
mathcloset.com   1 

MSHSML Meet 3, Event A 
Study Guide 

 
 

3A Systems of Linear Equations in Two (or on occasion three) Variables 
 Numeric and literal systems 
 Relation to graphical procedures 
 Word problems leading to such systems 
 Systems of inequalities used to define a region in the plane 
 Determinants 
 

1 Contents 
 

1 Contents ..............................................................................................................................1 

2 Determinants .......................................................................................................................2 

2.1 Computation of a Determinant for the 𝟐 × 𝟐 Case ................................................................... 2 

2.2 Computation of a Determinant for the 𝟑 × 𝟑 Case ................................................................... 3 

2.3 Computation of a Determinant for the 𝟒 × 𝟒 Case ................................................................... 4 

2.4 Computation of a Determinant in the 𝒏 × 𝒏 Case .................................................................... 5 

2.4.1 Expanding Along a Row .................................................................................................... 6 

2.4.2 Expanding Along a Column ............................................................................................... 6 

3 Determinants: Geometric Applications ................................................................................7 

3.1 Two-Point Form of the Equation of Line ................................................................................... 7 

3.2 Distance from a Point to a Line ................................................................................................. 7 

3.3 Distance from a Point to a Plane............................................................................................... 7 

3.4 Area of a Triangle in the 𝒙𝒚-Plane ............................................................................................ 7 

3.5 Area of a Parallelogram ............................................................................................................ 8 

3.6 Volume of a Tetrahedron ......................................................................................................... 8 

3.7 Volume of a Parallelepiped ...................................................................................................... 8 

3.8 Test for Collinear Points in the 𝒙𝒚-Plane .................................................................................. 9 

3.9 Test for Concurrent Lines ......................................................................................................... 9 

3.10 Test for Coplanar Points in Space ........................................................................................... 10 

3.11 Three-Point Form of the Equation of a Plane .......................................................................... 10 

3.12 Three-Point Form of the Equation of a Circle .......................................................................... 10 



mathcloset.com   2 

3.13 Three-Point Form of the Equation of a Parabola ..................................................................... 11 

3.14 Four-Point Form of the Equation of an Ellipse......................................................................... 11 

3.15 Five-Point Form of the Equation of a Conic Section (Parabola, Hyperbola, Ellipse) .................. 11 

4 Systems of Linear Equations ...............................................................................................12 

4.1 Matrix Notation ..................................................................................................................... 12 

4.2 Homogeneous and Inhomogeneous Systems of Linear Equations ........................................... 13 

4.3 Determinants and Solution Vectors of a Linear System ........................................................... 14 

4.3.1 Number of Solutions of a Homogeneous Linear System .................................................. 14 

4.3.2 Number of Solutions of a Nonhomogeneous Linear System ............................................ 14 

4.3.3 Cramer’s Rule for Solving a System of Linear Equations .................................................. 14 

5 Reduced Row Echelon Form ...............................................................................................16 

6 Inequalities ........................................................................................................................19 

6.1 Algebra of Inequalities ........................................................................................................... 19 

6.2 Compound (or System) of Inequalities .................................................................................... 20 

6.3 Selected Solved Inequality Problems ...................................................................................... 21 

6.3.1 Solving two-sided absolute value inequalities ................................................................. 21 

6.3.2 Solving two-sided absolute value inequalities ................................................................. 25 

6.3.3 Solving mixed absolute value and linear inequalities....................................................... 26 

6.3.4 Solving inequalities involving two absolute values .......................................................... 28 

6.3.5 Solving inequalities involving reciprocals ........................................................................ 32 

6.3.6 Inequality problems involving multiplying or dividing by functions of 𝒙 .......................... 33 

6.4 Geometry and Inequalities ..................................................................................................... 35 

6.5 Miscellaneous ........................................................................................................................ 36 

6.6 Linear Programming Problems ............................................................................................... 37 

7 Extra Solved Problems........................................................................................................51 

 

2 Determinants 
 
The determinant of a square matrix A, which is denoted by either |A| or det(A), is defined by 
describing formulas for calculating it. 
 

2.1 Computation of a Determinant for the 𝟐 × 𝟐 Case 
 

|
𝑎1 𝑏1
𝑎2 𝑏2

| = det (
𝑎1 𝑏1
𝑎2 𝑏2

) = 𝑎1𝑏2 − 𝑏1𝑎2. 
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Here is an algorithm for remembering the determinant (det) of a 2 × 2 matrix. 

Step 1.  Multiple the elements on the main diagonal going left to right to get 𝑎1𝑏2. 

Step 2.  Multiple the elements on the main diagonal going right to left to get 𝑏1𝑎2. 

Step 3.  Subtract the results of Steps 1 and 2.  

 

 

2.2 Computation of a Determinant for the 𝟑 × 𝟑 Case 
 

|
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

| = det (
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

) 

= (𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑎3 + 𝑐1𝑎2𝑏3) − (𝑏1𝑎2𝑐3 + 𝑎1𝑐2𝑏3 + 𝑐1𝑏2𝑎3). 

 

Here is an algorithm for remembering the determinant (det) of a 3 × 3 matrix. 

Step 1.  Augment (add on) the 3 × 3 matrix with the first two columns 

(
𝑎1 𝑏1 𝑐1 𝒂𝟏 𝒃𝟏
𝑎2 𝑏2 𝑐2 𝒂𝟐 𝒃𝟐
𝑎3 𝑏3 𝑐3 𝒂𝟑 𝒃𝟑

). 

Step 2. Multiple the elements on the three main diagonals going left to right and then add the 

results to get 𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑎3 + 𝑐1𝑎2𝑏3. 

 

 

Step 3. Repeat Step 2 but going right to left to get 𝑏1𝑎2𝑐3 + 𝑎1𝑐2𝑏3 + 𝑐1𝑏2𝑎3. 
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Step 4.  Subtract the results of Steps 2 and 3. 

det (
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

) 

= (𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑎3 + 𝑐1𝑎2𝑏3) − (𝑏1𝑎2𝑐3 + 𝑎1𝑐2𝑏3 + 𝑐1𝑏2𝑎3). 

 

 CAUTION!   The method of multiplying the elements on diagonals and adding when going left 

to right but subtracting when going right to left DOES NOT (unfortunately) extend to finding the 

determinant of a 4 × 4 or higher.  

