
mathcloset.com   1 

MSHSML Meet 2, Event A 
Study Guide 

 

 
2A Linear Equations in One Unknown 
 Solving numeric equations (perhaps involving a second-degree term which drops out) 
 Solving literal equations 
 Story problems leading to linear equations in one variable 
 Linear inequalities 
 

1 Contents 
 

1 Contents ..............................................................................................................................1 

2 Linear Inequalities ................................................................................................................3 

2.1 The Four Basic Rules for Inequalities ........................................................................................ 3 

2.2 Breaking Up a String of Inequalities .......................................................................................... 5 

3 System of Linear Inequalities................................................................................................7 

3.1 Linear Programming ................................................................................................................. 8 

4 Story Problems Leading to Linear Equations in One Variable ..............................................19 

4.1 Steps in Solving Word Problems ............................................................................................. 19 

4.2 Recognizing Key Words .......................................................................................................... 20 

5 Absolute Value Equations ..................................................................................................21 

5.1 Problem Type I.  𝑎𝑥 + 𝑏 = 𝑐 .................................................................................................. 21 

5.2 Problem Type II.  𝑎𝑥 + 𝑏 + 𝑐𝑥 + 𝑑 + ⋯ = 𝑟𝑥 + 𝑠 .................................................................. 22 

5.3 Problem Type III.  Nested Absolute Values.  𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑 = 𝑟𝑥 + 𝑠 ............................... 31 

6 Absolute Value Inequalities ................................................................................................33 

6.1 Two Key Results ..................................................................................................................... 33 

7 Absolute Value as a Square Root ........................................................................................41 

8 Quadratic Equations where 𝑥2 Term Drops Out ..................................................................41 

9 Rational Function Equations ...............................................................................................41 

10 Rational Function Inequalities ............................................................................................41 

11 Conjunctions and Disjunctions ...........................................................................................47 

11.1 Definitions of Conjunction and Disjunction ............................................................................. 47 



mathcloset.com   2 

11.1.1 Conjunction .................................................................................................................... 47 

11.1.2 Disjunction ..................................................................................................................... 47 

11.2 Absolute Value Inequalities, Conjunctions and Disjunctions ................................................... 47 

11.3 Simplifying Conjunctions and Disjunctions .............................................................................. 48 

 
  



mathcloset.com   3 

2 Linear Inequalities 
 
 

2.1 The Four Basic Rules for Inequalities 
 

(𝑖)  An inequality still holds if you add or subtract a constant or a function. 

e.g. 

 (𝑎) 𝑓(𝑥) < 𝑔(𝑥) < ℎ(𝑥) ⟺ 𝑓(𝑥) + 𝑐 < 𝑔(𝑥) + 𝑐 < ℎ(𝑥) + 𝑐 

 (𝑏) 𝑓(𝑥) ≤ 𝑔(𝑥) < ℎ(𝑥) ⟺ 𝑓(𝑥) − 𝑐 ≤ 𝑔(𝑥) − 𝑐 < ℎ(𝑥) − 𝑐 

 (𝑐) 𝑓(𝑥) < 𝑔(𝑥) ≤ ℎ(𝑥) ⟺ 𝑓(𝑥) + 𝑟(𝑥) < 𝑔(𝑥) + 𝑟(𝑥) ≤ ℎ(𝑥) + 𝑟(𝑥) 

 (𝑑) 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) ⟺ 𝑓(𝑥) − 𝑟(𝑥) ≤ 𝑔(𝑥) − 𝑟(𝑥) < ℎ(𝑥) − 𝑟(𝑥). 

 

(𝑖𝑖)  An inequality still holds if you multiply or divide by a positive constant.  

e.g. 

 (𝑎) 𝑓(𝑥) < 𝑔(𝑥) < ℎ(𝑥) ⟺ 𝑐 ⋅ 𝑓(𝑥) < 𝑐 ⋅ 𝑔(𝑥) < 𝑐 ⋅ ℎ(𝑥),    𝑐 > 0 

 (𝑏) 𝑓(𝑥) ≤ 𝑔(𝑥) < ℎ(𝑥) ⟺ 𝑐 ⋅ 𝑓(𝑥) ≤ 𝑐 ⋅ 𝑔(𝑥) < 𝑐 ⋅ ℎ(𝑥),    𝑐 > 0 

 (𝑐) 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) ⟺
𝑓(𝑥)

𝑐
≤

𝑔(𝑥)

𝑐
≤

ℎ(𝑥)

𝑐
,    𝑐 > 0. 

 

(𝑖𝑖𝑖)  An inequality “flips” if you multiply or divide by a negative constant.  

e.g. 

 (𝑎) 𝑓(𝑥) < 𝑔(𝑥) < ℎ(𝑥) ⟺ 𝑐 ⋅ 𝑓(𝑥) > 𝑐 ⋅ 𝑔(𝑥) > 𝑐 ⋅ ℎ(𝑥),    𝑐 < 0 

 (𝑏) 𝑓(𝑥) ≤ 𝑔(𝑥) < ℎ(𝑥) ⟺ 𝑐 ⋅ 𝑓(𝑥) ≥ 𝑐 ⋅ 𝑔(𝑥) > 𝑐 ⋅ ℎ(𝑥),    𝑐 < 0 

 (𝑐) 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) ⟺
𝑓(𝑥)

𝑐
≥

𝑔(𝑥)

𝑐
≥

ℎ(𝑥)

𝑐
,    𝑐 < 0 
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 (𝑑) 𝑓(𝑥) < 𝑔(𝑥) ≤ ℎ(𝑥) ⟺
𝑓(𝑥)

𝑐
>

𝑔(𝑥)

𝑐
≥

ℎ(𝑥)

𝑐
,    𝑐 < 0. 

 

(𝑖𝑣)  An inequality “flips” if you take reciprocals of terms which are all positive or all negative.  

e.g. 

 (𝑎1) 0 < 𝑓(𝑥) < 𝑔(𝑥) < ℎ(𝑥) ⟺
1

𝑓(𝑥)
>

1

𝑔(𝑥)
>

1

ℎ(𝑥)
 

 (𝑎2) 𝑓(𝑥) < 𝑔(𝑥) < ℎ(𝑥) < 0 ⟺
1

𝑓(𝑥)
>

1

𝑔(𝑥)
>

1

ℎ(𝑥)
 

 (𝑏1) 0 < 𝑓(𝑥) ≤ 𝑔(𝑥) < ℎ(𝑥) ⟺
1

𝑓(𝑥)
≥

1

𝑔(𝑥)
>

1

ℎ(𝑥)
 

 (𝑏2) 𝑓(𝑥) ≤ 𝑔(𝑥) < ℎ(𝑥) < 0 ⟺
1

𝑓(𝑥)
≥

1

𝑔(𝑥)
>

1

ℎ(𝑥)
 

 (𝑐1) 0 < 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) ⟺
1

𝑓(𝑥)
≥

1

𝑔(𝑥)
≥

1

ℎ(𝑥)
 

 (𝑐2) 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) < 0 ⟺
1

𝑓(𝑥)
≥

1

𝑔(𝑥)
≥

1

ℎ(𝑥)
 

 (𝑑1) 0 < 𝑓(𝑥) < 𝑔(𝑥) ≤ ℎ(𝑥) ⟺
1

𝑓(𝑥)
>

1

𝑔(𝑥)
≥

1

ℎ(𝑥)
. 

