋯ 

 
where ⌊  ⌋ is the notation for the floor function where ⌊𝑥⌋ is defined as the greatest integer less 
than or equal to 𝑥. 

∎ 
 
Note that in Example 21, 
 

⌊
𝑛

𝑝
⌋ = ⌊

100

3
⌋ = ⌊33. 3⌋ = 33 

 

⌊
𝑛

𝑝2
⌋ = ⌊

100

9
⌋ = ⌊11. 1⌋ = 11 

 

⌊
𝑛

𝑝3
⌋ = ⌊

100

27
⌋ = ⌊3. 703⌋ = 3 

 
and 

⌊
𝑛

𝑝4
⌋ = ⌊

100

81
⌋ = ⌊1.2345679012345679⌋ = 1. 

 
 

3.5.2 Number of zeros at the end of 𝒏! 
 
Example 22 
 
How many zeros are there at the end of 1000! ? 
 
Solution 
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Suppose we write the prime factorization of 1000! as 
 

1000! = 2𝑎2 ⋅ 3𝑎3 ⋅ 5𝑎5 ⋅ 7𝑎7 ⋅ 11𝑎11 ⋅  ⋯ ⋅ 997𝑎997 . 
 
Loosely put, 1000! picks up another zero on the end everytime we multiply a 2 and a 5. 
 
We know from Theorem 5 that 
 
 

𝑎2 = ⌊
1000

2
⌋ + ⌊

1000

4
⌋ + ⌊

1000

8
⌋ + ⌊

1000

16
⌋ + ⌊

1000

32
⌋ + ⌊

1000

64
⌋ +⋯+ ⌊

1000

512
⌋ = 994 

 
and 
 

𝑎5 = ⌊
1000

5
⌋ + ⌊

1000

25
⌋ + ⌊

1000

125
⌋ + ⌊

1000

625
⌋ = 249. 

 
 
So exactly 249 of the available 994 “2’s” in the prime factorization of 1000! can be paired up 
with a 5 to create an extra 0 on the end of 1000!. 
 

There are ⌊
1000
5
⌋ + ⌊

1000
25
⌋ + ⌊

1000
125

⌋ + ⌊
1000
625

⌋ = 249 zeros at the end of 1000!  

∎ 
 
Theorem 6 
 

There are  
 

⌊
𝑛

5
⌋ + ⌊

𝑛

52
⌋ + ⌊

𝑛

53
⌋ + ⋯+ ⌊

𝑛

5𝑘
⌋ 

 

zeros are there at the end of 𝑛! where 𝑘 is that integer such that 5𝑘 ≤ 𝑛 < 5𝑘+1. 

 
∎ 

 
Why?  It is necessarily true that the power of 2 is greater than or equal to the power of 5 in the 
prime factorization of 𝑛!.  So, the number of 5’s is the limiting factor in how many (2 ⋅ 5) pairs 
that can be formed by the factors in 𝑛!. 
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4 Least common multiple, greatest common divisor 

 

4.1 LCM 
 
The least common multiple (lcm) of two or more integers, which are not all zero, is the smallest 
positive integer that is divisible by each of the integers.  Note: The least common multiple is 
also known as the least common denominator (lcd). 
 

4.2 GCD 
 
The greatest common divisor (gcd) of two or more integers, which are not all zero, is the largest 
positive integer that divides each of the integers.  Note: The greatest common divisor is also 
known as the greatest common factor (gcf).  
 
Example 23. 
 
Find gcd(54,24), the greatest common divisor of the integers 54 and 24. 
 
Solution 

 
The prime factorization of 54 is 54 = 21 ⋅ 33 and the prime factorization of 24 is 24 = 23 ⋅ 31. 
 
The divisors of 54 = 21 ⋅ 33 must have the form 2𝑎 ⋅ 3𝑏 where 𝑎 ∈ {0,1} and 𝑏 ∈ {0,1,2,3}.  So 
there are 2 × 4 = 8 divisors of 54.  They are {1, 2, 3,6,9, 18, 27, 54}. 
 

The divisors of 24 = 23 ⋅ 31 must have the form 2𝑐 ⋅ 3𝑑  where 𝑐 ∈ {0,1,2,3} and 𝑏 ∈ {0,1}.  So 
there are 4 × 2 = 8 divisors of 24.  They are {1, 2, 3, 4,6,8, 12, 24}. 
 
The numbers shared by these two lists are the common divisors of 54 and 24.  There are 
{1,2,3,6}. 
 
The greatest of the common divisors of 54 and 24 is 6.  That is, gcd(54,24) = 6. 

∎ 

 
Example 24. 
 
Find lcm(54,24), the least common multiple of the integers 54 and 24. 
 
Solution 

 
The prime factorization of 54 is 54 = 2 ⋅ 33 and the prime factorization of 24 is 24 = 23 ⋅ 3. 
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The positive integer multiples of 54 are {54, 108, 162,𝟐𝟏𝟔, 270, 324,… } 
 
The positive integer multiples of 24 are {24, 48, 72, 96, 120,144, 168, 192,𝟐𝟏𝟔, 240,… }. 
 
The numbers shared by these two lists are the common multiples of 54 and 24. 
 
The smallest of the common multiples of 54 and 24 is 216.  

∎ 

 

4.3 GCD, LCM and Prime Factorizations 

 
Theorem 7 
 
For positive integers 𝑎 and 𝑏, suppose 
 

𝑎 = (𝑝1)
𝑎1(𝑝2)

𝑎2⋯(𝑝𝑛)
𝑎𝑛    and   𝑏 = (𝑝1)

𝑏1(𝑝2)
𝑏2⋯(𝑝𝑛)

𝑏𝑛 
 
 
where 𝑝1, 𝑝2, … , 𝑝𝑛 are distinct prime numbers and 𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑏1, 𝑏2, … , 𝑏𝑛 are nonnegative 
(possibly zero).  Then 
 

gcd(𝑎, 𝑏) = (𝑝1)
min (𝑎1,𝑏1)(𝑝2)

min (𝑎2,𝑏2)⋯(𝑝𝑛)
min (𝑎𝑛,𝑏𝑛) 

 
and 
 

lcm(𝑎, 𝑏) = (𝑝1)
max(𝑎1,𝑏1)(𝑝2)

max(𝑎2,𝑏2)⋯(𝑝𝑛)
max(𝑎𝑛,𝑏𝑛). 

 
 
For example, consider the prime factorizations of 54 = 21 ⋅ 33 and 24 = 23 ⋅ 31.  Applying the 
above theorem, 
 

gcd(54,24) = 2min(1,3) ⋅ 3min(3,1) = 21 ⋅ 31 = 6 
and 
 

lcm(54,24) = 2max(1,3) ⋅ 3max(3,1) = 23 ⋅ 33 = 8 ⋅ 27 = 216. 
∎ 

 

4.4 Extended GCD, LCM and Prime Factorizations 

 
Theorem 8 
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We can extend Theorem 7 to any number of components in a natural way.  If positive integers 
𝑎, 𝑏, 𝑐 and 𝑑 have prime factorizations  
 

𝑎 = 2𝑟1 × 3𝑟2 × 5𝑟3 × 7𝑟4 × 11𝑟5 ×⋯ 
 

𝑏 = 2𝑠1 × 3𝑠2 × 5𝑠3 × 7𝑠4 × 11𝑠5 ×⋯ 
 

𝑐 = 2𝑡1 × 3𝑡2 × 5𝑡3 × 7𝑡4 × 11𝑡5 ×⋯ 
 

𝑑 = 2𝑤1 × 3𝑤2 × 5𝑤3 × 7𝑤4 × 11𝑤5 ×⋯ 
 
then 
 

gcd(𝑎, 𝑏, 𝑐, 𝑑) = 2min{𝑟1,𝑠1,𝑡1,𝑤1} × 3min{𝑟2,𝑠2,𝑡2,𝑤2} × 5min{𝑟3,𝑠3,𝑡3 ,𝑤3} × 7min{𝑟4,𝑠4,𝑡4 ,𝑤4} ×⋯ 
 
and 
 

lcm(𝑎, 𝑏, 𝑐, 𝑑) = 2max{𝑟1,𝑠1,𝑡1,𝑤1} × 3max{𝑟2,𝑠2,𝑡2,𝑤2} × 5max{𝑟3,𝑠3,𝑡3,𝑤3} × 7max{𝑟4,𝑠4,𝑡4,𝑤4} ×⋯ 
∎ 

 
 
Example 25. 
 
Find lcm(2,4,5,6,12).   
 
Solution 

 
First, we find the prime factorization of 2, 4, 5, 6 and 12. 