 

2.3 Computation of a Determinant for the 𝟒 × 𝟒 Case 
 

The formula below shows how to reduce the problem of finding the determinant of a 4 × 4 

square matrix to the “simpler” problem of finding the determinant of four separate 3 × 3 

square matrices. 

 

det(

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,2 𝑎33 𝑎3,4
𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4

) 

 

= 𝑎1,1 ⋅ det (

𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,2 𝑎3,3 𝑎3,4
𝑎4,2 𝑎4,3 𝑎4,4

) − 𝑎1,2 ⋅ det (

𝑎2,1 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,3 𝑎3,4
𝑎4,1 𝑎4,3 𝑎4,4

) 

+ 𝑎1,3 ⋅ det (

𝑎2,1 𝑎2,2 𝑎2,4
𝑎3,1 𝑎3,2 𝑎3,4
𝑎4,1 𝑎4,2 𝑎4,4

) − 𝑎1,4 ⋅ det (

𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,1 𝑎3,2 𝑎3,3
𝑎4,1 𝑎4,2 𝑎4,3

). 
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2.4 Computation of a Determinant in the 𝒏 × 𝒏 Case 
 

Imagine drawing a line through the 𝑖th row and 𝑗th column of the 𝑛 × 𝑛 square matrix 𝐴.  Below 

we demonstrate the case where we have drawn a line through the 4th row and 2nd column of 
the 4 × 4 square 𝐴. 

 
 

In general, what is left is a matrix of size (𝑛 − 1) × (𝑛 − 1).  In the above example, what is left 

is the 3 × 3 matrix 

(

𝑎1,1 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,3 𝑎3,4

). 

 

The determinant of the matrix that remains after crossing out a row and column is known as a 

minor of the original matrix. 

The minor that results from calculating the determinant of the matrix that remains after 

crossing out the 𝑖th row and 𝑗th column is referred to as the (𝑖, 𝑗) minor and is by 𝑀𝑖,𝑗. 

In the above 4 × 4 matrix 

𝐴 = (

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,2 𝑎33 𝑎3,4
𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4

) 

we can see that 

𝑀4,2 = det (

𝑎1,1 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,3 𝑎3,4

). 

 

If we multiple 𝑀𝑖,𝑗  by (−1)𝑖+𝑗  the result is known as the (𝑖, 𝑗) cofactor of matrix 𝐴 and is 

denoted by 𝐴𝑖,𝑗. 

In the above example, 
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𝐴4,2 = (−1)
4+2𝑀4,2 = (−1)

4+2 det (

𝑎1,1 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,3 𝑎3,4

). 

 

It turns out that there is a relationship between the determinant of the 𝑛 × 𝑛 matrix 𝐴 and its 

cofactors. 

2.4.1 Expanding Along a Row 
 

If 𝑎𝑖,𝑗  is the element in the 𝑖th row and 𝑗th column of the 𝑛 × 𝑛 square matrix 𝐴 and if 𝐴𝑖,𝑗 is the 

(𝑖, 𝑗) cofactor of the matrix 𝐴, then for every 𝑖 = 1,2,… , 𝑛  

det(𝐴) = 𝑎𝑖,1𝐴𝑖,1 + 𝑎𝑖,2𝐴𝑖,2 +⋯+ 𝑎𝑖,𝑛𝐴𝑖,𝑛 . 

Using this formula to find det(𝐴) is known as the method of “expanding along the 𝑖th row.  It 

does not matter which row you pick – you get the same result regardless of which row you 

“expand along”. 

Which row should you pick?  Again, you will get the same answer regardless of which row you 

to pick to “expand along”.  So, unless you have some special reason for picking a particular row, 

it is typical to “expand along” the top (or 1st row).  In this case you have 

det(𝐴) = 𝑎1,1𝐴1,1 + 𝑎1,2𝐴1,2 +⋯+ 𝑎1,𝑛𝐴1,𝑛 . 

What might be a good “special reason” for expanding along a different row other than the top 

row?  Well, imagine the 𝑖th row has several zeros in it.  That is, several of the entries 𝑎𝑖,1, 𝑎𝑖,2,…, 

𝑎𝑖,𝑛 equal 0. 

Then expanding along that row is a smart idea because if 𝑎𝑖,𝑗 = 0 then you will not need to find 

𝐴𝑖,𝑗 because you will just be multiplying it by 𝑎𝑖,𝑗 = 0 which makes that term drop out. 

So, it can be a time saver to expand along a row with lots of zeros, if one exists. 

Look back now and notice that the formula given in the previous section for finding the 

determinant of a 4 × 4 matrix is just the result of expanding that 4 × 4 matrix along the top 

row. 

Can you expand along a column instead of a row?  YES! 

2.4.2 Expanding Along a Column 
 

If 𝑎𝑖,𝑗  is the element in the 𝑖th row and 𝑗th column of the 𝑛 × 𝑛 square matrix 𝐴 and if 𝐴𝑖,𝑗 is the 

(𝑖, 𝑗) cofactor of the matrix 𝐴, then for every 𝑗 = 1,2, … , 𝑛  

det(𝐴) = 𝑎1,𝐽𝐴1,𝐽 + 𝑎2,𝐽𝐴2,𝐽 +⋯+ 𝑎𝑛,𝑗𝐴𝑛,𝑗. 
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Using this formula to find det(𝐴) is known as the method of “expanding along the 𝑗th column.  

It does not matter which row you pick – you get the same result regardless of which row you 

“expand along”. 

So, again it can be a time saver to pick a column with a lot of zeros. 

 

3 Determinants: Geometric Applications 
 

3.1 Two-Point Form of the Equation of Line 
 

An equation of the line passing through the distinct points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by 

det (
𝑥 𝑦 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

) = 0. 

 

3.2 Distance from a Point to a Line 
 
The shortest (i.e. perpendicular) distance from the line passing through the distinct points 
(𝑥1, 𝑦1) and (𝑥2, 𝑦2) to a point (𝑥0, 𝑦0) not on that line is given by  
 

±

det (

𝑥0 𝑦0 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

)

√(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2
 

 

where the sign (±) is chosen to give a positive distance. 

 

3.3 Distance from a Point to a Plane 
 

𝐴𝑎 + 𝐵𝑏 + 𝐶𝑐 + 𝐷

√𝐴2 + 𝐵2 + 𝐶2
. 

 

3.4 Area of a Triangle in the 𝒙𝒚-Plane 
 

The area of a triangle with vertices (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) is given by 

±
1

2
det (

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

) 



mathcloset.com   8 

where the sign (±) is chosen to give a positive area. 