 (𝑑2) 𝑓(𝑥) < 𝑔(𝑥) ≤ ℎ(𝑥) < 0 ⟺
1

𝑓(𝑥)
>

1

𝑔(𝑥)
≥

1

ℎ(𝑥)
. 
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1. Find all 𝑥 such that  −10 < −2𝑥 + 4 ≤ 6. 

 

Solution 

−10 < −2𝑥 + 4 ≤ 6 Justification 

 ⟺ −10 − 4 < −2𝑥 ≤ 6 − 4 Subtracting a constant from each part 

 ⟺
−10 − 4

−2
> 𝑥 ≥

6 − 4

−2
 

Dividing by a negative constant, flip all 
inequality signs. 

 ⟺ 7 > 𝑥 ≥ −1  

 

Equivalently, we can write this as −1 ≤ 𝑥 < 7.  In set notation we can write this as [−1,7). 

∎ 

 

2.2 Breaking Up a String of Inequalities 
 

The string of inequalities 𝑓(𝑥) ≤ 𝑔(𝑥) < ℎ(𝑥) is (for example) equivalent to the statement  

𝑓(𝑥) ≤ 𝑔(𝑥) and 𝑔(𝑥) < ℎ(𝑥). 

Breaking a string into two parts like this is necessary when you need to perform different 

simplification steps in one part than in the other part. 

 

2. Find all 𝑥 such that  −𝑥 − 10 < 3𝑥 + 6 ≤ 4𝑥 − 2. 

 

Solution 

−𝑥 − 10 < 3𝑥 + 6 ≤ 4𝑥 − 2 

⟺ −𝑥 − 10 < 3𝑥 + 6 and 3𝑥 + 6 ≤ 4𝑥 − 2 

⟺ −3𝑥 − 𝑥 < 6 + 10 and −4𝑥 + 3𝑥 ≤ −2 − 6 

⟺ −4𝑥 < 16 and −𝑥 ≤ −8 

⟺ 𝑥 >
16

−4
= −4 and 𝑥 ≥

−8

−1
= 8 

 



mathcloset.com   6 

So, the solution set consists of all 𝑥’s such that 𝑥 > −4 and 𝑥 ≥ 8.  Now think about this 

carefully.  The only values of 𝑥 which are simultaneously greater than −4 and greater than or 

equal to 8 are just those values of 𝑥 which are greater than or equal to 8.  That is, 

(𝑥 > −4  and  𝑥 ≥ 8) ⟺ 𝑥 ≥ 8. 

Using set notation our solution set is [8, ∞). 

∎ 

 

3. Find all 𝑥 such that  𝑥 − 1 < −𝑥 + 5 ≤ 2𝑥 + 17. 

 

Solution 

𝑥 − 1 < −𝑥 + 5 ≤ 2𝑥 + 17 

⟺ 𝑥 − 1 < −𝑥 + 5 and −𝑥 + 5 ≤ 2𝑥 + 17 

⟺ 2𝑥 < 6 and −3𝑥 ≤ 12 

⟺ 𝑥 < 3 and 𝑥 ≥ −4 

⟺ 𝑥 ≥ −4  and  𝑥 < 3 

⟺ 𝑥 ∈ [−4,3). 

 
The symbol “∈” is read “is an element of the set”.  So “𝑥 ∈ [−4,3)” is read as “𝑥 is an element 
of the set [−4,3).  

∎ 
 

 

4. How many integers 𝑛 satisfy the inequalities 2𝑛 < 7𝑛 − 5 ≤ 6𝑛?  (MSHSML 2A162) 

 

Solution 

2𝑛 < 7𝑛 − 5 ≤ 6𝑛 

⟺ 2𝑛 < 7𝑛 − 5 and 7𝑛 − 5 ≤ 6𝑛 

⟺ −5𝑛 < −5 and 𝑛 ≤ 5 

⟺ 𝑛 > 1 and 𝑛 ≤ 5 

⟺ 𝑛 ∈ {2,3,4,5}. 
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So, there are 4 integer values of 𝑛 that satisfy this chain of inequalities. 
∎ 

 

3 System of Linear Inequalities 
 

The general theory of maximizing (or minimizing) a linear function of any number of variables 
which are constrained by a series of linear inequalities is considered in the field of linear 
programming. 
 
However, in this section of our prep work for Test 2A it is not necessary to have any background 
in linear programming.  The questions in MSHSML Test 2A involving a system of linear 
inequalities do not require any advanced techniques to solve. 
 

5. Integers 𝑎, 𝑏 and 𝑐 satisfy the inequalities  
𝑎 < 2𝑏 − 3 

𝑏 < 5𝑐 − 7 

𝑐 < 11𝑎 − 13. 

 What is the least possible value for 𝑎?  (MSHSML 2A124) 

 

Solution 

But  

𝑎 < 2𝑏 − 3 

2𝑏 − 3 < 2(5𝑐 − 7) − 3 = 10𝑐 − 17 

𝑎 < 10𝑐 − 17 

𝑎 < 10𝑐 − 17 < 10(11𝑎 − 13) − 17 = 110𝑎 − 147 

109𝑎 − 147 > 0 

109𝑎 > 147 

𝑎 > 147/109 = 1 + 38/109. 

 

But we are given that 𝑎 is an integer.  Therefore, 𝑎 ≥ 2.  But we aren’t done until we know if 

there is at least one (𝑎 = 2, 𝑏, 𝑐) solution satisfying all three inequalities.  By “guess and check” 

we see that (𝑎, 𝑏, 𝑐) = (2,3,3) does in fact satisfy all three inequalities.  So 𝑎 = 2 is indeed the 

smallest possible value of 𝑎. 

∎ 
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6. Positive integers 𝑎, 𝑏, 𝑐 and 𝑑 satisfy the inequalities 
 

𝑎 < 𝑏 < 𝑐 < 𝑑 < 2016 

 and 

2016 < 2𝑑 < 3𝑐 < 4𝑏 < 5𝑎. 

 

 What is the largest possible value for 𝑎 + 𝑏 + 𝑐 − 𝑑?  (MSHSML 2T162) 

 

Solution 
 
First note that 
 

𝑎 + 𝑏 + 𝑐 − 𝑑 = (𝑎 + 𝑏) + (𝑐 − 𝑑) < (𝑎 + 𝑏) + (−1) 
 
because 𝑐 < 𝑑 implies that 𝑐 − 𝑑 ≤ 1. 
 
 
So, we want to maximize (𝑎 + 𝑏) subject to the given constraints.  To make the sum 𝑎 + 𝑏 as 
large as possible we want to choose 𝑎 and 𝑏 to be as large as possible.  But 𝑎 and 𝑏 are both 
less than 𝑐 so we want 𝑐 to be as large as possible.  We know 𝑐 < 𝑑 < 2016.  But as we noted 
above we want 𝑐 − 𝑑 = −1.  Therefore, we should choose 𝑐 = 2014 and 𝑑 = 2015. 
 
Therefore, we want to choose 𝑎 and 𝑏 as large as possible subject to the constraint that 0 <
𝑎 < 𝑏 < 2014.  That is, we want to take 𝑎 = 2012 and 𝑏 = 2013. 
 