 

2 = 21 

4 = 22 

5 = 51 

6 = 21 × 31 

12 = 22 × 31 
So, 
 

lcm(2,4,5,6,12) 
 

= lcm(21, 22, 51, 21 × 31, 22 × 31) 
 

= 2max{1,2,0,1,2} × 3max{0,0,0,1,1} × 5max{0,0,1,0,0} 
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= 22 × 31 × 51 = 60. 
∎ 

 

Theorems 7 and 8 give a straightforward and apparently simple way of finding gcd’s and lcm’s 
for any number of components.  The reason for the caveat “apparently” simple is the approach 
depends on having the prime factorization of each component number. 
 
This is fine for “smaller” numbers such as those used in the above examples but is a roadblock 
for “larger” numbers.  Attempting to find gcd(457,213, 1447) using Theorem 8 is not a time 
efficient approach in a contest setting because of the difficulty in finding the prime factorization 
of each of these three component numbers. 
 
Theorems 9, 10 and 11 which follow below, with special attention to Theorem 9 (The Euclidean 
Algorithm) introduce a route for finding gcd’s and lcm’s with any number of components 
without having to find the prime factorization of each component number. 
 

4.5 The Division Algorithm (Division with remainder) 
 
An important part of understanding the Euclidean Algorithm is the division algorithm which we 
explain below. 
 
Consider the process of dividing 54 by 24.  Obviously 24 goes into 54 twice with a remainder of 
6.  We would write this as 
 

54

24
= 2 +

6

24
    or    54 = 2(24) + 6. 

 

The division algorithm is the result that for all positive integers 𝑎 and 𝑏 with 𝑎 ≥ 𝑏 there 
always exists a unique integer 𝑚 such that 𝑎 = 𝑚𝑏 + 𝑟 with 0 ≤ 𝑟 < 𝑏. 

 
 
Examples Illustrating the Division Algorithm 
 

𝒂, 𝒃, 𝒂 ≥ 𝒃 𝒂 = 𝒎𝒃+ 𝒓 𝟎 ≤ 𝒓 < 𝒃 

𝑎 = 17,   𝑏 = 3 17 = 5(3) + 2 0 ≤ 2 < 3 

𝑎 = 31,   𝑏 = 12 31 = 2(12) + 6 0 ≤ 6 < 12 

𝑎 = 311,   𝑏 = 42 311 = 7(42) + 17 0 ≤ 17 < 42 
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𝑎 = 2208,   𝑏 = 113 2208 = 19(113) + 61 0 ≤ 61 < 113 

 
The Division Algorithm states that this middle column is the only way to write 𝑎 in the form 𝑎 =
𝑚𝑏 + 𝑟 with 0 ≤ 𝑟 < 𝑏. 
 

4.6 The Euclidean Algorithm 
 

Theorem 9 (Euclidean Algorithm for gcd(𝒂, 𝒃)) 
 

Suppose 𝑎 and 𝑏 are positive integers with 𝑎 ≥ 𝑏.  Suppose we divide 𝑏 into 𝑎 with remainder 
and get  

𝑎 = 𝑚𝑏 + 𝑟  with  0 ≤ 𝑟 < 𝑏. 
 
Then 

gcd(𝑎, 𝑏) = {
gcd(𝑏, 𝑟) 𝑟 > 0

  
𝑏 𝑟 = 0.

 

 
If 𝑟 ≠ 0 then we can repeat the Euclidean algorithm for the positive integers 𝑏 > 𝑟. 

∎ 

  
Example 26. 
 

When we divide 54 by 24 with remainder we get 54 = 2(24) + 6.  Therefore by the Euclidean 

Algorithm, 

gcd(54,24) = gcd(24,6). 

 

But it is easy to see that gcd(24,6) = 6.  So, gcd(54,24) = 6. 

∎ 

 
Example 27. 
 

Apply the Euclidean Algorithm (repeatedly) to find gcd(1800,168). 

 

Solution 
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gcd(1800,168) = gcd(168,120) = gcd(120,48) = gcd(48,24) = 2. 

 
∎ 

 

4.7 lcm(𝒂,𝒃) as a function of gcd(𝒂,𝒃) 
 
Theorem 10 
 
 

lcm(𝑎, 𝑏) =
𝑎 ⋅ 𝑏

gcd(𝑎, 𝑏)
 

and 
gcd(𝑎, 𝑏) ⋅ lcm(𝑎, 𝑏) = 𝑎 ⋅ 𝑏. 

 
∎ 

 

Caution:  It is tempting to assume that we can directly extend Theorem 10 to 
lcm(𝑎, 𝑏, 𝑐,… , 𝑧).  Unfortunately, when we have more than two variables, 
 

lcm(𝑎, 𝑏, 𝑐,… , 𝑧) ≠
𝑎 ⋅ 𝑏 ⋅ 𝑐 ⋅  ⋯ ⋅ 𝑧

gcd(𝑎, 𝑏, 𝑐, … , 𝑧)
. 

 
 
Example 28. 
 
Find lcm(54,24). 

 
Solution 

Suppose we already have found that gcd(54,24) = 6.  Then  
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lcm(54,24) =
54 ⋅ 24

6
=
1296

6
= 216. 

∎ 

 

4.8 Finding gcd(𝒂,𝒃,𝒄, … ) and  lcm(𝒂,𝒃,𝒄,… )  without prime factorizations 
 
We have already mentioned that attempting to find gcd(457,213, 1447) using Theorem 8 is 
not a time efficient approach in a contest setting because of the difficulty in finding the prime 
factorization of each of these three component numbers.  But our go to alternative, the 
Euclidean Algorithm, is not set up to calculate the gcd except for the case of two variables, i.e. 
gcd (𝑎, 𝑏).  To add to the problem, we have already remarked in the above “Caution” that even 
if we had gcd(𝑎, 𝑏, 𝑐,… ) we cannot use that to find lcm(𝑎, 𝑏, 𝑐, … ). 
 
Theorem 11 which follows below gives us a way to circumvent these problems. 
 
Theorem 11 
 

gcd(𝑎, 𝑏, 𝑐) = gcd(gcd(𝑎, 𝑏) , 𝑐) 
and 

lcm(𝑎, 𝑏, 𝑐) = lcm(lcm(𝑎, 𝑏) , 𝑐). 

 
 
That is, for finding the gcd or lcm for a list of more than two numbers you can break the 
problem down into finding the gcd or lcm a pair of numbers at a time. 

∎ 

 
Example 29. 
 

Find gcd(457, 213,1447). 

 

Solution 

 

Applying Theorem 11 we have 

gcd(457, 213,1447) = gcd( gcd(457,213) , 1447). 

 

Now we can use the Euclidean Algorithm to find gcd(457,213). 
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457 = 2(213) + 31 

213 = 7(31) + 14 

31 = 2(14) + 3 

14 = 4(3) + 2 

3 = 1(2) + 1 

2 = 2(1) + 0. 

 

Therefore, gcd(457,213) = 1 by the Euclidean Algorithm.  Hence, 

 

gcd(457, 213, 1447) = gcd(𝐠𝐜𝐝(𝟒𝟓𝟕, 𝟐𝟏𝟑) , 1447) = gcd(𝟏, 1447). 

 

We can see by inspection that gcd(1,1447) = 1.  Hence, gcd(457, 213,1447) = 1. 

∎ 

 
Example 30.  
 

Find lcm(457,213,1447). 

Solution 

 
Applying Theorem 11 we have 

lcm(457,213,1447) = lcm( lcm(457,213) , 1447) 

 

We can apply Theorem 10 to find lcm(457,213) because it only involves two variables.  By 

Theorem 10 we have 

lcm(457,213) =
457 ⋅ 213

gcd(457,213)
. 

 

We can use the Euclidean Algorithm to find gcd(457,213).  We already found in Example 29 

that gcd(457,213) = 1.  Therefore, 

 

lcm(457,213) =
457 ⋅ 213

gcd(457,213)
= (457)(213) = 97341. 
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Hence, 

lcm(457,213, 1447) = lcm(97341,1447) =
(97341)(1447)

gcd(97341,1447)
. 

 

Now we use the Euclidean Algorithm to find gcd(97341,1447). 

 

97341 = 67(1447) + 392 

1447 = 3(392) + 271 

392 = 1(271) + 121 

271 = 2(121) + 29 

121 = 4(29) + 5 

29 = 5(5) + 4 

5 = 1(4) + 1 

4 = 4(1) + 0 

 

Thus, by the Euclidean Algorithm, gcd(97341,1447) = 1.  Hence, 

 

lcm(457, 213, 1447) = lcm(97341,1447) 

=
(97341)(1447)

gcd(97341,1447)
 

= (97341)(1447) 

= (457)(213)(1447). 