 

3.5 Area of a Parallelogram 
 
The area of a parallelogram where any three of the four vertices of this parallelogram are 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) is given by 

±det (
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

) 

 

where the sign (±) is chosen to give a positive area.   

Note 1: There are 3 different parallelograms that share these three given vertices but all three 

of these possible parallelograms have the same area.  So, it does not matter which three of the 

four vertices of this parallelogram you use to find the area. 

Note 2: If a parallelogram is denoted 𝐴𝐵𝐶𝐷 and you know which three of these four vertices 
are given, then there is only one possible parallelogram that can be formed because the 
notation 𝐴𝐵𝐶𝐷 implies the vertices follow the cyclic order 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐴. 
 

3.6 Volume of a Tetrahedron 
 

The volume of a tetrahedron with vertices (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3) and (𝑥4, 𝑦4, 𝑧4) is 
given by 
 

±
1

6
det(

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
𝑥3 𝑦3 𝑧3 1
𝑥4 𝑦4 𝑧4 1

) 

 
where the sign (±) is chosen to give a positive volume. 

 

3.7 Volume of a Parallelepiped 
 

A parallelepiped is a solid in which each face is a parallelogram. 
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If vertex 𝑃 in the above figure has coordinates (𝑥1, 𝑦1, 𝑧1) and if the three vertices 𝑄, 𝑅 and 𝑆 

adjacent to 𝑃 have coordinates (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3) and (𝑥4, 𝑦4, 𝑧4), then the volume of the 

parallelepiped is 

±det(

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
𝑥3 𝑦3 𝑧3 1
𝑥4 𝑦4 𝑧4 1

) 

where the sign (±) is chosen to give a positive volume. 

 

3.8 Test for Collinear Points in the 𝒙𝒚-Plane 
 

The three points (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) are collinear if and only if 

det (
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

) = 0. 

Note:  Remembering that 

±
1

2
det (

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

) 

is the area of the triangle with vertices (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3), we see that the test of 

collinearity of three points is equivalent to a check on whether the area of the triangle with 

these three points as vertices equals 0. 

 

3.9 Test for Concurrent Lines 
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The three lines 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0, 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 and 𝑎3𝑥 + 𝑏3𝑦 + 𝑐3 = 0 are concurrent 

(intersect at a single point) if and only if 

det (
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

) = 0. 

 

3.10 Test for Coplanar Points in Space 
 

The four points (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3 , 𝑧3) and (𝑥4, 𝑦4, 𝑧4) are coplanar if and only if 
 

det(

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
𝑥3 𝑦3 𝑧3 1
𝑥4 𝑦4 𝑧4 1

) = 0. 

 
Note:  Remembering that 

±
1

6
det(

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
𝑥3 𝑦3 𝑧3 1
𝑥4 𝑦4 𝑧4 1

) 

is the volume of a tetrahedron with vertices (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3) and (𝑥4, 𝑦4, 𝑧4), 

we see that the test of coplanarity of four points is equivalent to a check on whether the 

volume of the tetrahedron built from these four vertices equals 0. 

 

3.11 Three-Point Form of the Equation of a Plane 
 

An equation of the plane containing the three non-collinear points (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) and 

(𝑥3, 𝑦3, 𝑧3) is given by 
 

det(

𝑥 𝑦 𝑧 1
𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
𝑥3 𝑦3 𝑧3 1

) = 0. 

 

3.12 Three-Point Form of the Equation of a Circle 
 

An equation of the circle going through the three non-collinear points (𝑥1, 𝑦1), (𝑥2, 𝑦2) and 

(𝑥3, 𝑦3) is given by 
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det

(

 
 

𝑥2 + 𝑦2 𝑥 𝑦 1

𝑥1
2 + 𝑦1

2 𝑥1 𝑦1 1

𝑥2
2 + 𝑦2

2 𝑥2 𝑦2 1

𝑥3
2 + 𝑦3

2 𝑥3 𝑦3 1)

 
 
= 0. 

 

3.13 Three-Point Form of the Equation of a Parabola 
 

An equation of the parabola passing through the three points (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) is 

given by 

det

(

 
 

𝑥2 𝑥 𝑦 1

𝑥1
2 𝑥1 𝑦1 1

𝑥2
2 𝑥2 𝑦2 1

𝑥3
2 𝑥3 𝑦3 1)

 
 
= 0 

provided these three points are not collinear. 

 

3.14 Four-Point Form of the Equation of an Ellipse 
 

An equation of the ellipse passing through the four points (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) and 

(𝑥4, 𝑦4) is given by 

det

(

  
 

𝑥2 𝑦2 𝑥 𝑦 1

(𝑥1)
2 (𝑦1)

2 𝑥1 𝑦1 1

(𝑥2)
2 (𝑦2)

2 𝑥2 𝑦2 1

(𝑥3)
2 (𝑦3)

2 𝑥3 𝑦3 1

(𝑥4)
2 (𝑦4)

2 𝑥4 𝑦4 1)

  
 
= 0 

 

provided no three of these points are collinear. 

 

3.15 Five-Point Form of the Equation of a Conic Section (Parabola, Hyperbola, Ellipse) 
 

An equation of a conic section (parabola, hyperbola or an ellipse) passing through the five 

points (𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥5, 𝑦5) is given by 

det

(

 
 
 
 

𝑥2 𝑥𝑦 𝑦2 𝑥 𝑦 1

(𝑥1)
2 𝑥1𝑦1 (𝑦1)

2 𝑥1 𝑦1 1

(𝑥2)
2 𝑥2𝑦2 (𝑦2)

2 𝑥2 𝑦2 1

(𝑥3)
2 𝑥3𝑦3 (𝑦3)

2 𝑥3 𝑦3 1

(𝑥4)
2 𝑥4𝑦4 (𝑦4)

2 𝑥4 𝑦4 1

(𝑥5)
2 𝑥5𝑦5 (𝑦5)

2 𝑥5 𝑦5 1

 

)

 
 
 
 

= 0 
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provided no three of these points are collinear. 

 

4 Systems of Linear Equations 
 

4.1 Matrix Notation 
 

Consider the 3 × 3 system of linear equations in the variables 𝑥1, 𝑥2 and 𝑥3: 

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + 𝑎1,3𝑥3 = 𝑏1 

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + 𝑎2,3𝑥3 = 𝑏2 

𝑎3,1𝑥1 + 𝑎3,2𝑥2 + 𝑎3,3𝑥3 = 𝑏𝑏 . 