Does the choice (𝑎, 𝑏, 𝑐, 𝑑) = (2012, 2013, 2014, 2015) satisfy both sets of required 
inequalities? 
 
Check!  If we take (𝑎, 𝑏, 𝑐, 𝑑) = (2012, 2013, 2014, 2015) is it true that 
 

𝑎 < 𝑏 < 𝑐 < 𝑑 < 2016   and   2016 < 2𝑑 < 3𝑐 < 4𝑑 < 5𝑎  ? 
 
Yes, both sets of inequalities hold for (𝑎, 𝑏, 𝑐, 𝑑) = (2012,2013,2014,2015).  And we’ve 
already made the argument that this choice for (𝑎, 𝑏, 𝑐, 𝑑) will maximize 𝑎 + 𝑏 + 𝑐 − 𝑑. 
 
So, the largest possible value of 𝑎 + 𝑏 + 𝑐 − 𝑑 equals 2012 + 2013 + 2014 − 2015 = 4024. 

∎ 
 

3.1 Linear Programming 
 



mathcloset.com   9 

7. Suppose 𝑥 and 𝑦 are positive real numbers, and the point (𝑥, 𝑦) lies on or above both 
 of the lines having equations 2𝑥 + 5𝑦 = 10 and 3𝑥 + 4𝑦 = 12.  What is the least 
 possible value of 8𝑥 + 13𝑦?  (MATHCOUNTS). 

 

Solution 
 
The region above the line 2𝑥 + 5𝑦 = 10 is shown in blue and the region above the line 3𝑥 +
4𝑦 = 12 is shown in red.  Hence, the region that is above BOTH lines becomes purple 
(blue+red=purple). 
 

 
 
 
We also are told that 𝑥 ≥ 0 and 𝑦 ≥ 0  (i.e.  the region in yellow). 
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The (𝑥, 𝑦) values that are in the purple and the yellow are highlighted below. 
 

 
 
The goal of the problem is to find the smallest value of 8𝑥 + 13𝑦 if (𝑥, 𝑦) has to be a point in 
the above shaded region.  Problems of this type are known as linear programming problems. 
 
Now let’s play with this a bit.  Could (just as an example) we find an (𝑥, 𝑦) within this shaded 
region where 8𝑥 + 13𝑦 = 75? 
 
To see if this is possible we need to graph the line 8𝑥 + 13𝑦 = 75.  We show this line below. 
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We can see that 8𝑥 + 13𝑦 equals 75 at each of the points marked in green (because they fall on 
the line where 8𝑥 + 13𝑦 = 75) and these green points are in the highlighted region. 

 

 
 
 
This shows that 8𝑥 + 13𝑦 can get at least as small as 75.   
 
But can we make it smaller?  Can we find a point(s) within the highlighted region where 8𝑥 +
13𝑦 = 50? 
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The graph of the line 8𝑥 + 13𝑦 = 50 is shown above in solid blue and we see that there are 
points on this line that are within the shaded region.  (Clearly there are an infinite number of 
points on this line that are within this shaded region.  The three points shown in green just 
show particular cases.) 
 
This shows that 8𝑥 + 13𝑦 can get at least as small as 50.  Can we make it smaller yet?  Can we 
find a point(s) within the highlighted region where 8𝑥 + 13𝑦 = 37? 
 

 
 
The graph of the line 8𝑥 + 13𝑦 = 37 is shown above in solid blue and we see that there are 
points (e.g. the green points) on this line that are within the shaded region.  (Clearly there are 
an infinite number of points on this line that are within this shaded region.  The point in green 
just shows a particular case.) 



mathcloset.com   13 

 
This shows that 8𝑥 + 13𝑦 can get at least as small as 37. 
 
By now you most likely notice that we should lower this line until it hits the corner point. 
 

 
 
 
 
The entire of this argument has come around to showing that 
 

8𝑥 + 13𝑦 
 
will be minimized (among points in the shaded region) at this corner point.  If we label the 
coordinates of this corner point as (𝑥0, 𝑦0) then 
 

8𝑥0 + 13𝑦0 
 
is the minimum value we are looking for. 
 
So how can we find this corner point?  This corner point is the point where the lines 2𝑥 + 5𝑦 =
10 and 3𝑥 + 4𝑦 = 12 intersect (i.e. cross). 
 

Corner Point 
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Finding the intersection of two lines boils down to solving two linear equations in two 
unknowns. 
 
That is, we want to find 𝑥 and 𝑦 so that 
 

2𝑥 + 5𝑦 = 10  and  3𝑥 + 4𝑦 = 12. 
 
The point of intersection is the point that lies on both lines which means this point satisfies 
BOTH of these equations. 
 
Solving for 𝑦 in the first equation we have 
 

𝑦 =
10 − 2𝑥

5
. 

 
Substituting this into the second equation we get 
 

3𝑥 + 4 (
10 − 2𝑥

5
) = 12 

 

3𝑥 + 4 (
10 − 2𝑥

5
) = 12 

 ⟹ 15𝑥 + 4(10 − 2𝑥) = 60 

 ⟹  15𝑥 + 40 − 8𝑥 = 60 

 ⟹  7𝑥 = 20 

Corner Point 
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 ⟹ 𝑥 =
20

7
. 

 
 
From here we can solve for 𝑦. 
 

𝑦 =
10 − 2 (

20
7 )

5
=

70 − 40

35
=

30

35
=

6

7
. 

 
 
So the coordinates of this corner point are 
 

(𝑥0, 𝑦0) = (
20

7
,
6

7
). 

 
 
Finally, we can plug these values in to our function  8𝑥 + 13𝑦  to get the minimum possible 
value of this function over all points in the shaded region. 
 

8𝑥0 + 13𝑦0 = 8 (
20

7
) + 13 (

6

7
) =

238

7
= 34. 

 
 
That is, the smallest value of 8𝑥 + 13𝑦 that can be obtained by considering only the (𝑥, 𝑦) 
points in the shaded region defined above is 34. 

∎ 
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8. The region ℛ shown in the figure shown below is the closed set (i.e. it includes the 
 points on the boundary lines) bounded by 
 
 (a)  9𝑥 − 8𝑦 = −12 
 (b)  3𝑥 + 6𝑦 = 35 
 (c)  9𝑥 − 12𝑦 = 30 
 (d)  𝑦 = 0 
 (e)  𝑥 = 0. 
 

 
 
What is the maximum value of 𝑓(𝑥, 𝑦) = 3𝑥 + 4𝑦 + 7 for a point (𝑥, 𝑦) in ℛ?  (MSHSML 
4A894)    

 

Solution 
 
The figures below show that there are points (shown in green) in ℛ where 3𝑥 + 4𝑦 + 7 = 22 
and where 3𝑥 + 4𝑦 + 7 = 34.  But there are no points in ℛ where 3𝑥 + 4𝑦 + 7 = 39. 
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So, the largest value of 3𝑥 + 4𝑦 + 7 must be somewhere between 34 and 39 and can be 
determined by finding that value 𝑘 between 34 and 39 where the line 3𝑥 + 4𝑦 + 7 = 𝑘 goes 
through the intersection point of Line (b) 3𝑥 + 6𝑦 = 35 and Line (c) 9𝑥 − 12𝑦 = 30. 
 