∎ 

 

4.9 𝒂𝒙 + 𝒃𝒚 = gcd(𝒂,𝒃) 
 

4.9.1 Bezout’s Lemma 
 

Theorem 12 
 
Bezout’s Lemma states that for all integers 𝑎 and 𝑏 there exist integers 𝑥 and 𝑦 such that 
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𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏). 
∎ 

 
Examples Illustrating Bezout’s Lemma 
 

(𝑎, 𝑏) gcd(𝑎, 𝑏) (𝑥0, 𝑦0) 
Linear Combination 
𝑎𝑥0 + 𝑏𝑦0 = gcd(𝑎, 𝑏) 

(12,9) gcd(12,9) = 3 (1,−1) 12(1) + 9(−1) = 3 

(35,14) gcd(35,14) = 7 (1,−2) 35(1) + 14(−2) = 7 

(36,20) gcd(36,20) = 4 (−1,2) 36(−1) + 20(2) = 4 

(13,5) gcd(13,5) = 1 (2,−5) 13(2) + 5(−5) = 1 

(45,14) gcd(45,14) = 1 (5,−16) 45(5) + 14(−16) = 1 

 
 
There are two additional results associated with Bezout’s Lemma. 
 

4.9.2 The possible values of 𝒂𝒙 + 𝒃𝒚 
 
Theorem 13 
 
For any given integers 𝑎, 𝑏 and 𝑐 the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 has an integer solution (𝑥, 𝑦) if and 
only if 𝑐 is a multiple of gcd(𝑎, 𝑏).  That is, 𝑐 = 𝑘 ⋅ gcd(𝑎, 𝑏) for some integer 𝑘. 

∎ 
 

4.9.3 Finding a solution of 𝒂𝒙 + 𝒃𝒚 = gcd(𝒂,𝒃) 
 

Reversing the Euclidean Algorithm 
 
Bezout’s Lemma (Theorem 12) only guarantees the existence of some (𝑥0, 𝑦0) such that 𝑎𝑥0 +

𝑏𝑦0 = gcd(𝑎, 𝑏).  It does not tell us how to find (𝑥0, 𝑦0).  Fortunately, there are several 

techniques known for constructing a solution (𝑥0, 𝑦0).  In Example 32 we will illustrate the 

technique of working backwards from the steps taken in the Euclidean Algorithm for finding 

gcd(𝑎, 𝑏).  

 

 

Example 31. 
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Find gcd(500,222), the greatest common divisor of 500 and 222, using the Euclidean 
Algorithm. 
 
Solution 
 
Express 𝑎 as 𝑎 = 𝑐𝑏 + 𝑟 with 0 ≤ 𝑟 < 𝑏.  Then 

gcd(𝑎, 𝑏) = {
gcd(𝑏, 𝑟) 𝑟 > 0

  
𝑏 𝑟 = 0.

 

 
The Euclidean Algorithm is the process of repeating this until a remainder of 𝑟 = 0 is reached. 
 

500 = 2(222) + 56 ⟹ gcd(500,222) = gcd(222,56) 
 

222 = 3(56) + 54 ⟹ gcd(222,56) = gcd(56,54) 
 

56 = 1(54) + 2 ⟹ gcd(56,54) = gcd(54,2) 
 

54 = 27(2) + 0 ⟹ gcd(54,2) = 2. 
 
So, we have the following string of equalities. 

 

gcd(500,222) = gcd(222,56) = gcd(56,54) = gcd(54,2) = 2. 

∎ 

 

Example 32. 
 
Find integers 𝑥 and 𝑦 such that 500𝑥 + 222𝑦 = gcd(500,222) by reversing the Euclidean 
Algorithm. 
 
Solution 
 
We showed in Example 31 that gcd(500,222) = 2 through the steps 
 

Step 1 500 = 2(222) + 56 

Step 2 222 = 3(56) + 54 

Step 3 56 = 1(54) + 2 

Step 4 54 = 27(2) + 0 
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2 = 56 − 1(54) 
Solve for 2, the GCD, in Step 
3. 

2 = 56 − 1(222 − 3(56)) 
Solve for 54 in Step 2 and 
substitute. 

2 = (500− 2(222)) − 1 (222 − 3(500 − 2(222))) 
Solve for 56 in Step 1 and 
substitute. 

2 = 500(1+ 3) + 222(−2 − 1 − 7) 

= 500(4) + 222(−9) 
Simplify. 

 
 
So, 

500(4) + 222(−9) = 2 = gcd(500,222). 
∎ 

 
Example 33.  (MSHSML 2006-2007, Test 1A, Problem 4) 
 
If 𝑑 is the greatest common divisor of 399 and 959, then it is possible to find integers 𝑟 and 𝑠 so 

that 𝑑 = 399𝑟 + 959𝑠.  Find 𝑑, 𝑟, and 𝑠. 

 

Solution 
 

By the Euclidean Algorithm 
959 = 2(399) + 161 
399 = 2(161) + 77 
161 = 2(77) + 7 
77 = 11(7) + 0 

 
Hence gcd(959,399) = 7.   By working the Euclidean Algorithm backwards we find 
 

7 = 161 − 2(77) 

= 161 − 2(399 − 2(161)) 

= (5)(161) − 2(399) 
= (5)(959 − 2(399)) − 2(399) 

= 5(959) − 12(399) 
 
So 399(−12) + 959(5) = 7 is a solution to 399𝑟 + 959𝑠 = gcd(399,959).  That is, the 
solution to this problem is 𝑑 = 7, 𝑟 = −12, 𝑠 = 5. 



mathcloset.com   35 

∎ 

 

4.9.4 Finding a solution of 𝒂𝒙 + 𝒃𝒚 = 𝒌 ⋅ gcd(𝒂,𝒃) 
 
In the previous section we learned how to reverse the steps of the Euclidean Algorithm when 
finding gcd(𝑎, 𝑏). 
 
Suppose 𝑥 = 𝑥0, 𝑦 = 𝑦0 is a solution to 𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏).  Then by multiplying both sides of 
this equation by the constant 𝑘 we get 
 

𝑎(𝑘𝑥0) + 𝑏(𝑘𝑦0) = 𝑘 ⋅ gcd(𝑎, 𝑏). 
 
That is, if (𝑥, 𝑦) = (𝑥0, 𝑦0) is a solution to 𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏), then (𝑥, 𝑦) = (𝑘𝑥0, 𝑘𝑦0) is a 
solution to 𝑎𝑥 + 𝑏𝑦 = 𝑘 ⋅ gcd(𝑎, 𝑏). 
 

4.9.5 All solutions of 𝒂𝒙 + 𝒃𝒚 = 𝒌 ⋅ gcd(𝒂,𝒃) 
 
Theorem 14 

 
If (𝑥, 𝑦) = (𝑥0, 𝑦0) is any particular solution to 𝑎𝑥 + 𝑏𝑦 = 𝑘 ⋅ gcd(𝑎, 𝑏) then 
 

(𝑥, 𝑦) = ( 𝑥0 + (
𝑏

gcd(𝑎, 𝑏)
) 𝑛,   𝑦0 − (

𝑎

gcd(𝑎, 𝑏)
)𝑛) ,     𝑛 = 0,±1, ±2,… 

 
gives the set of all possible solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑘 ⋅ gcd(𝑎, 𝑏). 

∎ 
 
 
Pay close attention to the form of the answer in Theorem 14 above.  There are two things about 
this formula that you need to be careful to notice.  First is that the location of 𝑎 and 𝑏 in 
 

 
 
might seem backwards, but this is correct.  Secondly, notice that we add the extra term to 𝑥0 
but we subtract the extra term from 𝑦0. 
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Example 34. 
 
Find an expression for 𝑥 and 𝑦 that shows all possible integer solutions 𝑥 and 𝑦 such that 
500𝑥 + 222𝑦 = gcd(500,222). 
 
Solution 
 
The result we need is that if 𝑥0 and 𝑦0 is any particular solution to 500𝑥 + 222𝑦 =

gcd(500,222) then 

 

𝑥 = 𝑥0 + (
222

gcd(500,222)
)𝑛 

and 

𝑦 = 𝑦0 − (
500

gcd(500,222)
)𝑛 

 
with 𝑛 = 0,±1,±2, ±3,… will be the set of all possible solutions to 500𝑥 + 222𝑦 =

gcd(500,222). 