We can rewrite this system in “matrix form” as 

(

𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,3 𝑎3,2 𝑎3,3

)(

𝑥1
𝑥2
𝑥3
) = (

𝑏1
𝑏2
𝑏3

). 

The matrix 

A = (

𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,3 𝑎3,2 𝑎3,3

) 

is called the “coefficient matrix” of the system, the vector 

x = (

𝑥1
𝑥2
𝑥3

) 

is called the “solution vector”, and the vector 

b = (
𝑏1
𝑏2
𝑏3

) 

is called the “constant vector” of the system.  Using this notation, we can express this system of 

linear equations as Ax = b. 

Of course, there is nothing special about a 3 × 3 system.  This matrix notation is applicable for 

any 𝑛 × 𝑛 linear system of equations. 

 



mathcloset.com   13 

1. Express the 3 × 3 linear system 

2𝑥 + 3𝑦 − 𝑧 = 1 

𝑦 + 𝑧 = 2 

−3𝑥 + 4𝑦 − 3𝑧 = 0 

 in matrix form. 

 

Solution 

(
2 3 −1
0 1 1
−3 4 −3

)(
𝑥
𝑦
𝑧
) = (

1
2
0
). 

∎ 

 

2. Express the 4 × 4 linear system 

2𝑥1 + 3𝑥2 − 𝑥3 − 4𝑥4 = 1 

𝑥1 − 𝑥2 − 4𝑥3 − 𝑥4 = −2 

−3𝑥2 + 𝑥4 = −3 

2𝑥1 − 3𝑥3 − 4𝑥4 = 0 

 in matrix form. 

 

Solution 

(

2 3 −1 −4
1 −1 −4 −1
0 −3 0 1
2 0 −3 −4

)(

𝑥1
𝑥2
𝑥3
𝑥4

) = (

1
−2
−3
0

). 

∎ 

 

4.2 Homogeneous and Inhomogeneous Systems of Linear Equations 
 

Suppose we write a system of linear equations in matrix form Ax = b.  If the constant vector b 
consists of all 0’s, i.e. 

b = 0 =

(

 
 

0
0
⋮
0
0)
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then the linear system Ax = 0 is called homogeneous.  If the constant vector b ≠ 0, i.e. the 

constant vector b does not consist of all zeros, then the linear system Ax = b is called  

nonhomogeneous. 

Ax = 0, homogeneous 

Ax = b, b ≠ 0, nonhomogeneous 

 

4.3 Determinants and Solution Vectors of a Linear System 
 

4.3.1 Number of Solutions of a Homogeneous Linear System 
 

A homogeneous system of linear equations Ax = 0 will have an infinite number of solution 

vectors x if and only if det(A) = 0. 

If det(A) ≠ 0 for the homogeneous system of linear equations Ax = 0, then there is exactly 

one solution vector x, namely the trivial solution where x consists of all 0’s. 

 

4.3.2 Number of Solutions of a Nonhomogeneous Linear System 
 

A nonhomogeneous system of linear equations Ax = b, b ≠ 0 has a unique non-trivial solution 

if and only if det(A) ≠ 0. 

If det(A) = 0 for the nonhomogeneous system of linear equations Ax = b, b ≠ 0 then the 

system either has no solutions (called an inconsistent system) or an infinite number of 

solutions. 

 

4.3.3 Cramer’s Rule for Solving a System of Linear Equations 
 

Consider a system of 𝑛 linear equations for 𝑛 unknowns, represented in matrix multiplication 

form as follows:  

𝐴𝑥 = 𝑏 

where the 𝑛 × 𝑛 matrix 𝐴 has a nonzero determinant, and the vector 𝑥 = (𝑥1, … , 𝑥𝑛)
T is the 

column vector of the variables.  Then the theorem states that the system has a unique solution, 

whose individual values for the unknowns are given by: 

 

𝑥𝑖 =
det(𝐴𝑖)

det(𝐴)
   𝑖 = 1,2,… , 𝑛 
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where 𝐴𝑖 is the matrix formed by replacing the 𝑖𝑡ℎ column of 𝐴 by the column vector 𝑏. 

 

𝟐 × 𝟐 Case 

Given 

𝑎1𝑥 + 𝑏1𝑦 = 𝑐1 
𝑎2𝑥 + 𝑏2𝑦 = 𝑐2 

 

which in matrix format is 

(
𝑎1 𝑏1
𝑎2 𝑏2

) (
𝑥
𝑦) = (

𝑐1
𝑐2
). 

 

Then the values of 𝑥 and 𝑦 can be found as follows: 

 

𝑥 =
|
𝒄𝟏 𝑏1
𝒄𝟐 𝑏2

|

|
𝑎1 𝑏1
𝑎2 𝑏2

|
=
𝑐1𝑏2 − 𝑏1𝑐2
𝑎1𝑏2 − 𝑏1𝑎2

  and  𝑦 =
|
𝑎1 𝒄𝟏
𝑎2 𝒄𝟐

|

|
𝑎1 𝑏1
𝑎2 𝑏2

|
=
𝑎1𝑐2 − 𝑐1𝑎2
𝑎1𝑏2 − 𝑏1𝑎2

. 

 

𝟑 × 𝟑 Case 

Given 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1 

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2 

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3 

which in matrix format is 

(
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

)(
𝑥
𝑦
𝑧
) = (

𝑑1
𝑑2
𝑑3

). 

 

Then the values of 𝑥, 𝑦 and 𝑧 can be found as follows: 
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𝑥 =

|
𝒅𝟏 𝑏1 𝑐1
𝒅𝟐 𝑏2 𝑐2
𝒅𝟑 𝑏3 𝑐3

|

|
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

|

,   𝑦 =

|
𝑎1 𝒅𝟏 𝑐1
𝑎2 𝒅𝟐 𝑐2
𝑎3 𝒅𝟑 𝑐3

|

|
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

|

,  and  𝑧 =

|
𝑎1 𝑏1 𝒅𝟏
𝑎2 𝑏2 𝒅𝟐
𝑎3 𝑏3 𝒅𝟑

|

|
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

|

. 

 

5 Reduced Row Echelon Form 
 

Theorem  
A linear system of equations (such as the system shown below) will have the same 

solution(s) as the linear system called the “reduced row echelon form” of that system (such 

as the system shown after Step 8 below.)  