 
 
 
We can solve 3𝑥 + 6𝑦 = 35 and 9𝑥 − 12𝑦 = 30 simultaneously to locate this point of 
intersection. 
 

3(3𝑥 + 6𝑦) − (9𝑥 − 12𝑦) = 3(35) − 30 

30𝑦 = 75 

𝑦 = 5/2 

3𝑥 + 6(5/2) = 35 ⟹ 3𝑥 = 20 ⟹ 𝑥 = 20/3 
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So, this point of intersection has coordinates (𝑥, 𝑦) = (20/3, 5/2).  We can solve for 𝒌 by 
evaluating 3𝑥 + 4𝑦 + 7 at this intersection point (𝑥, 𝑦) = (20/3, 5/2). 
 

𝒌 = 3 (
20

3
) + 4 (

5

2
) + 7 = 20 + 10 + 7 = 37. 

 
We note that this answer is between 34 and 39 as we determined graphically that it must be.  
Therefore, the maximum value of 𝑓(𝑥, 𝑦) = 3𝑥 + 4𝑦 + 7 for a point (𝑥, 𝑦) in ℛ is 𝟑𝟕 and this 
maximum occurs at the point (𝑥, 𝑦) = (20/3, 5/2). 
 
Can we solve this problem without all the careful graphing?  YES!  (Which is great because you 
aren’t allowed a graphing calculator on this test!) 
 

 
 
 

The key geometric insight is that a linear function (in our problem, the line 3𝑥 + 4𝑦 + 7) 
necessarily achieves its maximum (and minimum) at one of the intersection points of the 
linear boundary lines of ℛ. 

 
So, a purely algebraic approach to solve this problem is to find the coordinates of all the 
intersection points and then evaluate our objective function (i.e. the line 3𝑥 + 4𝑦 + 7) at each 
of these intersection points to determine where the objective function is maximized or 
minimized. 
 
In our problem we can find the coordinates of the remaining intersection points (called corner 
points in the field of linear programming) just as we did for the corner point 𝑀(20/3, 5/2). 
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We will find that 𝐿(8/3,9/2), 𝑁(10/3,0), 𝑂(0,0) and 𝐾(0,3/2).  We already have determined 
𝑀(20/3,5/2).  Now we need to evaluate 𝑓(𝑥, 𝑦) = 3𝑥 + 4𝑦 + 7 at each of these corner points. 
 

L : 𝑓 (
8

3
,
9

2
) = 3 (

8

3
) + 4 (

9

2
) + 7 = 33 

M ∶ 𝑓 (
20

3
,
5

2
) = 3 (

20

3
) + 4 (

5

2
) + 7 = 37 

N ∶ 𝑓 (
10

3
, 0) = 3 (

10

3
) + 4(0) + 7) = 30 

O ∶ 𝑓(0,0) = 3(0) + 4(0) + 7 = 7 

K ∶ 𝑓 (0,
3

2
) = 3(0) + 4 (

3

2
) + 7 = 13. 

 

So, without any graphing we know that by evaluating the objective function 𝑓(𝑥, 𝑦) = 3𝑥 +
4𝑦 + 7 over all points (𝑥, 𝑦) in the feasible region (the term used in linear programming for the 
region ℛ) the minimum value of the objective function 𝑓(𝑥, 𝑦) equals 0 and this occurs at the 
corner point 𝑂(0,0) and the maximum value of the objective function 𝑓(𝑥, 𝑦) equals 37 and 
this occurs at the corner point 𝑀(20/3,5/2). 

∎ 
 

4 Story Problems Leading to Linear Equations in One Variable 

 

4.1 Steps in Solving Word Problems 
 
(𝑖) Draw a Diagram 
 

Draw a diagram or graph of what the problem is saying.  Try to scale it accurately so that 
you can get some visual clues to the solution or at least an estimate of the solution. 

 
(𝑖𝑖) Assign Names to Variables 
 

Give letter names to the unknown(s) in the problem. 
 
(𝑖𝑖𝑖) Identify the Goal 
 

Read through the problem and identify (in words and in terms of the names assigned in 
Step (𝑖𝑖)) exactly what the problem is asking you to solve for. 

 
(𝑖𝑣) Identify Relationships 
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Make a list of the relationships (equations) between and among the knowns and the 
unknowns in the problem. 

 
(𝑣) Number of variables compared to the number of equations. 
 

You need to identify at least as many relationships (equations) between the variables 
as the number of unknowns in the problem. 

 
If you have more unknowns (variables) than relationships (equations) go back to the 
statement of the problem, read it again, and look for another relationship in the variables.  
Sometimes these relationships appear to be hidden because of the wording of the problem.  
So, READ CAREFULLY! 

 
(𝑣𝑖) Solve for the unknown(s). 
 
(𝑣𝑖𝑖) Finishing up. 
 

Be sure that your final answer really answers what the problem is specifically asking you to 
find.  (e.g. Don’t give them the diameter if they are asking for the radius.)   
Be sure that your final answer is completely simplified according to MSHSML standards.     
Be sure your answer includes the unit of measure (feet, pages, seconds, etc.). 

 

4.2 Recognizing Key Words 
(This section is taken directly from the website “PurpleMath.Com”.) 

 

Mathematical Translation of Certain Frequently Occurring Key Words: 

 
 Addition: 
  increased by 
  more than 
  combined, together 
  total of 
  sum, plus 
  added to 
 Subtraction: 
  decreased by 
  minus, less 
  difference between/of 
  less than, fewer than 
  left, left over, after 
 Multiplication: 



mathcloset.com   21 

  of 
  times, multiplied by 
  product of 
  increased/decreased by a factor of  
  twice, triple, etc 
  each ("they got three each", etc)  
 Division: 
  per, a 
  out of 
  ratio of, quotient of 
  percent (divide by 100) 
  equal pieces, split 
  average  
 Equals 
  is, are, was, were, will be, would be 
  gives, yields 
  sold for, cost 
  is equivalent to, must be, yields. 
 

5 Absolute Value Equations 
 

5.1 Problem Type I.  |𝒂𝒙 + 𝒃| = 𝒄   
Solve 𝑎𝑥 + 𝑏 = 𝑐 and 𝑎𝑥 + 𝑏 = −𝑐 separately to find both solutions. 

 

9. Find all 𝑥 such that |8 + 5𝑥| = 45. 

 

|8 + 5𝑥| = 14 − 𝑥 

Solution 
 

8 + 3𝑥 = 43 ⟺ 3𝑥 = 35 ⟺ 𝑥 = 7. 

8 + 2𝑥 = −43 ⟺ 5𝑥 = −51 ⟺ 𝑥 = 30. 

∎ 
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5.2 Problem Type II.  |𝒂𝒙 + 𝒃| + |𝒄𝒙 + 𝒅| + ⋯ = 𝒓𝒙 + 𝒔   
The method of break points.  

 
 

10. Find all 𝑥 such that |8 + 5𝑥| = 14 − 𝑥. 

 

Solution 
 
Before starting this problem, let’s consider what goes wrong if we simply mimic the approach 
used in the previous problem and separately solve (8 + 5𝑥) = −(14 − 𝑥) and  
(8 + 5𝑥) = +(14 − 𝑥)?  The problem is that (14 − 𝑥) involves the variable 𝑥 and hence can be 
negative or positive depending on the value of 𝑥.  
 