 
We found in Example 31 that gcd(500,222) = 2 and in Example 32 that 𝑥 = 4 and 𝑦 = −9 is a 

solution to 500𝑥 + 222𝑦 = gcd(500,222) = 2. 

 
Therefore, 

𝑥 = 4 + (
222

2
)𝑛 = 4 + 111𝑛 

and 

𝑦 = −9− (
500

2
)𝑛 = −9 − 250𝑛 

 
 
with 𝑛 = 0,±1,±2, … is the set of all possible solutions to 500𝑥 + 222𝑦 = gcd(500,222). 

∎ 

 
Exercise 35.  (MSHSML 2001-2002, Test 1A, Problem 4) 
 
(a) Find an integer solution to 13𝑥 + 29𝑦 = 48. 
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(b) Find an expression for all solutions to 13𝑥 + 29𝑦 = 48. 
 
(c) Find the three lattice points (points with integer coordinates) closest to the origin that 

satisfy 13𝑥 + 29𝑦 = 48. 
 
Solution 
 
(a)  

29 = 2(13) + 3 

13 = 4(3) + 1 

3 = 3(1) + 0 

Therefore, gcd(29,13) = 1.  We can reverse the above steps to find a solution to 13𝑥 + 29𝑦 =

gcd(29,13) = 1. 

1 = 13 − 4(3) 

= 13 − 4(29− 2(13)) 

= 13(9) − 29(4). 

That is, 𝑥 = 9 and 𝑦 = −4 is an integer solution to 13𝑥 + 29𝑦 = gcd(29,13) = 1.   Therefore, 
 

13(9 ⋅ 48) − 29(4 ⋅ 48) = 1 ⋅ 48. 
 
 
That is, 𝑥 = 9(48) = 432  and  𝑦 = −4(48) = −192  is an integer solution to 13𝑥 + 29𝑦 =
48. 
 

(b)  By Theorem 14, if (𝑥0, 𝑦0) is a solution to 13𝑥 + 29𝑦 = 48 then 

(𝑥, 𝑦) = ( 𝑥0 + (
𝑏

gcd(𝑎, 𝑏)
) 𝑛,   𝑦0 − (

𝑎

gcd(𝑎, 𝑏)
) 𝑛) ,     𝑛 = 0,±1,±2, … 

 
is the set of all possible solutions to 13𝑥 + 29𝑦 = 48.  Therefore, 

(𝑥, 𝑦) = (432 + (
29

1
)𝑛, −192 − (

13

1
)𝑛) = (432 + 29𝑛,−192 − 13𝑛) 
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with 𝑛 = 0,±1,±2, …  gives us the set of all possible solutions to 13𝑥 + 29𝑦 = 48.  

 

(c)  If we sketch 13𝑥 + 29𝑦 = 48 we can see that the point on this line that is closest to the 

origin is (approximately) (0.6, 1.4).  But what part (c) is asking for are lattice points (both 

coordinates are integers) that are close to the origin. 

 

 

 

We have shown that all lattice points on this line have the form (432 + 29𝑛,−192 − 13𝑛) for 

some integer 𝑛.  So, we want to (432 + 29𝑛, −192 − 13𝑛) ≈ (0.6,1.4). 

 

432 + 29𝑛 = 0.6 ⟹ 𝑛 =
0.6 − 432

29
= −14.9 

and 

−192 − 13𝑛 = 1.4 ⟹ 𝑛 =
1.4 + 192

−13
= −14.9. 
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But 𝑛 has to be an integer.  The nearest integer to −14.9 is −15.  Taking 𝑛 = −15 in the 

general formula (432 + 29𝑛, −192 − 13𝑛) for the lattice points on the line 13𝑥 + 29𝑦 = 48 

we get (432 + 29(−15),−192 − 13(−15)) = (−3,3). 

 

 

What other lattice points on the line 13𝑥 + 29𝑦 = 48 are close to the origin?  We need to 

consider other values of 𝑛 close to −15.  Try 𝑛 = −13,−14,−16  and 𝑛 = −17. 

 

(432+ 29(−13),−192 − 13(−13)) = (55,−23) 

(432+ 29(−14),−192 − 13(−14)) = (26,−10) 

(432+ 29(−15),−192 − 13(−15)) = (−3,3) 

(432+ 29(−16),−192 − 13(−16)) = (−32,16) 

(432+ 29(−17),−192 − 13(−17)) = (−61,29) 

 

Lattice Point (𝒙, 𝒚) Distance to the origin = √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟎)𝟐 = √𝒙𝟐 + 𝒚𝟐 

(55,−23) 59.6 
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(26,−10) 27.9 

(−3,3) 4.2 

(−32,16) 35.8 

(−61,29) 67.6 

 

 

So the three lattice points on the line 13𝑥 + 29𝑦 = 48 that are closest to the origin are 

(−3,3), (26,−10) and (−32,16). 

∎ 

 

4.10 GCD of Two Polynomials 
 

First, let’s take some examples to clarify what we mean by the terms “common divisor” and 

“greatest” as applied to polynomials. 

We say polynomial ℎ(𝑥) is a common divisor of polynomials 𝑓(𝑥) and 𝑔(𝑥) if both 
𝑓(𝑥)
ℎ(𝑥)

 and 
𝑔(𝑥)
ℎ(𝑥)

 

leave no remainder polynomial when you perform these polynomial divisions. 

We say ℎ(𝑥) is the greatest common divisor of polynomials 𝑓(𝑥) and 𝑔(𝑥) if ℎ(𝑥) is a common 

divisor and the power of ℎ(𝑥) (the highest exponent of 𝑥) is greater than the power of any 

other common divisor. 

When finding the GCD of two integers it was very easy to spot all the common divisors if we 

wrote out the prime factorization of each integer.  Can we express polynomials in a way to 

make it very easy to spot all the common divisors?  Yes. 

Analogous to factoring an integer into the product of primes is the idea of factoring a 
polynomial into the product of linear and irreducible quadratic polynomials.   

 

Recall that a quadratic polynomial is irreducible (or more precisely, irreducible 

over the real numbers) if its two roots are imaginary numbers.   

A quick way to check to see if the quadratic 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is irreducible is to check 

if its discriminant is negative.  That is, if 𝑏2 − 4𝑎𝑐 < 0. 
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To say that a polynomial is “completely factored” means that it has been factored into the 

product of linear and irreducible quadratic polynomials. 

Note: If you have a reducible quadratic factor then you have to factor that quadratic polynomial 

into the product of two linear polynomials before you can say the polynomial is “completely 

factored”. 

Now consider the two completely factored polynomials  

𝑓(𝑥) = (𝑥 − 2)(2𝑥 − 3)(𝑥2 + 2)(𝑥2 + 3) 

and 

𝑔(𝑥) = (𝑥 − 2)(2𝑥 − 3)(𝑥 + 5)(𝑥2 + 2). 

 

Because these two polynomials have been completely factored we can easily see that (𝑥 − 2), 

(2𝑥 − 3) and (𝑥2 + 2) are common factors of the polynomials 𝑓(𝑥) and 𝑔(𝑥) and that 

gcd (𝑓(𝑥),𝑔(𝑥)) = (𝑥 − 2)(2𝑥 − 3)(𝑥2 + 2) = 2𝑥4 − 7𝑥3 + 10𝑥2 − 14𝑥 + 12. 

But what would you do if you were asked to find the greatest common factor of the same two 

polynomials 𝑓(𝑥) and 𝑔(𝑥) but given to you in expanded form  

𝑓(𝑥) = 2𝑥6 − 7𝑥5 + 16𝑥4 − 35𝑥3 + 42𝑥2 − 42𝑥 + 36 

and 

𝑔(𝑥) = 2𝑥5 + 3𝑥4 − 25𝑥3 + 36𝑥2 − 58𝑥 + 60 

 

instead of the completely factored form?  Trying to start the process by first completely 

factoring 𝑓(𝑥) and 𝑔(𝑥) would be extremely time consuming!  This is analogous to the problem 

we faced when we wanted to find the GCD of two large integers 𝑎 and 𝑏.  Finding the prime 

factorization of large integers is also extremely time consuming. 

Recall that this was our motivation for introducing the Euclidean Algorithm for integers.  But is 

there an Euclidean Algorithm for polynomials?  YES. 

In fact, it is the same algorithm except that we use polynomial division instead of the division of 

integers. 

To make my typing job easier let me demonstrate with 𝑓(𝑥) = 𝑥3 − 9𝑥2 − 𝑥 + 105 and 

𝑔(𝑥) = 𝑥3 − 3𝑥2 − 25𝑥 − 21. 