 

Example 

System of 3 linear equations in 5 unknowns.   
3𝑥2 − 6𝑥3 + 6𝑥4 + 4𝑥5 = −5 

3𝑥1 − 7𝑥2 + 8𝑥3 − 5𝑥4 + 8𝑥5 = 9 

3𝑥1 − 9𝑥2 + 12𝑥3 − 9𝑥4 + 6𝑥5 = 15 

 

Step 1. 

 

Switch row 1 and row 3. All leading zeros are now below non-zero leading entries. 
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Step 2. 

 

Replace row 2 with (row 2 minus row 1). This eliminates the first entry of row 2. 
 

Step 3. 

 

Multiply row 2 by 3 and row 3 by 2. 

 
Step 4. 

 

Replace row 3 with (row 3 minus row 2). This will eliminate the second entry of row 3. 

 

Step 5. 

 

Multiply each row by the reciprocal of its first non-zero value. This will make every row start 

with a 1. 
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Step 6. 

 

Replace row 2 with (row 2 minus row 3). 

Replace row 1 with (row 1 minus 2 times row 3). 

 
Step 7. 

 

Replace row 1 with (row 1 plus 3 times row 2). 

 

Step 8. 

 

 

Reduced Row Echelon Form of the linear system given before Step 1 above.   
𝑥1 − 2𝑥3 + 3𝑥4 = −24 

𝑥2 − 2𝑥3 + 2𝑥4 = −7 

𝑥5 = 4 

 

We can rewrite this system as 

𝑥1 = 2𝑥3 − 3𝑥4 − 24 

𝑥2 = 2𝑥3 − 2𝑥4 − 7 

𝑥5 = 4. 
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This is the solution of the system.  The variables 𝑥3 and 𝑥4 can take any values and are thus 

called free variables.  The solution is valid for any 𝑥3 and 𝑥4. 

 

6 Inequalities 
 

6.1 Algebra of Inequalities 
 
 ● If you add or subtract a number (positive or negative) from both sides of an inequality you  
  don’t flip the inequality. 
 
 ● If you multiply or divide both sides of an inequality by a positive number you don’t flip the  
  inequality. 
 
 ● If you multiply or divide both sides of an inequality by a negative number you DO flip the  
  inequality.  
 
 ● These rules also apply to a string of inequalities.  That is, 
 

𝑥 < 𝑦 < 𝑧 ⟺ 𝑥 + 𝑎 < 𝑦 + 𝑎 < 𝑧 + 𝑎  for any number 𝑎 
 

𝑥 < 𝑦 < 𝑧 ⟺ 𝑥 − 𝑎 < 𝑦 − 𝑎 < 𝑧 − 𝑎  for any number 𝑎 
 

𝑥 < 𝑦 < 𝑧 ⟺ 𝑎𝑥 < 𝑎𝑦 < 𝑎𝑧  for any number 𝑎 > 0 
 

𝑥 < 𝑦 < 𝑧 ⟺
𝑥

𝑎
<
𝑦

𝑎
<
𝑧

𝑎
  for any number 𝑎 > 0 

 
𝑥 < 𝑦 < 𝑧 ⟺ 𝑎𝑧 < 𝑎𝑦 < 𝑎𝑥  for any number 𝑎 < 0 

 

𝑥 < 𝑦 < 𝑧 ⟺
𝑧

𝑎
<
𝑦

𝑎
<
𝑥

𝑎
  for any number 𝑎 < 0 

 
  Note: In general, the inequality 𝑥 < 𝑦 < 𝑧 is equivalent to the inequality 𝑧 > 𝑦 > 𝑥. 
 
 
 ● Taking reciprocals flips inequalities. 
 

𝑥 < 𝑦 < 𝑧 ⟺
1

𝑧
<
1

𝑦
<
1

𝑥
 

𝑥 > 𝑦 > 𝑧 ⟺
1

𝑥
<
1

𝑦
<
1

𝑧
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 ● “Zeros become Infinities” when you take reciprocals in an equality where 0 is either the  
  lower or upper endpoint (but not both) of the inequality. 
 
  Look carefully at the following two examples. 
 

0 <
1

𝑥
< 2 ⟺ 

1

2
< 𝑥 < ∞ 

 

−2 <
1

𝑥
< 0⟺ −∞ < 𝑥 < −

1

2
. 

 

6.2 Compound (or System) of Inequalities 
 
Conjunctions (AND statements) 
 

The compound (two part) inequality 

(inequality statement #1)  and  (inequality statement #2) 

is called an inequality conjunction.  The “and” implies an intersection (overlap) of the 

answers of the two inequality statements. 

 

Note that the simple conjunction 𝑥 > 𝑎 and 𝑥 < 𝑏 simplifies to 𝑎 < 𝑥 < 𝑏. 

 

Disjunctions (OR statements) 

The compound (two part) inequality 

(inequality statement #1)  or  (inequality statement #2) 

is called an inequality disjunction.  The “or” implies the union (take everything) of the 

answers of the two inequality statements. 

 

Absolute value inequalities are examples of either a conjunction or a disjunction. 
 

 ● |𝒙| < 𝒂  ⟺ (𝑥 < 𝑎 and 𝑥 > −𝑎)  [a conjunction] for any number 𝑎 ≥ 0 
  Note that this conjunction simplifies to −𝑎 < 𝑥 < 𝑎. 
 
 ● |𝒙| > 𝒂  ⟺ (𝑥 > 𝑎 or 𝑥 < −𝑎)  [a disjunction] for any number 𝑎 ≥ 0 
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In summary, absolute value inequalities can be simplified into “regular” inequalities. 

|𝑥| < 𝑎  ⟺ −𝑎 < 𝑥 < 𝑎  provided 𝑎 ≥ 0 
 

|𝑥| > 𝑎 ⟺ 𝑥 < −𝑎  or  𝑥 > 𝑎  provided 𝑎 ≥ 0 
 

These statements are also true of ≤ and ≥. 

 

6.3 Selected Solved Inequality Problems 
 

6.3.1 Solving two-sided absolute value inequalities 
 

3. Find the solution set for 1 ≤ |2𝑥 − 1| ≤ 5. 

 
Solution 
 
The key to working with two-sided absolute value problems is to break the absolute value into 
its two cases. 
 

|2𝑥 − 1| = {
(2𝑥 − 1)

−(2𝑥 − 1)

    if   2𝑥 − 1 ≥ 0

    if   2𝑥 − 1 < 0.
 