The method of break points is a technique that adjusts for both possibilities. 
 
Step 1.  Find the value(s) of 𝑥 where the functions inside the absolute value sign(s) equal 0.  We 

will call these the break points.  

In this problem, we need to find the value of 𝑥 where (8 + 5𝑥) = 0. 

8 + 5𝑥 = 0 ⟹ 5𝑥 = −8 ⟹ 𝑥 = −8/5. 

So, in this problem there is a single break point, namely 𝑥 = −8/5.  

 

Step 2.  Draw a number line (just a quick sketch will do) and mark the break points.  It does not 

have to be drawn too accurately. 

 

Step 3.  The break points split the number line into regions.  Figure out whether the expressions 

inside the absolute value signs are ≥ 0  or ≤ 0 in each of these regions and make a chart. 
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Step 4.  Considering each region separately, remove the absolute value signs according to the 

definition 

|𝑔(𝑥)| = {
𝑔(𝑥) if 𝑔(𝑥) ≥ 0

−𝑔(𝑥) if 𝑔(𝑥) ≤ 0.
 

 

In the region 𝑥 ∈ (−∞, −8/5], |8 + 5𝑥| = −(8 + 5𝑥) because (as delineated in the above 

chart), 8 + 5𝑥 is ≤ 0 in this region. 

Therefore, provided 𝑥 ∈ (−∞, −8/5] 

|8 + 5𝑥| = 14 − 𝑥 

is equivalent to 

−(8 + 5𝑥) = 14 − 𝑥. 

Solving for 𝑥 we find 

−8 − 5𝑥 = 14 − 𝑥 

4𝑥 = −22 

𝑥 = −22/4 = −11/2. 

Is this solution within the region we are currently considering, namely the region (−∞, −8/5]?  

Yes.  −11/2 ∈ (−∞, −8/5].  So, this is not an extraneous solution. 

 

Now on to the other region, [−8/5, ∞).  

For 𝑥 ∈ [−8/5, ∞), 
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|8 + 5𝑥| = 14 − 𝑥 

is equivalent to 

+(8 + 5𝑥) = 14 − 𝑥. 

Solving for 𝑥 we find 

8 + 5𝑥 = 14 − 𝑥 

6𝑥 = 6 

𝑥 = 1. 

Is this solution within the region we are currently considering, namely the region [−8/5, ∞)?  

Yes.  1 ∈ [−8/5, ∞).  So, this is not an extraneous solution. 

So, there are two values of 𝑥 where |8 + 5𝑥| = 14 − 𝑥.  Namely at 𝑥 = −11/2 and  
𝑥 = 1. 

∎ 

 

11. Find all 𝑥 such that |3𝑥 − 1| + |2 − 𝑥| = 5 − 𝑥. 

 

Solution 
 
Step 1.  Find the value(s) of 𝑥 where the functions inside the absolute value sign(s) equal 0.  We 

will call these the break points.  

In this problem, we need to find the value of 𝑥 where (3𝑥 − 1) = 0 and the 

value of 𝑥 where (2 − 𝑥) = 0. 

3𝑥 − 1 = 0 ⟹ 3𝑥 = 1 ⟹ 𝑥 = 1/3. 

2 − 𝑥 = 0 ⟹ 𝑥 = 2. 

So there are two break points, namely 𝑥 = 1/3 and 𝑥 = 2.  

 

Step 2.  Draw a number line (just a quick sketch will do) and mark the break points.  It does not 

have to be drawn too accurately. 

 
1

3
 

2 
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Step 3.  The break points split the number line into regions.  Figure out whether the expressions 

inside the absolute value signs are ≥ 0  or ≤ 0 in each of these regions and make a chart. 

 

Step 4.  Considering each region separately, remove the absolute value signs according to the 

definition 

|𝑔(𝑥)| = {
𝑔(𝑥) if 𝑔(𝑥) ≥ 0

−𝑔(𝑥) if 𝑔(𝑥) ≤ 0.
 

 

In the region 𝑥 ∈ (−∞, 1/3], |3𝑥 − 1| = −(3𝑥 − 1) because (as delineated in the above chart), 

3𝑥 − 1 is ≤ 0 in this region.  Also, |2 − 𝑥| = +(2 − 𝑥) = 2 − 𝑥 in this region because 2 − 𝑥 is 

≥ 0 in this region. 

Therefore, provided 𝑥 ∈ (−∞, 1/3] 

|3𝑥 − 1| + |2 − 𝑥| = 5 − 𝑥 

Is equivalent to 

−(3𝑥 − 1) + (2 − 𝑥) = 5 − 𝑥. 

Now we can easily solve this equation. 

−3𝑥 + 1 + 2 − 𝑥 = 5 − 𝑥 

−3𝑥 = 2 

𝑥 = −2/3. 
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Is this solution within the region we are currently considering, namely the region (−∞, 1/3]?  

Yes.  −2/3 ∈ (−∞, 1/3].  So, this is not an extraneous solution. 

 

Now on to the next region, [1/3, 2].  According to our chart, 3𝑥 − 1 and 2 − 𝑥 are both ≥ 0 in 

this region.  So, for 𝑥 ∈ [1/3, 2], 

 

|3𝑥 − 1| + |2 − 𝑥| = 5 − 𝑥 

Is equivalent to 

(3𝑥 − 1) + (2 − 𝑥) = 5 − 𝑥. 

Now we can easily solve this equation. 

3𝑥 − 1 + 2 − 𝑥 = 5 − 𝑥 

3𝑥 = 4 

𝑥 = 4/3. 

Is this solution within the region we are currently considering, namely the region [1/3, 2]?  Yes.  

4/3 ∈ [1/3, 2].  So, this is not an extraneous solution. 

 

Now on to the final region, [2, ∞). According to our chart, 3𝑥 − 1 is ≥ 0 and 2 − 𝑥 is ≤ 0 in this 

region.  So, for 𝑥 ∈ [2, ∞), 

|3𝑥 − 1| + |2 − 𝑥| = 5 − 𝑥 

is equivalent to 

(3𝑥 − 1) − (2 − 𝑥) = 5 − 𝑥. 

Now we can easily solve this equation. 

3𝑥 − 1 − 2 + 𝑥 = 5 − 𝑥 

5𝑥 = 8 

𝑥 = 8/5. 
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Is this solution within the region we are currently considering, namely the region [2, ∞)?  No.  

8/5 ∉ [2, ∞).  So, this is an extraneous solution.  It is not a solution to the original problem. 

 

So, there are two values of 𝑥 where |3𝑥 − 1| + |2 − 𝑥| = 5 − 𝑥.  Namely at 𝑥 = −2/3 and 𝑥 =

4/3. 

∎ 

 

12. Find all 𝑥 such that 

|
2|𝑥| − 3

4|𝑥 − 1|
| = 2. 

 

Solution 
 
Is this really a problem of the form |𝑎𝑥 + 𝑏| + |𝑐𝑥 + 𝑑| + ⋯ = 𝑟𝑥 + 𝑠? 
 
To see that it is, we start by separating the problem into two distinct parts.  In the first part we 

will find all values of 𝑥 such that 

2|𝑥| − 3

4|𝑥 − 1|
= 2. 