 

Example 36. 
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Find the GCD of the polynomials 𝑓(𝑥) = 𝑥3 − 9𝑥2 − 𝑥 + 105 and 𝑔(𝑥) = 𝑥3 − 3𝑥2 − 25𝑥 −

21. 

Solution 

Let’s start by carrying out the polynomial division 𝑓(𝑥)/𝑔(𝑥). 

 

or 

𝑥3 − 9𝑥2 − 𝑥 + 105 = 1(𝑥3 − 3𝑥2 − 25𝑥 − 21) + (−6𝑥2 + 24𝑥 + 126). 

 

Recall that the key idea in the Euclidean Algorithm for finding the GCD of two integers 𝑎 ≥ 𝑏 >

0 was that if we write 𝑎 in the form 𝑎 = 𝑚𝑏 + 𝑟 for some integers 𝑚 and 𝑏 with 0 ≤ 𝑟 < 𝑏, 

then 

gcd(𝑎, 𝑏) = {
gcd(𝑏, 𝑟) 𝑟 > 0

𝑏 𝑟 = 0.
 

 

This key idea is also true for polynomials.  Therefore, 

  

𝑥3 − 9𝑥2 − 𝑥 + 105 = 1(𝑥3 − 3𝑥2 − 25𝑥 − 21) + (−6𝑥2 + 24𝑥 + 126) 

 

implies that 

 

gcd(𝑥3 − 9𝑥2 − 𝑥 + 105,𝑥3 − 3𝑥2 − 25𝑥 − 21) 

= gcd(𝑥3 − 3𝑥2 − 25𝑥 − 21,−6𝑥2 + 24𝑥 + 126). 

 

Now continue. 
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or 

𝑥3 − 3𝑥2 − 25𝑥 − 21 = (−
1

6
𝑥 −

1

6
) (−6𝑥2 + 24𝑥 + 126) + 0. 

 

Notice that we have a remainder of 0.  By the Euclidean Algorithm, but applied to polynomials, 

our GCD is the last non-zero remainder.  Namely,  

gcd(𝑥3 − 9𝑥2 − 𝑥 + 105, 𝑥3 − 3𝑥2 − 25𝑥 − 21) = −6𝑥2 + 24𝑥 + 126. 

 

 Check!  

𝑥3 − 9𝑥2 − 𝑥 + 105 = (
−1

6
) (−6𝑥2 + 24𝑥 + 126)(𝑥 − 5) 

and 

𝑥3 − 3𝑥2 − 25𝑥 − 21 = (−
1

6
) (−6𝑥2 + 24𝑥 + 126)(𝑥 + 1). 

 

So, the polynomial ℎ(𝑥) = −6𝑥2 + 24𝑥 + 126 is a common divisor of 𝑓(𝑥) = 𝑥3 − 9𝑥2 − 𝑥 +

105 and 𝑔(𝑥) = 𝑥3 − 3𝑥2 − 25𝑥 − 21. 

Is it the greatest common divisor?  The polynomial ℎ(𝑥) has power 2.  For any common divisor 

to be “greater” it would have to have power 3.  But the only cubic polynomial that can divide 

the cubic polynomial 𝑓(𝑥) is the polynomial 𝑓(𝑥) itself.  Similarly for 𝑔(𝑥).  And 𝑓(𝑥) ≠ 𝑔(𝑥). 

So, there cannot be a “greater” common divisor.  That is, ℎ(𝑥) = −6𝑥2 + 24𝑥 + 126 is the 

GCD. 
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Recall that the GCD of two integers is unique.  Is the GCD of two polynomials unique?  No.  

Notice that ℎ∗(𝑥) = (−1/6)ℎ(𝑥) = 𝑥2 − 24𝑥 − 21 is a common divisor of power two. 

 

More generally, ℎ∗(𝑥) = 𝑐 ⋅ ℎ(𝑥) is also “the” GCD of the polynomials 𝑓(𝑥) and 𝑔(𝑥). 

∎ 

 

5 Fractions to add and express as the quotient of two relatively 
prime integers 

 

5.1 Divisibility Shortcuts 
 
Learning a few divisibility rules can help identify and speed up the process of cancelling 
common factors in a numerator and denominator. 
 

An integer is divisible by 3 provided the sum of its digits is divisible by 3. 

An integer is divisible by 4 provided the number formed by the last two 
digits is divisible by 4. 

An integer is divisible by 6 provided it is divisible by 2 and by 3. 

An integer is divisible by 8 provided the number formed by the last two 
digits is divisible by 8. 

An integer is divisible by 9 provided the sum of its digits is divisible by 9. 

 

5.2 Reducing Fractions 
 

Multiplying the numerator and denominator by the LCM of all denominators helps to simplify 
fractions. 
 

 
5
63 +

3
35 

 
7
45 +

5
18 

=
 (
5
63 +

3
35) 

 (
7
45 +

5
18) 

⋅
(𝟐 ⋅ 𝟑𝟐 ⋅ 𝟓 ⋅ 𝟕)

(𝟐 ⋅ 𝟑𝟐 ⋅ 𝟓 ⋅ 𝟕)
=
50 + 54

98 + 175
=
104

273
=
8

21
. 

 

Note:  lcm(63,35,45,18) = 𝟐 ⋅ 𝟑𝟐 ⋅ 𝟓 ⋅ 𝟕. 
 
● Remember that the rules of the test require you to simplify all fractions to the point where 

the numerator and denominator are relatively prime (have no common factors). 
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5.3 Ratios 

 

If you are told objects are distributed into three piles in a 2: 5: 6 ratio, this means that the first 
pile gets the fraction 2/(2+ 5 + 6) of the objects (and the second pile gets the fraction 5/13 
and the third piles gets the fraction 6/13 of the objects. 

 

5.4 Ordering fractions 
 

For positive numbers 𝑎, 𝑏, 𝑐 and 𝑑,   
𝑎

𝑏
<
𝑐

𝑑
⟺ 𝑎𝑑 < 𝑏𝑐. 

 

For positive numbers 𝑎, 𝑏, 𝑐 and 𝑑,   
𝑎

𝑏
>
𝑐

𝑑
⟺ 𝑎𝑑 > 𝑏𝑐. 

 

6 Complex Fractions and Continued Fractions 

 
To simplify a finite continued fraction (as in the example below) start at the bottom and work 
up. 
 

5 −
1

4 −
1

3 −
1

2 −
1
1

= 5 −
1

4 −
1

3 −
1
1

= 5 −
1

4 −
1
2

= 5 −
1

7
2

= 5 −
2

7
=
33

7
. 

 
To simplify an infinite continued fraction, identified as 𝑥 in the example below, look for a way to 
rewrite a “smaller” part of the fraction in terms of the same 𝑥.  Then solve for 𝑥. 
 

𝑥   =    
3

2 +
3

2 +
3

2 +
3
⋱

   =    
3

2 +

(

 
 
 

𝟑

𝟐 +
𝟑

𝟐 +
𝟑
⋱

 

)

 
 

   =   
3

2 + 𝒙
 

That is, 
 

𝑥 =
3

2 + 𝑥
⟹ 𝑥(2 + 𝑥) = 3 ⟹ 𝑥2 + 2𝑥 − 3 = 0 ⟹ (𝑥 + 3)(𝑥 − 1) = 0. 

 
So, 𝑥 = −3 and 𝑥 = 1.  But 𝑥 = −3 is an extraneous solution (a false solution that satisfies the 
final step of the derivation but does not satisfy the original problem) so it does not count as a 
solution.  (i.e. toss out 𝑥 = −3 because 𝑥 is clearly positive) 
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So, 

𝑥 =
3

2 +
3

2 +
3

2 +
3
⋱

= 1. 

 

6.1 Expand a number into continued fraction form 

 
Example 37. 
 

The fraction
37

13
 can be written in the form 2 +

1

𝑥 +
1

𝑦 +
1
𝑧

  where 𝑥, 𝑦 

and 𝑧 are positive integers.  Find the values of (𝑥, 𝑦, 𝑧). 
 
Solution 
 
Step 1.  Express 37/13 in the form 𝑞 + 𝑟/13 where 𝑞 and 𝑟 are positive integers and 𝑟 < 13 
(i.e. integer quotient with remainder form).  A result called the remainder theorem says that 
there will always be a 𝑞 and 𝑟 as described above. 
 

37

13
= 2 +

11

13
. 

 
Step 2.  Rewrite the fraction 𝑟/13 as 1/(13/𝑟). 
 

