MSHSML Meet 1, Event C Study Guide

1C Elementary Trigonometry (no calculators)

Definitions and solution of right triangles
Elementary identities
Radian measure and graphs of elementary functions
Trigonometric functions of multiples of $\pi / 6, \pi / 4, \pi / 3, \pi / 2$

Definitions and solution of right triangles

...BASED ON A RIGHT TRIANGLE

For an acute angle A, we can define the trigonometric functions by looking at the ratios of the side lengths of a right triangle $A B C$ with a right angle at C.

Sine	Cosine
$\sin A=\frac{a}{c}=\frac{\text { opposite side }}{\text { hypotenuse }}$	$\cos A=\frac{b}{c}=\frac{\text { adjacent side }}{\text { hypotenuse }}$
Tangent	Cotangent
$\tan A=\frac{a}{b}=\frac{\text { opposite side }}{\text { adjacent side }}$	$\cot A=\frac{b}{a}=\frac{\text { adjacent side }}{\text { opposite side }}$
Secant $\sec A=\frac{c}{b}$ $=\frac{\text { hypotenuse }}{\text { adjacent side }}$	$\operatorname{cosecant}$
$\csc A=\frac{c}{a}=\frac{\text { hypotenuse }}{\text { opposite side }}$	

For angles greater than 90°, apply the right-triangle definition to a reference angle and attach the appropriate \pm sign.

TECHNIQUES FOR SOLVING RIGHT TRIANGLES

Let's say $C=90^{\circ}$. There are five unknown quantities: a, b, c, A, B.
If you know...
Acute angle and opposite side (say, A and a)
...you can use...

$$
\begin{aligned}
& c=\frac{a}{\sin A} \\
& b=\frac{a}{\tan A} \\
& B=90^{\circ}-A
\end{aligned}
$$

Acute angle and adjacent side (say, A and b)

$$
\begin{aligned}
& c=\frac{b}{\cos A} \\
& a=b \tan A \\
& B=90^{\circ}-A
\end{aligned}
$$

Elementary identities

PYTHAGOREAN IDENTITIES

$$
\begin{aligned}
& \sin ^{2} A+\cos ^{2} A=1 \\
& 1+\tan ^{2} A=\sec ^{2} A \\
& \cot ^{2} A+1=\csc ^{2} A
\end{aligned}
$$

CONVERTING EQUATIONS

Cosine and sine functions differ only by a phase shift.
$\cos \theta=\sin \left(\theta+\frac{\pi}{2}\right)$
$\sin \theta=\cos \left(\theta-\frac{\pi}{2}\right)$

COFUNCTION IDENTITIES

$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \quad \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
$\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta \quad \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta$
$\sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta \quad \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta$

REDUCTION IDENTITIES

$2^{\text {nd }}$ Quadrant	$\sin (\pi-\theta)=\sin (\theta)$	$\cos (\pi-\theta)=-\cos (\theta)$
$3^{\text {rd }}$ Quadrant	$\sin (\pi+\theta)=-\sin (\theta)$	$\cos (\pi+\theta)=-\cos (\theta)$
$4^{\text {th }}$ Quadrant	$\sin (2 \pi-\theta)=-\sin (\theta)$	$\cos (2 \pi-\theta)=\cos (\theta)$

RECIPROCAL AND QUOTIENT IDENTITIES
$\sin \theta=\frac{1}{\csc \theta}=\frac{\tan \theta}{\sec \theta}$
$\cos \theta=\frac{1}{\sec \theta}=\frac{\cot \theta}{\csc \theta}$
$\tan \theta=\frac{1}{\cot \theta}=\frac{\sin \theta}{\cos \theta}$
$\csc \theta=\frac{1}{\sin \theta}=\frac{\cot \theta}{\cos \theta}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{\tan \theta}{\sin \theta}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}$

SYMMETRIES

Periodicity

$$
\begin{aligned}
& \sin \theta=\sin (\theta+2 k \pi) \\
& \cos \theta=\cos (\theta+2 k \pi) \\
& \tan \theta=\tan (\theta+k \pi)
\end{aligned}
$$

Even functions

Unchanged if flipped over the x-axis.

$$
\begin{aligned}
& \cos (-\theta)=\cos \theta \\
& \sec (-\theta)=\sec \theta
\end{aligned}
$$

Odd functions

Unchanged if rotated 180°. Equivalently, flipping over x-axis is the same as flipping over y-axis.

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \tan (-\theta)=-\tan \theta \\
& \csc (-\theta)=-\csc \theta \\
& \cot (-\theta)=-\cot \theta
\end{aligned}
$$

Radian measure and graphs of elementary functions

Radian - a unit of angle, equal to an angle at the center of a circle whose arc is equal in length to the radius.

The red and blue arcs each have the same length as the radius of this circle. So $\operatorname{Arc} \overparen{A B}$ has the same length as 2 radii. Therefore, by the definition of radians, central angle $\angle A O B$ equals 2 radians.