 

In the second part we will find all values of 𝑥 such that 

 

2|𝑥| − 3

4|𝑥 − 1|
= −2. 

 

Our final answer is the set of all 𝑥 values that satisfy either the first part of the second part. 

 

Now notice that in the first part, 

 

2|𝑥| − 3

4|𝑥 − 1|
= 2 ⟺ 2|𝑥| − 3 = 8|𝑥 − 1| ⟺ 2|𝑥| − 8|𝑥 − 1| = 3. 

 

And in the second part 

 

2|𝑥| − 3

4|𝑥 − 1|
= −2 ⟺ 2|𝑥| − 3 = −8|𝑥 − 1| ⟺ 2|𝑥| + 8|𝑥 − 1| = 3. 
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So, what we really have here is two separate problems, both of the form  
|𝑎𝑥 + 𝑏| + |𝑐𝑥 + 𝑑| + ⋯ = 𝑟𝑥 + 𝑠. 
 

 

Part 1.  
2|𝑥| − 3

4|𝑥 − 1|
= 2  or   2|𝑥| − 8|𝑥 − 1| = 3. 

 
 

Break points: 0,1 
 

𝑥 − + + 

𝑥 − 1 − − + 

 

 

 
 

Case 𝟏 (of Part 𝟏).  𝒙 ∈ (−∞, 𝟎] 
 

2|𝑥| − 3 = 8|𝑥 − 1| 

2(−𝑥) − 3 = 8(−(𝑥 − 1)) 

−2𝑥 − 3 = −8𝑥 + 8 

6𝑥 = 11 

𝑥 = 11/6 

 
Is this solution within the region we are currently considering, namely the region (−∞, 0]?  No.  
11/6 ∉ (−∞, 0].  So, this is not a valid solution.  It is an extraneous solution. 
 
 

Case 𝟐 (of Part 𝟏).  𝒙 ∈ [𝟎, 𝟏] 
 

2|𝑥| − 3 = 8|𝑥 − 1| 

2(+𝑥) − 3 = 8(−(𝑥 − 1)) 

2𝑥 − 3 = −8𝑥 + 8 
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10𝑥 = 11 

𝑥 = 11/10. 

 
Is this solution within the region we are currently considering, namely the region [0,1]?  No.  
11/10 ∉ [0,1].  So, this is not a valid solution.  It is an extraneous solution. 
 

Case 𝟑 (of Part 𝟏).  𝒙 ∈ [𝟏, ∞) 
 

2|𝑥| − 3 = 8|𝑥 − 1| 

2(+𝑥) − 3 = 8(+(𝑥 − 1)) 

2𝑥 − 3 = 8𝑥 − 8 

−6𝑥 = −5 

𝑥 = 5/6 

 
Is this solution within the region we are currently considering, namely the region [1, ∞)?  No.  
5/6 ∉ [1, ∞).  So this is not a valid solution.  It is an extraneous solution. 
 
So, Part 1 has no solutions.  That is, there are no values of 𝑥 where 2|𝑥| − 8|𝑥 − 1| = 3. 
 
 

Part 2.  
2|𝑥| − 3

4|𝑥 − 1|
= −2  or   2|𝑥| + 8|𝑥 − 1| = 3. 

 
 
Break points: 0,1 
 

𝑥 − + + 

𝑥 − 1 − − + 

 

 

 
 

Case 𝟏 (of Part 𝟐).  𝒙 ∈ (−∞, 𝟎] 
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2|𝑥| − 3 = −8|𝑥 − 1| 

2(−𝑥) − 3 = −8(−(𝑥 − 1)) 

−2𝑥 − 3 = 8𝑥 − 8 

−10𝑥 = −5 

𝑥 = 1/2 

 
Is this solution within the region we are currently considering, namely the region (−∞, 0]?  No.  
1/2 ∉ (−∞, 0].  So, this is not a valid solution.  It is an extraneous solution. 
 
 

Case 𝟐 (of Part 𝟐).  𝒙 ∈ [𝟎, 𝟏] 
 

2|𝑥| − 3 = −8|𝑥 − 1| 

2(+𝑥) − 3 = −8(−(𝑥 − 1)) 

2𝑥 − 3 = 8𝑥 − 8 

−6𝑥 = −5 

𝑥 = 5/6 

 
Is this solution within the region we are currently considering, namely the region [0,1]?  Yes.  
5/6 ∈ [0,1].  So, this is a valid solution.  It is not an extraneous solution. 
 

Case 𝟑 (of Part 𝟐).  𝒙 ∈ [𝟏, ∞) 
 

2|𝑥| − 3 = −8|𝑥 − 1| 

2(+𝑥) − 3 = −8(+(𝑥 − 1)) 

2𝑥 − 3 = −8𝑥 + 8 

10𝑥 = 11 

𝑥 = 11/10 

Is this solution within the region we are currently considering, namely the region [1, ∞)? Yes.  
11/10 ∈ [1, ∞).  So, this is a valid solution.  It is not an extraneous solution. 
 
So, Part 2 has two solutions.  That is, there are two values of 𝑥 where 2|𝑥| + 8|𝑥 − 1| = 3.  
Namely, 𝑥 = 5/6 and 𝑥 = 11/10. 
 
Combining the solutions from parts 1 and 2 we see that 𝑥 = 5/6 and 𝑥 = 11/10 are the only 
two solutions of  
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|
2|𝑥| − 3

4|𝑥 − 1|
| = 2. 

∎ 

 

5.3 Problem Type III.  Nested Absolute Values.  |𝒂𝒙 + |𝒃𝒙 + |𝒄𝒙 + 𝒅||| = 𝒓𝒙 + 𝒔 

Work from the inside and go out. 

 

13.  Find the sum of all solutions of 𝑥 = |2𝑥 − |60 − 2𝑥||. 

 

Solution 

First, let’s simplify |2𝑥 − |60 − 2𝑥||, working from the inside and going out. 

|2𝑥 − |60 − 2𝑥|| = {
|2𝑥 − (+1)(60 − 2𝑥)|   if  60 − 2𝑥 ≥ 0
|2𝑥 − (−1)(60 − 2𝑥)|   if  60 − 2𝑥 ≤ 0

 

= {
|4𝑥 − 60|   if  𝑥 ≤ 30

60   if  𝑥 ≥ 30
 

= {
4𝑥 − 60   if  𝑥 ≤ 30  and 4𝑥 − 60 ≥ 0

−(4𝑥 − 60)   if  𝑥 ≤ 30  and 4𝑥 − 60 ≤ 0
60   if  𝑥 ≥ 30

 

= {
4𝑥 − 60   if  𝑥 ≤ 30  and 𝑥 ≥ 15
60 − 4𝑥   if  𝑥 ≤ 30  and 𝑥 ≤ 15

60   if  𝑥 ≥ 30.
 

= {
4𝑥 − 60   if  15 ≤ 𝑥 ≤ 30
60 − 4𝑥   if  𝑥 ≤ 15

60   if  𝑥 ≥ 30.
 

 

So, the problem reduces to finding all 𝑥 in [15,30] where 𝑥 = 4𝑥 − 60, all 𝑥 in (−∞, 30] where 

𝑥 = 60 − 4𝑥 and all 𝑥 in [30, ∞) where 𝑥 = 60. 