11

13
=

1

   
13
11   

 

 
Step 3.  It follows by our requirement that 𝑟 < 13 that 13/𝑟 > 1.  So we can carry out Step 1 on 
13/𝑟. 
 

13

11
= 1 +

2

11
. 

 
Summarizing our work up to this point we have 
 

37

13
= 2 +

11

13
= 2 +

1

13
11 

= 2 +
1

1 +
2
11

. 

 
Step 4.  Continue in this pattern. 
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2

11
=
1

11
2

=
1

5 +
1
2

. 

 
37

13
= 2 +

1

1 + (
2
11)

= 2 +
1

1 + (
1

5 +
1
2

)

= 2 +
1

1 +
1

5 +
1
2

. 

 
Final step.  Compare and identify (𝑥, 𝑦, 𝑧). 
 

37

13
= 2 +

1

𝑥 +
1

𝑦 +
1
𝑧

= 2 +
1

𝟏 +
1

𝟓 +
1
𝟐

 

 
So (𝑥, 𝑦, 𝑧) = (1,5,2).  Note that the process stops when we reach a remainder of 𝟏. 

∎ 

 
Example 38. 
 

The fraction
18

11
  can be written in the form 2 −

1

𝑥 +
1

𝑦 −
1
𝑧

where 𝑥, 𝑦 and 𝑧 are positive   

integers.  Find the values of (𝑥, 𝑦, 𝑧). 
 
Solution 
 
The new twist is the presence of minus (– ) signs in the above form.  Similar to our first step in 
the last example we now need to 18/11 in the form 𝑞 − 𝑟/11 where 𝑞 and 𝑟 are positive 
integers and 𝑟 < 11 (i.e. integer quotient with remainder form).  The remainder theorem 
mentioned above also guarantees that this is always possible. 
 

18

11
= 2 −

3

11
. 

Step 2.  Continue as in Example 1. 
 

18

11
= 2 −

3

11
= 2 −

1

11
3

= 2 −
1

3 +
2
3

= 2 −
1

3 +
1
3
2

= 2 −
1

3 +
1

2 −
1
2

. 

 
So (𝑥, 𝑦, 𝑧) = (3,2,2). 

∎ 
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6.2 Summary Result 
 

In general, if we want a plus (+) sign we can construct 
  

𝑎

𝑏
= 𝑞 +

𝑟

𝑏
  for some integers 𝑎. 𝑏, 𝑞 and 𝑟 

with 𝑟 < 𝑏 < 𝑎. 
 
And if we want a minus (−) sign we can construct  
 

𝑎

𝑏
= 𝑞 −

𝑟

𝑏
  for some (different) integers 𝑎, 𝑏, 𝑞 and 𝑟 

with 𝑟 < 𝑏 < 𝑎. 

 

7 Number Bases; Change of Base 

 

2357 represents 235 in base 7 and equals 2(72) + 3(71) + 5(70) = 98 + 21 + 5 = 12410 or 

just 124 in base 10.  In general, if no base subscript is attached to a number it is assumed that 

you are using base 10 notation.  In base 7 we only use the digits {0,1,2,3,4,5,6}.  The next 

number in the base seven sequence would be 107 = 1(7
1) + 0(70) = 7 + 0 = 710. 

 

7.1 Converting from Base 𝒃 to Base 10 
 

Example 39. 

 

Find the base 10 representation of 32016. 

Solution 

32016 = 3(6
3) + 2(62) + 0(61) + 1(60) 

= 3(216) + 2(36) + 0(6) + 1(1) 

= 648 + 72 + 0 + 1 

= 721 

That is, 32016 = 72110 = 721. 

∎ 
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Example 40. 

 

Find the base 10 representation of 544017. 

Solution 

544017 = 5(7
4) + 4(73) + 4(72) + 0(71) + 1(70) 

= 5(2401) + 4(343) + 4(49) + 0(7) + 1(1) = 13574 

That is,  

544017 = 1357410 = 13574. 

∎ 

 

7.2 Converting from Base 10 to Base 𝒃 : Bottom Up “Short Cut” Method 
 

Example 41. 

 

Find the base 5 representation of 1073. 

Answer 

1073 = 1(54) + 3(53) + 2(52) + 4(51) + 3(50) = 132435. 

Solution 

Divide 1073 by 5 with remainder.  That is, express 1073 in the form 1073 = 5 ⋅ 𝑑1 + 𝑟1 where 

𝑟1 ∈ {0,1,2,3,4}. 

1073 = 214(5) + 3 

Now divide 𝑑1 by 5 with remainder.  That is, express 𝑑1 = 214 in the form 214 = 5 ⋅ 𝑑2 + 𝑟2 

where 𝑟2 ∈ {0,1,2,3,4}. 

214 = 42(5) + 4 

Now divide 𝑑2 by 5 with remainder.  That is, express 𝑑2 = 42 in the form 42 = 5 ⋅ 𝑑3 + 𝑟3 

where 𝑟3 ∈ {0,1,2,3,4}. 
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42 = 8(5) + 2. 

Continue like this until you reach 𝑑𝑘 < 5 and the line 𝑑𝑘 = 0(5) + 𝑟𝑘+1. 

8 = 1(5) + 3 

1 = 0(5) + 1. 

 

The remainders (shown in red), reading from the bottom up, reveal the digits of the base five 

representation of 1073. 

∎ 

 

Example 42. 

 

Find the base 2 representation of 1073. 

Solution  

 

 

The remainders (shown in red), reading from the bottom up, reveal the digits of the base two 

representation of 1073.  That is, 

 

1073 = 100001100012. 

∎ 

 

Example 43. 
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Find the base 7 representation of 1073. 

Solution 

 
 

Therefore, 

1073 = 30627. 

∎ 

 

Example 44. 

Write the base-ten number 140 in base 15. (Source: 2012-13, Meet 1, Event A) 

Solution 

140 = 9(15) + 5 

9 = 0(15) + 9 

Therefore, 

140 = 9515. 

∎ 

 

7.3 Converting from Base 𝒂 to Base 𝒃 (𝒂 ≠ 𝟏𝟎, 𝒃 ≠ 𝟏𝟎) 
 

Example 45. 
 

Find the base-nine number that is equivalent to 2456. (Source: 2016-17, Meet 1, Event A) 

Solution 

First convert from base 6 to base 10.  Then convert from base 10 to base 9 
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2456 = 2(6
2) + 4(61) + 5(60) = 101 

 
 

Therefore 

2456 = 1229. 

∎ 

 

Example 46. 

 

Express using base nine the integer which is written 54321 using base six. (Source: 2007-08, 

Meet 1, Team Event) 

Solution 

543216 = 5(6
4) + 4(63) + 3(62) + 2(61) + 1(60) = 7465 

7465 = 829(9) + 4 

829 = 92(9) + 1 

92 = 10(9) + 2 

10 = 1(9) + 1 

1 = 0(9) + 1 

 

Therefore, 

543216 = 7465 = 112149. 

 

∎ 

 

7.4 Converting from Base 𝒂 to Base 𝒂𝟐 and vice versa (without going through Base 
10) 

 

Note:  You certainly can do these problems by going through base 10 but the procedure below 

is a nice shortcut. 

 

Example 47. 
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Using binary notation (base 2), let 𝑁 = 11110101.  Write 𝑁 in octal notation (base 8). (Source: 

1998-99, Meet 1, Event A) 
 

Solution 

Procedure:  We want to go from base 2 to base 2𝟑.  Group the base 2 number into sets of 𝟑.  
Putting in leading 0’s as needed to make each a full group. 
 

 
 
Now convert each base 2 group of three. 
 

0112 = 0(2
2) + 1(21) + 1(20) = 3 

1102 = 1(2
2) + 1(21) + 0(20) = 6 

1012 = 1(2
2) + 0(21) + 1(20) = 5 

 
These are the digits of our base 8 conversion. 
 

111101012 = 3658 
 
Here is why it works. 
 
 111101012 = 1(2

7) + 1(26) + 1(25) + 1(24) + 0(23) + 1(22) + 0(21) + 1(20) 

 

  = (0(28) + 1(27) + 1(26)) + (1(25) + 1(24) + 0(23)) + (1(22) + 0(21) + 1(20)) 

 

  = 26(0(22) + 1(21) + 1(20)) + 23(1(22) + 1(21) + 0(20)) 

   + 20(1(22) + 0(21) + 1(20)) 

 

  = (23)2(0(22) + 1(21) + 1(20)) + (23)1(1(22) + 1(21) + 0(20)) 

   + (23)0(1(22) + 0(21) + 1(20)) 

 

  = (0(22) + 1(21) + 1(20)) ⋅ 82 + (1(22) + 1(21) + 0(20)) ⋅ 81 

   + (1(22) + 0(21) + 1(20)) ⋅ 80 
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  = 3(82) + 6(81) + 5(80) = 3658. 

