MSHSML Meet 1, Event C Study Guide

1C Elementary Trigonometry (no calculators)

Definitions and solution of right triangles Elementary identities Radian measure and graphs of elementary functions Trigonometric functions of multiples of $\pi/6, \pi/4, \pi/3, \pi/2$

Definitions and solution of right triangles

... BASED ON A RIGHT TRIANGLE

For an acute angle A, we can define the trigonometric functions by looking at the ratios of the side lengths of a right triangle ABC with a right angle at C.

SineCosine
$$sin A = \frac{a}{c} = \frac{opposite side}{hypotenuse}$$
 $cos A = \frac{b}{c} = \frac{adjacent side}{hypotenuse}$ TangentCotangent $tan A = \frac{a}{b} = \frac{opposite side}{adjacent side}$ $cot A = \frac{b}{a} = \frac{adjacent side}{opposite side}$ Secant $cos A = \frac{c}{b} = \frac{hypotenuse}{adjacent side}$ $sec A = \frac{c}{b} = \frac{hypotenuse}{adjacent side}$ $csc A = \frac{c}{a} = \frac{hypotenuse}{opposite side}$

For angles greater than 90°, apply the right-triangle definition to a reference angle and attach the appropriate \pm sign.

PYTHAGOREAN IDENTITIES

 $\sin^2 A + \cos^2 A = 1$

$$1 + \tan^2 A = \sec^2 A$$

$$\cot^2 A + 1 = \csc^2 A$$

CONVERTING EQUATIONS

Cosine and sine functions differ only by a phase shift.

$$\cos\theta = \sin\left(\theta + \frac{\pi}{2}\right)$$

$$\sin\theta = \cos\left(\theta - \frac{\pi}{2}\right)$$

COFUNCTION IDENTITIES

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$
$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta \qquad \csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

REDUCTION IDENTITIES

2 nd Quadrant	$\sin(\pi - \theta) = \sin(\theta)$	$\cos(\pi - \theta) = -\cos(\theta)$
3 rd Quadrant	$\sin(\pi + \theta) = -\sin(\theta)$	$\cos(\pi + \theta) = -\cos(\theta)$
4 th Quadrant	$\sin(2\pi-\theta)=-\sin(\theta)$	$\cos(2\pi - \theta) = \cos(\theta)$

RECIPROCAL AND QUOTIENT IDENTITIES

$$\sin\theta = \frac{1}{\csc\theta} = \frac{\tan\theta}{\sec\theta}$$

$$\cos\theta = \frac{1}{\sec\theta} = \frac{\cot\theta}{\csc\theta}$$

$$\tan \theta = \frac{1}{\cot \theta} = \frac{\sin \theta}{\cos \theta}$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{\cot \theta}{\cos \theta}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{\tan \theta}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

SYMMETRIES

Periodicity

 $\sin\theta = \sin(\theta + 2k\pi)$

$$\cos\theta = \cos(\theta + 2k\pi)$$

 $\tan\theta = \tan(\theta + k\pi)$

Even functions

Unchanged if flipped over the x-axis.

 $\cos(-\theta) = \cos\theta$

 $\sec(-\theta) = \sec\theta$

Odd functions Unchanged if rotated 180° . Equivalently, flipping over *x*-axis is the same as flipping over *y*-axis.

 $\sin(-\theta) = -\sin\theta$

$$\tan(-\theta) = -\tan\theta$$

 $\csc(-\theta) = -\csc\theta$

 $\cot(-\theta) = -\cot\theta$

Radian measure and graphs of elementary functions

Radian – a unit of angle, equal to an angle at the center of a circle whose arc is equal in length to the radius.

The red and blue arcs each have the same length as the radius of this circle. So Arc \widehat{AB} has the same length as 2 radii. Therefore, by the definition of radians, central angle $\angle AOB$ equals 2 radians.

$90^\circ = \frac{\pi}{2}$ radians	$90^\circ = \frac{\pi}{2}$ radians $180^\circ = \pi$		$360^\circ = 2\pi$ radians		
$x ext{ degrees} = \left(\frac{\pi}{180} \cdot x\right)$	radians	<i>x</i> radia	$ns = \left(\frac{180}{\pi} \cdot x\right) degrees$		

... BASED ON THE UNIT CIRCLE

Any angle θ defines a point P = (x, y) on the unit circle (circle with radius 1, centered at the origin). The x coordinate is defined to be $\cos(\theta)$ and the y coordinate is defined to be $\sin(\theta)$.

Note that $tan(\theta) = y/x$ equals the slope of the line \overline{OP} .

Because θ and $\theta + 2k\pi$ define the same point on the unit circle, all trigonometric functions are periodic with a period of 2π (sin, cos, sec, csc), or π (tan, cot).

To see why, note that

$\sin(\alpha) = \frac{MP}{OP} = \frac{MP}{1} = MP$	$\cos(\alpha) = \frac{OM}{OP} = \frac{OM}{1} = OM$
$\tan(\alpha) = \frac{NQ}{ON} = \frac{NQ}{1} = NQ$	$\sec(\alpha) = \frac{OQ}{ON} = \frac{OQ}{1} = OQ$

Then note that $\angle RSO = \alpha$ because $\angle MOP$ and $\angle RSO$ are opposite interior angles of the transversal OS cutting the parallel lines ON and RS. Based on the angle $\alpha = \angle RSO$ we have

$$\cot(\alpha) = \frac{RS}{OR} = \frac{RS}{1} = RS$$
 $\csc(\alpha) = \frac{OS}{OR} = \frac{OS}{1} = OS.$

GRAPHING $y = A \sin B(x - h) + k$ AND $y = A \cos B(x - h) + k$

- |A| is the **amplitude**.
- k is the is the **average value**: halfway between the maximum and the minimum value of the function.
- $\frac{2\pi}{B}$ is the **period**. There are *B* cycles in every interval of length 2π ; so $\frac{B}{2\pi}$ is the **frequency**.
- *h* is the **phase shift**, or how far the beginning of the cycle is from the *y*-axis.

The basic shape of the function will stay the same. The sine curve will start at (h, k) as though it were the origin and go up if A is positive (down if A is negative). A cosine curve will start at (h, k) at the crest if A is positive (trough if A is negative).

Trigonometric functions of multiples of $\pi/6, \pi/4, \pi/3, \pi/2$

SPECIAL	. TRIGON	OMETRIC	VALUES				
θ (0)	heta (rad)	$\sin heta$	$\cos \theta$	tan θ	$\mathbf{csc}\;\boldsymbol{\theta}$	$\sec \theta$	$\cot \theta$
0 °	0	$0 = \frac{\sqrt{0}}{2}$	1	0	undefined	1	undefined
30 °	$\frac{\pi}{6}$	$\frac{1}{2} = \frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60 °	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90 °	$\frac{\pi}{2}$	$1 = \frac{\sqrt{4}}{2}$	0	undefined	1	undefined	0
120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	-2	$-\frac{\sqrt{3}}{3}$
135°	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
150°	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	2	$-\frac{2\sqrt{3}}{3}$	$-\sqrt{3}$
180°	π	0	-1	0	undefined	-1	undefined
210°	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	-2	$-\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
225°	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
240°	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	-2	$\frac{\sqrt{3}}{3}$
270 °	$\frac{3\pi}{2}$	-1	0	undefined	-1	undefined	0
300 °	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	2	$-\frac{\sqrt{3}}{3}$
315°	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
330°	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$	$-\sqrt{3}$
360° = 0°	$2\pi = 0$	0	1	0	undefined	1	undefined

Common angles and the points they define on the unit circle