 

𝑥 = 4𝑥 − 60 ⟹ −3𝑥 = −60 ⟹ 𝑥 = 20 

and 20 is in the required interval [15,30] so this is a valid solution. 
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𝑥 = 60 − 4𝑥 ⟹ 5𝑥 = 60 ⟹ 𝑥 = 12 

and 12 is in the required interval (−∞, 15] so this is a valid solution. 

 

𝑥 = 60 ⟹ 𝑥 = 60 

and 60 is in the required interval [30, ∞) so this is a valid solution. 

 

So, the three solutions are 𝑥 = 12, 𝑥 = 20 and 𝑥 = 60 is in the required interval [30, ∞).  So 

this is a valid solution.   

 

Therefore, the sum equals of all solutions equals 12 + 20 + 60 = 92. 

∎ 

 

14.  Find all 𝑥 such that |3𝑥 − |𝑥 + 4|| = 3𝑥 + 2. 

 

Solution 

 

Solution 

First, let’s simplify |3𝑥 − |𝑥 + 4||, working from the inside and going out. 

|3𝑥 − |𝑥 + 4|| = {
|3𝑥 − (+1)(𝑥 + 4)|   if  𝑥 + 4 ≥ 0
|3𝑥 − (−1)(𝑥 + 4)|  if 𝑥 + 4 ≤ 0

 

= {
|2𝑥 − 4|   if  𝑥 + 4 ≥ 0
|4𝑥 + 4|   if  𝑥 + 4 ≤ 0

 

= {

2𝑥 − 4    if  𝑥 + 4 ≥ 0  and  2𝑥 − 4 ≥ 0
−(2𝑥 − 4)    if  𝑥 + 4 ≥ 0  and  2𝑥 − 4 ≤ 0

4𝑥 + 4    if  𝑥 + 4 ≤ 0  and  2𝑥 − 4 ≥ 0
−(4𝑥 + 4)    if  𝑥 + 4 ≤ 0  and  2𝑥 − 4 ≤ 0
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= {

2𝑥 − 4    if  𝑥 ≥ −4  and  𝑥 ≥ 2
−(2𝑥 − 4)    if  𝑥 ≥ −4  and  𝑥 ≤ 2

4𝑥 + 4    if  𝑥 ≤ −4  and  𝑥 ≥ 2
−(4𝑥 + 4)    if  𝑥 ≤ −4  and  𝑥 ≤ 2

  

= {

2𝑥 − 4    if  𝑥 ≥ 2
−(2𝑥 − 4)    if − 4 ≤ 𝑥 ≤ 2

4𝑥 + 4 impossible
−(4𝑥 + 4)    if  𝑥 ≤ −4.

  

 

Now we can start solving for 𝑥. 

3𝑥 + 2 = 2𝑥 − 4 ⟺ 𝑥 = −6 

But −6 is not in the required interval [2, ∞] so this is not a valid solution. 

 

3𝑥 + 2 = −(2𝑥 − 4) ⟺ 5𝑥 = 2 ⟺ 𝑥 = 2/5 

And 2/5 is in the required interval [−4,2] so this is a valid solution. 

 

3𝑥 + 2 = −(4𝑥 + 4) ⟺ 7𝑥 = −6 ⟺ 𝑥 = −6/7 

But −6/7 is not in the required interval (−∞, −4] so this is not a valid solution. 

 

Therefore, 𝑥 = 2/5 is the only value of 𝑥 such that |3𝑥 − |𝑥 + 4|| = 3𝑥 + 2. 

∎ 

 

6 Absolute Value Inequalities 
 

6.1 Two Key Results 
 

The two keys to working with absolute value inequalities are 

 

(𝑖) |𝑓(𝑥)| < 𝑎 ⟺ −𝑎 < 𝑓(𝑥) < 𝑎,   for all 𝑎 ≥ 0 

and 

(𝑖𝑖) |𝑓(𝑥)| < 𝑎 ⟺ 𝑓(𝑥) < −𝑎   or  𝑓(𝑥) > 𝑎,   for all 𝑎 ≥ 0. 
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15.  Find the solution set for |𝑥 + 5| < 2. 

 

Solution 

|𝑥 + 5| < 2 
 

⟺ −2 < 𝑥 + 5 < 2 
 
⟺ −2 − 5 < 𝑥 < 2 − 5 
 
⟺ −7 < 𝑥 < −3 

 
In set notation, this is (−7, −3). 

∎ 

 

16.  Find the solution set for |𝑥 + 5| > 2. 

 

Solution 

 

|𝑥 + 5| > 2 
 

⟺ 𝑥 + 5 < −2      or      𝑥 + 5 > 2 
 

⟺ 𝑥 < −2 − 5      or      𝑥 > 2 − 5 
 
⟺ 𝑥 < −7     or      𝑥 > −3 

 

In set notation, this is (−∞, −7) ∪ (−3, ∞). 

∎ 

 

We can handle a two-sided absolute value inequality by breaking it into two separate problems 

and then find the intersection of the two solutions. 
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17.  Find the solution set of 1 ≤ |2𝑥 − 1| ≤ 5. 

 

Solution 

|2𝑥 − 1| ≤ 5  and   |2𝑥 − 1| ≥ 1 

 

−5 ≤ 2𝑥 − 1 ≤ 5 

−4 ≤ 2𝑥 ≤ 6 

−2 ≤ 𝑥 ≤ 3 

 
and 
 

|2𝑥 − 1| ≥ 1 

2𝑥 − 1 ≤ −1  or  2𝑥 − 1 ≥ 1 

𝑥 ≤ 0  or  𝑥 ≥ 2. 

 
 
Now we need to use the distributive rule for sets, namely, 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).  
Recall that “∩” means “intersection” which means “and”.  Also recall that “∪” means “union” 
which means “or”. 
 

(−2 ≤ 𝑥 ≤ 3) and (𝑥 ≤ 0  or  𝑥 ≥ 2) 
 

(−2 ≤ 𝑥 ≤ 3  and  𝑥 ≤ 0) or (−2 ≤ 𝑥 ≤ 3  and  𝑥 ≥ 2) 
 

(−2 ≤ 𝑥 ≤ 0) or (2 ≤ 𝑥 ≤ 3). 
 
 
In set notation, this is [−2,0] ∪ [2,3]. 

∎ 
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Problem Type 4:  Mixed absolute value and linear inequalities 
 

Find the solution set of |2𝑥 − 5| ≤ 𝑥 + 3. 

 
Problem Type 5:  Inequalities involving two absolute value functions 
 

Find the solution set of |2𝑥 + 5| + |4𝑥 + 7| < 30. 

 
For 𝑎 ≤ 𝑏, 
 

|𝑥 − (
𝑎 + 𝑏

2
)| <

𝑏 − 𝑎

2
  ⟺   𝑥 > 𝑎   and   𝑥 < 𝑏 

 

|𝑥 − (
𝑎 + 𝑏

2
)| >

𝑏 − 𝑎

2
  ⟺   𝑥 < 𝑎   or   𝑥 > 𝑏 

 
 
 
 

Problem 8. Find the solution set to |4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥|. 

 
Answer 

𝑥 ∈ (−∞, −𝟐]∪ [𝟒/𝟕, ∞). 
Proof 

Break Points ∶  4𝑥 − 1 = 0 ⟹ 𝑥 =
𝟏

𝟒
,   2 − 𝑥 = 0 ⟹ 𝑥 = 𝟐. 