∎ 

 

Example 48. 

 

Find the base 9 equivalent to 120121113. 
 

Solution 

We are converting from base 3 to base 3𝟐 so form groups of size 𝟐 from right to left adding 

leading 0’s if necessary to form a complete group of size 2. 

 
 

Convert each group (base 3). 
 

123 = 1(3
1) + 2(30) = 5 

013 = 0(3
1) + 1(30) = 1 

213 = 2(3
1) + 1(30) = 7 

113 = 1(3
1) + 1(30) = 4 

 
These are the digits of our base 9 equivalent. 
 

120121113 = 51749. 
∎ 

 

Example 49. 

 

Find the base 3 equivalent to 51749. 
 

Solution 

 

We are converting from base 3𝟐 to base 3 so find the 2 digit base 3 equivalent of each digit in 

51749.  Include a leading 0 if necessary to make the equivalent a two digit number. 

5 = 1(31) + 2(30) = 123 

1 = 1(30) = 13 = 013  (put in the leading 0 as needed) 

7 = 2(31) + 1(30) = 213 
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4 = 1(31) + 1(30) = 113 

These are the digits of our base 3 equivalent. 
 

 
∎ 

 

7.5 Converting in a generic base 
 

Example 50. 

 

In base 𝑏, 𝑐2 is written 10.  How do you write 𝑏2 in case 𝑐? (Source: 1999-2000, State 

Tournament, Event A) 

 

Solution 

 

“𝑐2 is written 10 in base 𝑏” ⟹ 𝑐2 = 1𝑏1 + 0𝑏0.  But 1𝑏1 + 0𝑏0 = 𝑏. 

⟹ 𝑐2 = 𝑏 

⟹ 𝑐4 = 𝑏2 

⟹ 𝑏2 = 𝑐4 = 1𝑐4 + 0𝑐3 + 0𝑐2 + 0𝑐1 + 0𝑐0 

⟹ 𝑏2 = 10000𝑐 

∎ 

 

7.6 Finding the base 𝒃 such that … 
 

Example 51. 

 

In what base 𝑏 does the integer 63𝑏 equal 11710?  (Source: 2009-10, State Tournament, Event 

A) 

 
Solution 

 

63𝑏 = 6𝑏
1 + 3𝑏0 = 6𝑏 + 3 = 117 ⟹ 6𝑏 = 114 ⟹ 𝑏 = 19. 

∎ 

 

Example 52. 
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In some number base 𝑏, the number 121 is equal to the decimal (base-10) number 324. 

Calculate 𝑏. (Source: 2012-13, Meet 1, Team Event) 

 

Solution 

121𝑏 = 1𝑏
2 + 2𝑏1 + 1 = 324 

⟹ (𝑏 + 1)2 = 324 

⟹ 𝑏 + 1 = √324 = 18 

⟹ 𝑏 = 17. 

∎ 

 

Example 53. 

 

A certain integer is represented base 5 by 401425 and base 𝑏 by 1583𝑏.  Find 𝑏.  (Source: 

2001-02, State Tournament, Event A) 

 

Solution 

401425 = 4(5
4) + 0(53) + 1(52) + 4(51) + 2(50) = 2547 

1583𝑏 = 1(𝑏
3) + 5(𝑏2) + 8(𝑏1) + 3(𝑏0) 

 
⟹ 𝑏3 + 5𝑏2 + 8𝑏 + 3 = 2547 

⟹ 𝑏3 + 5𝑏2 + 8𝑏 − 2544 = 0 

⟹ 𝑏 must divide 2544 = 24 ⋅ 3 ⋅ 54  (rational root theorem). 

 

Synthetic division shows 𝑏 = 8 is not big enough 

  

8 1 5 8 −2544 

  8 104 896 

 1 13 112 −1648 

 

but that the next largest potential root is 𝑏 = 12 is in fact a root. 
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12 1 5 8 −2544 

  12 204 2544 

 1 17 112 0 

 

We can also see from this division that 

 

𝑏3 + 5𝑏2 + 8𝑏 − 2544 = (𝑏 − 12)(𝑏2 + 17𝑏 + 112) 

 

and because 𝑏2 + 17𝑏 + 112 is an irreducible quadratic (the discriminant is negative) there are 

no other real roots.  So 𝑏 = 12 is the only possible answer. 

∎ 

 

Example 54. 

 

Let 𝑁 be a number in base 𝑏 such that 𝑁𝑏 = 14𝑏 ⋅ 17𝑏.  What is the greatest base 𝑏 for which 

𝑁𝑏 would be written with “2” as its left-most digit?  (Source: 2013-14, Meet 1, Team Event) 

 

Solution 

 

First note that 𝑏 ≥ 8 or 17𝑏 could not be a base 𝑏 number.  Now 

 

𝑁𝑏 = 14𝑏 ⋅ 17𝑏 ⟹𝑁 = (𝑏 + 4)(𝑏 + 7) = 𝑏2 + 11𝑏 + 28. 

 

To get a sense for what is going on think base 10 for a moment.  In this case (𝑏 = 10) we get 

 

𝑏2 + 11𝑏 + 28 = 100 + 110 + 28 = 22810 

 

and we observe the left most digit is a “2” as required.  In particular, it was necessary that 

110 + 28 ≥ 100 so that our hundreds digit could increase from 1 to 2.  In the general case this 

means that we must choose 𝑏 such that 

 

11𝑏 + 28 ≥ 𝑏2. 
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Solving this inequality we will find that 𝑏 ≤ 13.  Checking 𝑏 = 13 we see that 

 

𝑁 = 132 + 11(13) + 28 = 340 = 2(132) + 0(131) + 2(130) = 20213. 

 

Therefore 𝑏 = 13. 

∎ 

 

7.7 Disguised polynomial factorization problems 
 

Example 55. 

 

The integer 𝑁 = 10100 is expressed using base 𝑏 > 1.  Express 𝑁 as a product of two integers, 

expressed as polynomials in 𝑏, that are both greater than 1.  (Source: 2005-06, Meet 1, Event A) 
 
Solution 

 

10100𝑏 = 1(𝑏
4) + 0(𝑏3) + 1(𝑏2) + 0(𝑏1) + 0(𝑏0) 

= 𝑏4 + 𝑏2 

= 𝑏2(𝑏2 + 1) 

 

Note: 𝑏 > 1 implies 𝑏2 > 1 and 𝑏1 + 1 > 1 as required. 
∎ 

 

Example 56. 

 

Expressed using base 𝑏 > 3, the integer 𝑀 = 231.  Write 𝑀 as a product of two integers, also 

expressed using base 𝑏.  (Note carefully, you are not being asked to express them as 

polynomials in 𝑏, but as integers, just as 𝑀 is expressed.)  (Source: 2005-06, State Tournament, 

Event D) 
 
Solution 

𝑀 = 231𝑏 = 2(𝑏
2) + 3(𝑏1) + 1(𝑏0) 

= 2𝑏2 + 3𝑏 + 1 
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= (2𝑏 + 1)(𝑏 + 1) 

= (21𝑏)(11𝑏). 

∎ 

 

7.8 Addition in Base 𝒃 

 

Example 57. 

 

Find  3156 + 1536. 

 

Solution 

 

It can help to write out a base 6 addition table when you first learning to add in a different 

base. 

 
 

Using this table we can see that 

 

That is, 3156 + 1536 = 5126. 
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∎ 

 

Example 58. 

 

Given the following summation in base 6 

 

find the sum of 𝑎 + 𝑏 + 𝑐 in base 6.  (Source: Greater New Haven Mathematics League, 2009) 

 

Solution 

 

Forces that 𝑎 = 1 because we 
can carry at most 1 in adding 
two numbers in the right most 
column of the addition. 

 

After substituting for 𝑎 we can 
see that 𝑐 = 3 from the left 
most column of addition. 

 

Now we can see that 𝑏 = 5 
from the second column from 
the left of addition, noticing 
that we also had to carry 1 
from the previous column. 

 

 

 

Therefore, 
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(𝑎 + 𝑏 + 𝑐)6 = (1 + 5 + 3)6 = 136. 

∎ 

 

Example 59. 