 
Plugging this into our problem we have 
 

1 ≤ |2𝑥 − 1| ≤ 5 = {
1 ≤ (2𝑥 − 1) ≤ 5

1 ≤ −(2𝑥 − 1) ≤ 5

    if   2𝑥 − 1 ≥ 0

    if   2𝑥 − 1 < 0.
 

∎ 
 
 

4. Solve for 𝑥 in 3(𝑥 − 3) > 4(7 − 3𝑥) as a quotient of relatively prime numbers. 

 
Solution 

3𝑥 − 9 > 28 − 12𝑥 

   ⟺ 3𝑥 + 12𝑥 > 28 + 9 

   ⟺ 15𝑥 > 37 

   ⟺ 𝑥 < 37 15⁄  

∎ 
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5. Solve for 𝑥 if 2 < 3(4 − 𝑥) < 9. 

 
Solution 
 

2 < 3(4 − 𝑥) < 9 

⟺
2

3
< 4 − 𝑥 <

9

3
 

⟺
2

3
− 4 < −𝑥 <

9

3
− 4 

⟺ (
2

3
− 4) ∙ (−1) > 𝑥 > (

9

3
− 4) ∙ (−1) 

⟺ (
9

3
− 4) ∙ (−1) < 𝑥 < (

2

3
− 4) ∙ (−1) 

⟺ (−1) ∙ (−1) < 𝑥 < (
−10

3
) ∙ (−1) 

⟺ 1 < 𝑥 <
10

3
. 

∎ 
 

6. Solve for 𝑥 if |4 − 𝑥| < 7. 

 
Solution 
 

−7 < 4 − 𝑥 < 7 

⟺−7 − 4 < −𝑥 < 7 − 4 

⟺ (−7− 4)(−1) > 𝑥 > (7 − 4)(−1) 

⟺ (−11)(−1) > 𝑥 > 3(−1) 

⟺ 11 > 𝑥 > −3 

⟺−3 < 𝑥 < 11 

∎ 
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7. What is the lowest value of 𝑥 that satisfies the inequality |3 + 𝑥| ≤ 100 ? 

 
Solution 
 

−100 < 3 + 𝑥 < 100 

⟺−100 − 3 < 𝑥 < 100 − 4 

⟺−103 < 𝑥 < 96 

So, the lowest value of 𝑥 that satisfies this inequality is −103. 

∎ 
 
 

8. What is the lowest value of 𝑦  that satisfies the inequality |3 + 𝑥| + |4 + 𝑦| ≤ 100 ? 

 
Solution 
 

|3 + 𝑥| + |4 + 𝑦| ≤ 100 

⟺ |4 + 𝑦| ≤ 100 − |3 + 𝑥| 

⟺−(100 − |3 + 𝑥|) < 4 + 𝑦 < (100 − |3 + 𝑥|) 

⟺−(100 − |3 + 𝑥|) − 4 < 𝑦 < (100 − |3 + 𝑥|) − 4 

⟺−100 + |3 + 𝑥| − 4 < 𝑦 < 100 − |3 + 𝑥| − 4 

⟺−104 + |3 + 𝑥| < 𝑦 < 96 − |3 + 𝑥| 

 
So, the lowest value of 𝑦 that satisfies this inequality is −104 + |3 + 𝑥|. 

But 𝑥 can be any value.  By considering all possible values of 𝑥 how low can −104 + |3 + 𝑥| 

get?   

The least possible value is −104 because |3 + 𝑥| ≥ 0 and by adding the positive |3 + 𝑥| to 

−104 it makes it larger.  So, the lowest possible value of −104 + |3 + 𝑥| is −104 and this 

occurs when 𝑥 = −3 which makes |3 + 𝑥| = |3 ± 3| = |0| = 0. 

∎ 
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9. Write 2 ≤ 𝑥 ≤ 4 as an absolute value inequality. 

 
Solution 
 
Remember that 

|𝒙 − 𝒂| ≤ 𝒃 ⟺ 𝒂 − 𝒃 ≤ 𝒙 ≤ 𝒂 + 𝒃. 

Notice that 𝑎 is the midpoint between 𝑎 − 𝑏 and 𝑎 + 𝑏.  So, equating 𝑎 − 𝑏 = 2 and 𝑎 + 𝑏 = 4 

we can immediately determine that 𝑎 = 3 because 3 is the midpoint between 2 and 4.   

So 3 − 𝑏 = 2 ⟹ 𝑏 = 1 

∴ 

2 ≤ 𝑥 ≤ 4 ⟺ |𝑥 − 3| ≤ 1. 

∎ 
 
 

10. Find the solution set of the inequalities  𝑥 + 2 < −2𝑥 + 13 < 4𝑥 − 6. 

 
Solution 

As we noted above, this is interpreted as: 

𝑥 + 2 < −2𝑥 + 13   and  − 2𝑥 + 13 < 4𝑥 − 6 

This simplifies to 

𝑥 + 2 < −2𝑥 + 13     and −2𝑥 + 13 < 4𝑥 − 6 

3𝑥 < 11 and −6𝑥 < −19 

𝑥 < 11 3⁄  and 𝑥 > −19 −6⁄ = 19 6⁄  

19

6
< 𝑥 <

11

3
 

 

∎ 
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6.3.2 Solving two-sided absolute value inequalities 
 
 

11. Find the solution set for 1 ≤ |2𝑥 − 1| ≤ 5. 

 
Solution 
 
The key to working with two-sided absolute value problems is to break the absolute value into 
its two cases. 
 

|2𝑥 − 1| = {
(2𝑥 − 1)

−(2𝑥 − 1)

    if   2𝑥 − 1 ≥ 0

    if   2𝑥 − 1 < 0.
 

 
Plugging this into our problem we have 
 

1 ≤ |2𝑥 − 1| ≤ 5 = {
1 ≤ (2𝑥 − 1) ≤ 5

1 ≤ −(2𝑥 − 1) ≤ 5

    if   2𝑥 − 1 ≥ 0

     if   2𝑥 − 1 < 0.
 

 
 

Pay VERY close attention to the details of how the set 
 

{1 ≤ |2𝑥 − 1| ≤ 5} = {
1 ≤ (2𝑥 − 1) ≤ 5

1 ≤ −(2𝑥 − 1) ≤ 5

    if   2𝑥 − 1 ≥ 0

    if   2𝑥 − 1 < 0
 

 
translates to 
 

({1 ≤ (2𝑥 − 1) ≤ 5} and {2𝑥 − 1 ≥ 0})  or ({1 ≤ −(2𝑥 − 1) ≤ 5} and {2𝑥 − 1 < 0}) 

 
using conjunctions (AND’s) and disjunctions (OR’s). 