 
 

4𝑥 − 1 − + + 

2 − 𝑥 + + − 

 

 

 

Case 𝟏.  𝒙 ∈ (−∞,
𝟏

𝟒
] 

|4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥| 
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−(4𝑥 − 1) + 2𝑥 ≥ 1 + (+(2 − 𝑥)) 

−4𝑥 + 1 + 2𝑥 ≥ 1 + 2 − 𝑥 
−𝑥 ≥ 2 
𝑥 ≤ −2 

So what we are looking for are those 𝑥 ∈ (−∞, 1/4] and (−∞, −2].  That is, 
𝑥 ∈ (−∞, 1/4] ∩ (−∞, −2] = (−∞, −𝟐]. 

 
Case 𝟐.  𝒙 ∈ [𝟏/𝟒, 𝟐] 

|4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥| 
+(4𝑥 − 1) + 2𝑥 ≥ 1 + (+(2 − 𝑥)) 

4𝑥 − 1 + 2𝑥 ≥ 1 + 2 − 𝑥 
7𝑥 ≥ 4 

𝑥 ≥ 4/7 
 
So what we are looking for are those 𝑥 ∈ [1/4,2] and [4/7, ∞).  That is, 

𝑥 ∈ [1/4,2] ∩ [4/7, ∞) = [𝟒/𝟕 , 𝟐]. 
 
Case 𝟑.  𝒙 ∈ [𝟐, ∞) 

|4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥| 

+(4𝑥 − 1) + 2𝑥 ≥ 1 + (−(2 − 𝑥)) 

4𝑥 − 1 + 2𝑥 ≥ 1 − 2 + 𝑥 
5𝑥 ≥ 0 
𝑥 ≥ 0 

 
So what we are looking for are those 𝑥 ∈ [2, ∞) and [0, ∞).  That is, 

𝑥 ∈ [2, ∞) ∩ [0, ∞) = [𝟐, ∞). 
 
So the values of 𝑥 where |4𝑥 − 1| + 2𝑥 < 6 − |2 − 𝑥| are 

𝑥 ∈ (−∞, −𝟐]  or [𝟒/𝟕 , 𝟐] or [𝟐, ∞). 
 
That is,  

𝑥 ∈ (−∞, −𝟐] ∪ [𝟒/𝟕 , 𝟐] ∪ [𝟐, ∞) 
𝑥 ∈ (−∞, −𝟐]∪ [𝟒/𝟕, ∞). 

 
In graph form, the answer is 
 

 
 
 
To help you visualize what is going on, I used the computer program “Geogebra” to graph the 
problem.  You can see from the graph that |4𝑥 − 1| + 2𝑥 (in blue) is greater than or equal to 

𝑥 𝟒

𝟕
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(i.e. above or touching) 1 + |2 − 𝑥|  (in red) when −∞ < 𝑥 ≤ −2 and also when 4/7 ≤ 𝑥 < ∞ 
(as we just showed algebraically).   
 

 
 
 
 

 
 
 



mathcloset.com   39 
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mathcloset.com   41 

 
 
 
 

7 Absolute Value as a Square Root 
 
 

√𝑥2 = |𝑥| 
 
 

8 Quadratic Equations where 𝒙2 Term Drops Out 
 
 

9 Rational Function Equations 
 

Find the set of all 𝑥 values such that  

5

2𝑥 − 3
=

3

𝑥 + 5
. 

 

10 Rational Function Inequalities 
 
If 𝑎 nor 𝑏 equals 0 then 
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𝑎 < 𝑏 ⟺
1

𝑏
<

1

𝑎
. 

 
 
 
 
CUT POINTS 

If 𝑟(𝑥) = 𝑃(𝑥)/𝑄(𝑥) is a rational function, the cut points of 𝑟(𝑥) are the values of 𝑥 at which 

either 𝑃(𝑥) = 0 or 𝑄(𝑥) = 0.   
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Find the set of all 𝑥 values such that  

𝑥 + 3

𝑥 − 3
< 3. 

𝑥 + 3

𝑥 − 3
−

3(𝑥 − 3)

𝑥 − 3
< 0 

𝑥 + 3 − 3𝑥 + 9

𝑥 − 3
< 0 

 

−2𝑥 + 12

𝑥 − 3
< 0 

 

−2(𝑥 − 6)

𝑥 − 3
< 0 

 

 

 3 6 

− + − 
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(−∞, 3) ∪ (6, ∞) 

 

Find the set of all 𝑥 values such that  

1

𝑥 − 2
≥

2

𝑥 + 3
. 
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18. Find all values of 𝑥 such that 
1

3𝑥+5
> 2. 
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Solution 

Would it be correct to say 

1

3𝑥 + 5
> 2 ⟺ 3𝑥 + 5 <

1

2
  ? 

No.  Why not? 

∎ 
 

 

11 Conjunctions and Disjunctions 
 
 

11.1 Definitions of Conjunction and Disjunction 
 

11.1.1 Conjunction 
 

The compound (two part) inequality 

(inequality statement #1)  and  (inequality statement #2) 

is called an inequality conjunction.  The “and” implies an intersection (overlap) of the 
answers of the two inequality statements. 
 

Note that the simple conjunction 𝑥 > 𝑎 and 𝑥 < 𝑏 simplifies 𝑎 < 𝑥 < 𝑏. 

11.1.2 Disjunction 
 

The compound (two part) inequality 

(inequality statement #1)  or  (inequality statement #2) 

is called an inequality disjunction.  The “or” implies the union (take everything) of the 

answers of the two inequality statements. 

11.2 Absolute Value Inequalities, Conjunctions and Disjunctions 
 
For all real numbers 𝑎 and 𝑏, 𝑏 > 0, the following statements are true. 

 
1. If |𝑎| < 𝑏, then 𝑎 < 𝑏 and 𝑎 > −𝑏  (a conjunction).  This conjunction simplifies to −𝑏 < 𝑎 <

𝑏. 
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2. If |𝑎| > 𝑏, then 𝑎 > 𝑏 or 𝑎 < −𝑏 (a disjunction). 
 
These statements are also true of ≤ and ≥. 

 

11.3 Simplifying Conjunctions and Disjunctions 
 

Problem 1.  Simplify the conjunction:  −4 ≤ 𝑥 < 1  and  −3 ≤ 𝑥 ≤ 3. 

 
Solution 
 

 

In set notation 

−4 ≤ 𝑥 < 1  and  − 3 ≤ 𝑥 ≤ 3 ≡  [−3,1) 

∎ 
 

 

Problem 2.  Simplify the disjunction:  −2 < 𝑥 < 2  or  −3 ≤ 𝑥 ≤ 0. 

 
Solution 
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In set notation 

−2 < 𝑥 < 2   or  − 3 ≤ 𝑥 ≤ 0 ≡ [−3,2). 

∎ 
 

 

Problem 3.  Simplify the disjunction:  −∞ < 𝑥 < −1  or −1 < 𝑥 < ∞. 

 
Solution 
 

 

In set notation 

−∞ < 𝑥 < −1   or − 1 < 𝑥 < ∞ ≡ (−∞, −1) ∪ (−1, ∞). 
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∎ 
 
 