$90^{\circ}=\frac{\pi}{2}$ radians	$180^{\circ}=\pi$ radians	
x degrees $=\left(\frac{\pi}{180} \cdot x\right)$ radians	x radians $=\left(\frac{180}{\pi} \cdot x\right)$ degrees	

BASED ON THE UNIT CIRCLE

Any angle θ defines a point $P=(x, y)$ on the unit circle (circle with radius 1 , centered at the origin). The x coordinate is defined to be $\cos (\theta)$ and the y coordinate is defined to be $\sin (\theta)$.

Sine $\sin (\theta)=y$	Cosine $\cos (\theta)=x$
Tangent $\tan (\theta)=\frac{y}{x}$	Cotangent $\cot (\theta)=\frac{x}{y}$
Secant $\sec (\theta)=\frac{1}{x}$	Cosecant $\csc (\theta)=\frac{1}{y}$

Note that $\tan (\theta)=y / x$ equals the slope of the line $\overline{O P}$.

Because θ and $\theta+2 k \pi$ define the same point on the unit circle, all trigonometric functions are periodic with a period of $2 \pi(\sin , \cos , \sec , \csc)$, or $\pi(\tan , \cot)$.

To see why, note that

$$
\begin{array}{l|l}
\hline \sin (\alpha)=\frac{\mathrm{MP}}{\mathrm{OP}}=\frac{\mathrm{MP}}{1}=\mathrm{MP} & \cos (\alpha)=\frac{\mathrm{OM}}{\mathrm{OP}}=\frac{\mathrm{OM}}{1}=\mathrm{OM} \\
\hline \tan (\alpha)=\frac{\mathrm{NQ}}{\mathrm{ON}}=\frac{\mathrm{NQ}}{1}=\mathrm{NQ} & \sec (\alpha)=\frac{\mathrm{OQ}}{\mathrm{ON}}=\frac{\mathrm{OQ}}{1}=\mathrm{OQ} \\
\hline
\end{array}
$$

Then note that $\angle R S O=\alpha$ because $\angle M O P$ and $\angle R S O$ are opposite interior angles of the transversal OS cutting the parallel lines ON and RS. Based on the angle $\alpha=\angle R S O$ we have

$$
\begin{array}{l|l}
\hline \cot (\alpha)=\frac{\mathrm{RS}}{\mathrm{OR}}=\frac{\mathrm{RS}}{1}=\mathrm{RS} & \csc (\alpha)=\frac{\mathrm{OS}}{\mathrm{OR}}=\frac{\mathrm{OS}}{1}=\mathrm{OS} \\
\hline
\end{array}
$$

GRAPHING $y=A \sin B(x-h)+k$

 AND $y=A \cos B(x-h)+k$$|A|$ is the amplitude.
k is the is the average value: halfway between the maximum and the minimum value of the function.
$\frac{2 \pi}{B}$ is the period. There are B cycles in every interval of length 2π; so $\frac{B}{2 \pi}$ is the frequency.
h is the phase shift, or how far the beginning of the cycle is from the y-axis.

The basic shape of the function will stay the same. The sine curve will start at (h, k) as though it were the origin and go up if A is positive (down if A is negative). A cosine curve will start at (h, k) at the crest if A is positive (trough if A is negative).

$$
y=A \sin B(x-h)+k
$$

Trigonometric functions of multiples of $\pi / 6, \pi / 4, \pi / 3, \pi / 2$

SPECIAL TRIGONOMETRIC VALUES

$\theta(\mathrm{o})$	θ (rad)	$\boldsymbol{\operatorname { s i n }} \theta$	$\boldsymbol{\operatorname { c o s }} \theta$	$\boldsymbol{\operatorname { t a n }} \theta$	$\csc \theta$	$\sec \theta$	$\boldsymbol{\operatorname { c o t }} \theta$
$0{ }^{\circ}$	0	$0=\frac{\sqrt{0}}{2}$	1	0	undefined	1	undefined
30°	$\frac{\pi}{6}$	$\frac{1}{2}=\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	$1=\frac{\sqrt{4}}{2}$	0	undefined	1	undefined	0
120°	$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	-2	$-\frac{\sqrt{3}}{3}$
135°	$\frac{3 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
150°	$\frac{5 \pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	2	$-\frac{2 \sqrt{3}}{3}$	$-\sqrt{3}$
180°	π	0	-1	0	undefined	-1	undefined
210°	$\frac{7 \pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	-2	$-\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$225{ }^{\circ}$	$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
240°	$\frac{4 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$-\frac{2 \sqrt{3}}{3}$	-2	$\frac{\sqrt{3}}{3}$
270°	$\frac{3 \pi}{2}$	-1	0	undefined	-1	undefined	0
300°	$\frac{5 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{2 \sqrt{3}}{3}$	2	$-\frac{\sqrt{3}}{3}$
315°	$\frac{7 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
330°	$\frac{11 \pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2 \sqrt{3}}{3}$	$-\sqrt{3}$
$360^{\circ}=0^{\circ}$	$2 \pi=0$	0	1	0	undefined	1	undefined

Common angles and the points they define on the unit circle

SPARKCHARTS ${ }^{\text {w }}$