 

Add the following binary numbers and express the sum as a number in base three.  (Source: 

2000-01, Meet 4, Event C)  

 

Solution 

 

 

 

1011101002 = 2
8 + 26 + 25 + 22 = 372 

 

372 = 35 + 34 + 33 + (2) ⋅ 32 + 31 + (0) ⋅ 30 = 1112103 
∎ 

 

8 Decimals, repeating decimals 
 

8.1 Theorem 15 
 

Every repeating decimal can be expressed in the form 𝑎/𝑏 where 𝑎 and 𝑏 are integers. 

∎ 

 

8.2 Theorem 16 
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A fraction 𝑎/𝑏, where 𝑎 and 𝑏 are relatively prime integers, is terminating ⟺ the prime 

factorization of 𝑏 only contains 2’s and/or 5’s. 

∎ 

 

Example 60. 
 
Convert 0.38427̅̅ ̅̅ ̅ = 0.38427427427… into a rational number. 
 
Solution 
 
Let 𝑠 = 0.38427̅̅ ̅̅ ̅ = 0.38427427427… 
 
Then,  

100000𝑠 = 38427.427427427…
100𝑠 = 38.427427427…

 

and 
 

100000𝑠 − 100𝑠 = 38427 − 38 
99900𝑠 = 38389 

So, 
 

𝑠 = 0.38427̅̅ ̅̅ ̅ =
38389

99900
.. 

∎ 

 

8.3 Basimals 
 

Numbers of the form (0. 𝑎1𝑎2𝑎3⋯)10 =
𝑎1

10
+

𝑎2

102
+

𝑎3

103
+⋯ with 𝑎𝑗 ∈ {0,1,2,3,… ,9} are called 

decimals. 
 
Analogously, we define the term basimals for non-base 10 numbers of this form.  That is, a 

basimal is a number of the form (0. 𝑎1𝑎2𝑎3⋯)𝑘 =
𝑎1
𝑘
+
𝑎2

𝑘
2 +

𝑎3

𝑘
3 +⋯  with 𝑎𝑗 ∈ {0,1,2,… , 𝑘 −

1}. 
∎ 

8.3.1 Converting Basimals 
 
Example 61. 

Convert the basimal number 0.2346 to a fraction in base 10. 
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Solution 

We have 

0.2346 =
2

61
+
3

62
+
4

63
. 

So, 

0.2346 =
2

61
+
3

62
+
4

63
=
2(62) + 3(6) + 4

63
=
72 + 18 + 4

216
=
94

216
. 

∎ 

 

8.3.2 Converting a Repeating Basimal Number 
 

Example 62. 

Convert 0. 2346 to a fraction in base 10. 

 

Solution 

 

Let 𝑥 = 2346.  Then 10006 ⋅ 𝑥 = (10006) ⋅ (2346) = 234. 2346 

 

Therefore,  

10006 ⋅ 𝑥 − 𝑥 = 234. 2346 − 0. 2346 = 2346. 

 

(10006 − 16)𝑥 = 2346 

 

(5556)𝑥 = 2346 

 

𝑥 =
2346
5556

. 

 

Now separately convert 2346 and 5556 to base 10. 
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2346 = 2 ⋅ 6
2 + 3 ⋅ 61 + 4 ⋅ 60 = 72 + 18 + 4 = 9410 

 

5556 = 5 ⋅ 6
2 + 5 ⋅ 61 ⋅ 5 ⋅ 60 = 5(62 + 61 + 60) = 63 − 1 = 216 − 1 = 21510 

 

Note: 

𝑠 = 62 + 61 + 60 

6𝑠 = 63 + 62 + 61 

∴   5𝑠 = 63 − 60 = 63 − 1 

Therefore, 

0. 2346 =
2346
5556

=
9410
21510

. 

∎ 

 

Example 63. 

Convert 0. 315 to a fraction in base 10. 

 

Solution 

 

Let 𝑥 = 0. 315.  Then 1005 ⋅ 𝑥 = 1005 ⋅ 315 = 31. 315.  Therefore 

 

1005𝑥 − 𝑥 = 31. 315 − 0. 315 = 315 

 

(1005 − 15)𝑥 = 315 

 

445 ⋅ 𝑥 = 315 
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𝑥 =
315
445

=
3(51) + 1(50)

4(51) + 4(50)
=
1610
2410

=
16

24
=
2

3
. 

∎ 

 

8.3.3 Converting a Decimal to a Basimal Number 
 

Example 64. 

Convert 
3
5
= .6 to a basimal in base 7.   

 

Solution 

In analogy to how we can express an integer in base 10 to an integer in base 7 we ask what is 

the largest fraction 
𝑘
7

, 𝑘 = 0,1,2,3,4,5,6 that is less than or equal to 
3
5

. 

4

7
≈ 0.57 <

3

5
= .6 <

5

7
≈ .71  

So, the first digit must be 4.   

Now repeat this process by finding the largest fraction 
𝑘

72
, 𝑘 = 0,1,2,… ,6 that is less than or 

equal to 
3
5
−
4
7
=
1
35
≈ 0.029.  We note that 

 

1

49
≈ 0.020 <

1

35
≈ 0.028 <

2

49
≈ 0.041. 

 

So, the second digit must be 1. 

 

This is already getting tedious!  Fortunately, there is a very simple short cut procedure. 

 

8.3.3.1 Introducing a Short Cut Approach 
 

(1)   Multiple the base ten decimal by the base you want to convert to.  In this case, the base is 

7. 
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0.6 ⋅ 7 = 4.2. 

 The units digit is the first digit in the basimal representation in base 7. 

0.4 

(2)   Multiple just the decimal part of the above product (i.e. the 0.2 from the product 4.2) by 

7.   

0.2 ⋅ 7 = 1.4 

 The units digit in this product is the second digit in the basimal representation in base 7. 

0.41 

(3)   Repeat 

0.6 ⋅ 7 = 4.2 ⟹ 0.4 

0.2 ⋅ 7 = 1.4 ⟹ 0.41 

0.4 ⋅ 7 = 2.8 ⟹ 0.412 

0.8 ⋅ 7 = 5.6 ⟹ 0.4125 

⋮ 

We can see that this basimal will continuously repeat the pattern 4125 after this.  That is,  

 

0.610 = 0. 41257 . 

∎ 

 

 Check!  

𝑥 = 0. 41257 

100007 ⋅ 𝑥 = 4125.41257 

 

100007 ⋅ 𝑥 − 𝑥 = 41257 

66667 ⋅ 𝑥 = 41257 

 

𝑥 =
41257
66667

=
4 ⋅ 73 + 1 ⋅ 72 + 2 ⋅ 71 + 5 ⋅ 70

6 ⋅ 73 + 6 ⋅ 72 + 6 ⋅ 71 + 6 ⋅ 70
=
1440

2400
= 0.6 

∎ 
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8.4 Repetends 

 

Example 65. 

When expanded as a decimal, the fraction 1/97 has a repetend (the repeating part of the 

decimal) of 96 digits that start right after the decimal point.  Find the last three digits 𝐶𝐵𝐴 of 

the repetend. 

Solution 

We need to reverse engineer the standard long-division algorithm. 

 

We want to determine the last three digits in the repetend so draw a three step long-division 

grid with the three “dropped” 0’s in place. 

 

The quotient will restart its repeating pattern when the remainder is the same as the dividend.  
That is, when the remainder equals 1. 
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The last digit in this row must be a 9 in order to leave a difference of 1 (10 − 9 = 1). 

 

The third ? = 7 because 97 ×? must end in a 9 and the only digit times 7 that ends in a 9 is 7 

(7 × 7 = 4𝟗).  Now that we have the third ?= 7 we can see that 97 ×?= 97 × 7 = 679. 

 

 

 

In order to leave a difference of 1 we have to subtract the 679 from 680. 
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The last digit in the next row up must be a 2 in order to leave a difference of 8 (10 − 2 = 8). 

 

 

 

The next ?= 6 because 97 ×? must end in a 2 and the only digit times 7 that ends in a 2 is 6 

(7 × 6 = 4𝟐).  Now that we have the next ? = 2 we have 97 ×?= 97 × 6 = 582. 
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In order to leave a difference of 68 we have to subtract the 582 from 650. 

 
 

The last digit in the next row up must be a 5 in order to leave a difference of 5 (10 − 5 = 5). 
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The first ?= 5 because 97 ×? must end in a 5 and the only digit times 7 that ends in a 5 is 5 

(7 × 5 = 3𝟓).  Now that we have the next ? = 5 we have 97 ×?= 97 × 5 = 485. 

 

 

Of course, we could continue to work backwards but the question only asked for the last three 

digits of the repetend.   

We have reversed engineered (worked backwards) the long division process to find out that the 

last three digits of the repetend are 567. 

∎ 