 
 
Now we just need to break this apart step by step. 

 1 ≤ 2𝑥 − 1 ≤ 5 and 2𝑥 − 1 ≥ 0 

 2 ≤ 2𝑥 ≤ 6 and 2𝑥 ≥ 1 

 1 ≤ 𝑥 ≤ 3 and 𝑥 ≥
1

2
 

 1 ≤ 𝑥 ≤ 3 
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or  

 1 ≤ −(2𝑥 − 1) ≤ 5 and 2𝑥 − 1 < 0 

 1 ≤ −2𝑥 + 1 ≤ 5 and 2𝑥 − 1 < 0 

 0 ≤ −2𝑥 ≤ 4 and 2𝑥 < 1 

 
0

−2
≥ 𝑥 ≥

4

−2
 and 𝑥 <

1

2
 

 −2 ≤ 𝑥 ≤ 0 and 𝑥 <
1

2
 

 −2 ≤ 𝑥 ≤ 0. 

 

So, it has all reduced to 
 

{−2 ≤ 𝑥 ≤ 0}   or   {1 ≤ 𝑥 ≤ 3}. 
∎ 

 
 

6.3.3 Solving mixed absolute value and linear inequalities 
 
 

12. Find the solution set of |2𝑥 − 5| ≤ 𝑥 + 3. 

 
Solution 
 

We use the same idea as in the problems with two-sided absolute value inequalities.  Namely, 
we replace |2𝑥 − 5| with the two possible cases. 
 
 
The key to working with two-sided absolute value problems is to break the absolute value into 
its two cases. 
 

|2𝑥 − 5| = {
(2𝑥 − 5)

−(2𝑥 − 5)

    if   2𝑥 − 5 ≥ 0

    if   2𝑥 − 5 < 0
 

 
Plugging this into our problem we have 
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|2𝑥 − 5| ≤ 𝑥 + 3 = {
(2𝑥 − 5) ≤ 𝑥 + 3

−(2𝑥 − 5) ≤ 𝑥 + 3

    if   2𝑥 − 5 ≥ 0

    if   2𝑥 − 5 < 0
 

 
 
Just as in the previous section, the set 
 

{|2𝑥 − 5| ≤ 𝑥 + 3} = {
(2𝑥 − 5) ≤ 𝑥 + 3

−(2𝑥 − 5) ≤ 𝑥 + 3

    if   2𝑥 − 5 ≥ 0

    if   2𝑥 − 5 < 0
 

 
should be interpreted as  
 

({(2𝑥 − 5) ≤ 𝑥 + 3} and {2𝑥 − 5 ≥ 0})  or ({−(2𝑥 − 5) ≤ 𝑥 + 3} and {2𝑥 − 5 < 0}) 

 
As before, we need to break this apart step by step. 

 (2𝑥 − 5) ≤ 𝑥 + 3 and 2𝑥 − 5 ≥ 0 

 𝑥 ≤ 8 and 2𝑥 ≥ 5 

 𝑥 ≤ 8 and 𝑥 ≥
5

2
 

 
5

2
≤ 𝑥 ≤ 8 

or  

 −(2𝑥 − 5) ≤ 𝑥 + 3 and 2𝑥 − 5 < 0 

 −2𝑥 + 5 ≤ 𝑥 + 3 and 2𝑥 − 5 < 0 

 −3𝑥 ≤ −2 and 2𝑥 < 5 

 𝑥 ≥
−2

−3
=
2

3
 and 𝑥 <

5

2
 

 
2

3
≤ 𝑥 <

5

2
. 

 

So, it has all reduced to 
 

{
2

3
≤ 𝑥 <

5

2
}    or   {

5

2
≤ 𝑥 ≤ 8}. 
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But this simplifies to  
 

{
2

3
≤ 𝑥 ≤ 8}. 

∎ 
 

 

6.3.4 Solving inequalities involving two absolute values 
 
You can handle a problem involving two absolute values in the same way we handled the 
previous problems  - breaking the absolute value(s) into its two cases. 
 
 

13. Find the solution set of the inequality |2𝑥 + 5| + |4𝑥 + 7| < 30. 

 
Solution 
 
Again, the key to working with two sided absolute value problems is to break the absolute value 
into its two cases. 
 

|2𝑥 + 5| = {
(2𝑥 + 5)

−(2𝑥 + 5)

    if   2𝑥 + 5 ≥ 0

    if   2𝑥 + 5 < 0
 

 
 

|4𝑥 + 7| = {
(4𝑥 + 7)

−(4𝑥 + 7)

    if   4𝑥 + 7 ≥ 0

    if   4𝑥 + 7 < 0
 

  
 
Dealing with two absolute values simultaneously means we will end up with 4 cases. 
 
Case 1.  2𝑥 + 5 ≥ 0  and  4𝑥 + 7 ≥ 0 
 
Case 2.  2𝑥 + 5 ≥ 0  and  4𝑥 + 7 < 0 
 
Case 3.  2𝑥 + 5 < 0  and  4𝑥 + 7 ≥ 0 
 
Case 4.  2𝑥 + 5 < 0  and  4𝑥 + 7 < 0 
 
 
(Notice that if you had a problem with 3 absolute value signs you would have 2 × 2 × 2 = 8 
cases to handle.) 
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|2𝑥 + 5| + |4𝑥 + 7| < 30 = {

(2𝑥 + 5) + (4𝑥 + 7) < 30
(2𝑥 + 5) − (4𝑥 + 7) < 30

     if in Case 1
     if in Case 2

−(2𝑥 + 5) + (4𝑥 + 7) < 30
−(2𝑥 + 5) − (4𝑥 + 7) < 30

     if in Case 3
     if in Case 4

  

 
 
Let’s start by simplifying these four cases. 
 
Case 1.  2𝑥 + 5 ≥ 0  and  4𝑥 + 7 ≥ 0 
 

2𝑥 + 5 ≥ 0   and 4𝑥 + 7 ≥ 0 

2𝑥 ≥ −5 and 4𝑥 ≥ −7 

𝑥 ≥ −5 2⁄  and 𝑥 ≥ −7 4⁄  

𝑥 ≥ −7 4⁄  

 
 
Case 2.  2𝑥 + 5 ≥ 0  and  4𝑥 + 7 < 0 
 

2𝑥 + 5 ≥ 0   and 4𝑥 + 7 < 0 

2𝑥 ≥ −5 and 4𝑥 < −7 

𝑥 ≥ −5 2⁄  and 𝑥 < −7 4⁄  

−5 2⁄ ≤ 𝑥 < −7 4⁄  

 
 
Case 3.  2𝑥 + 5 < 0  and  4𝑥 + 7 ≥ 0 
 

2𝑥 + 5 < 0   and 4𝑥 + 7 ≥ 0 

2𝑥 < −5 and 4𝑥 ≥ −7 

𝑥 < −5 2⁄  and 𝑥 ≥ −7 4⁄  

{  }    i.e.  the empty set 
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Case 4.  2𝑥 + 5 < 0  and  4𝑥 + 7 < 0 
 

2𝑥 + 5 < 0   and 4𝑥 + 7 < 0 

2𝑥 < −5 and 4𝑥 < −7 

𝑥 < −5 2⁄  and 𝑥 < −7 4⁄  

𝑥 < −5 2⁄  

 
 
The problem has become 
 
 

|2𝑥 + 5| + |4𝑥 + 7| < 30 = {

(2𝑥 + 5) + (4𝑥 + 7) < 30
(2𝑥 + 5) − (4𝑥 + 7) < 30

if                  𝑥 ≥ −7 4⁄

     if     − 5 2⁄ ≤ 𝑥 < −7 4⁄

−(2𝑥 + 5) + (4𝑥 + 7) < 30
−(2𝑥 + 5) − (4𝑥 + 7) < 30

if                   𝑥 ∈ {  }     
     if                𝑥 < −5 2⁄        

  

 
 
which simplifies to 
 

|2𝑥 + 5| + |4𝑥 + 7| < 30 = {

6𝑥 + 12 < 30
−2𝑥 − 2 < 30

if                  𝑥 ≥ −7 4⁄

     if     − 5 2⁄ ≤ 𝑥 < −7 4⁄

2𝑥 + 2 < 30
−6𝑥 − 12 < 30

if                   𝑥 ∈ {  }     
     if                𝑥 < −5 2⁄        

  

 
 
which simplifies to 
 
 

|2𝑥 + 5| + |4𝑥 + 7| < 30 = {

6𝑥 < 18
−2𝑥 < 32

if                  𝑥 ≥ −7 4⁄

     if     − 5 2⁄ ≤ 𝑥 < −7 4⁄

2𝑥 < 28
−6𝑥 < 42

if                   𝑥 ∈ {  }     
     if                𝑥 < −5 2⁄        

  

 
 
which simplifies to 
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|2𝑥 + 5| + |4𝑥 + 7| < 30 = {

𝑥 < 3
𝑥 > −16

if                  𝑥 ≥ −7 4⁄

     if     − 5 2⁄ ≤ 𝑥 < −7 4⁄

𝑥 < 14
𝑥 > −7

if                   𝑥 ∈ {  }     
      if                𝑥 < −5 2⁄ .       

  

 
 
Just as in the previous section, the set 
 

{|2𝑥 + 5| + |4𝑥 + 7| < 30} = {

𝑥 < 3
𝑥 > −16

if                  𝑥 ≥ −7 4⁄

       if       −5 2⁄ ≤ 𝑥 < −7 4⁄

𝑥 < 14
𝑥 > −7

if                   𝑥 ∈ {  }     
     if                𝑥 < −5 2⁄        

 

 
should be interpreted as  
 

({𝑥 < 3} and {𝑥 ≥ −7 4⁄ })  or ({𝑥 > −16} and {−5 2⁄ ≤ 𝑥 < −7 4⁄ }) 

 

 or ({𝑥 < 14} and {𝑥 ∈ {  }}) or ({𝑥 > −7} and {𝑥 < −5 2⁄ }). 

 
 
And as before we just need to evaluate this step by step. 
 
 

(𝑥 < 3   and   𝑥 ≥ −7 4⁄ )  ⟺  
−7

4
≤ 𝑥 < 3 

or 
 

(𝑥 > −16    and   −5 2⁄ ≤ 𝑥 < −7 4⁄ )  ⟺ −5 2⁄ ≤ 𝑥 < −7 4⁄  

or 
 

(𝑥 < 14   and   𝑥 ∈ {  }) ⟺ 𝑥 ∈ {  } 

or 
 

(𝑥 > −7   and   𝑥 < −5 2⁄ ) ⟺ −7 < 𝑥 < −5 2⁄ . 

 
 
So, the set of 𝑥 values (i.e. the solution set) where 
  

|2𝑥 + 5| + |4𝑥 + 7| < 30 
 
equals 
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(
−7

4
≤ 𝑥 < 3)   or  (−

5

2
≤ 𝑥 < −7 4⁄ )   or   (𝑥 ∈ {  })    or   (−7 < 𝑥 < −

5

2
).  

 
 
Now remember that “or” translates to “𝑥 belongs to at least one of these four regions”.  
Looking at these four regions we can see it includes all 𝑥 in 
 

−7 < 𝑥 < 3. 
 

∎ 
 

6.3.5 Solving inequalities involving reciprocals 
 
 

14. Find the solution set of the inequality  
1

|4𝑥+2|
≥  5. 

 
Solution 

From the rules regarding reciprocals and inequalities, we have 

|4𝑥 + 2| ≤
1

5
. 

Now we are back on familiar grounds. 

|4𝑥 + 2| ≤
1

5
 

 ⟹ −
1

5
≤  4𝑥 + 2 ≤

1

5
 

 ⟹ −
1

5
− 2 ≤  4𝑥 ≤

1

5
− 2 

 
⟹
(−
1
5 − 2)

4
≤  𝑥 ≤

(
1
5 − 2)

4
 

 ⟹−
3

5
≤  𝑥 ≤ −

9

20
 

∎ 
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15. Find the solution set of the inequality 0 <
1

|2𝑥−4|
<
1

2
. 

 
Solution 

0 <
1

|2𝑥 − 4|
<
1

2
 

 ⟹ 2 < |2𝑥 − 4| < ∞ 

 ⟹ |2𝑥 − 4| > 2 

 ⟹  2𝑥 − 4 > 2   or    2𝑥 − 4 < −2 

 ⟹ 2𝑥 > 6   or    2𝑥 < 2 

 ⟹ 𝑥 > 3   or    𝑥 < 1 

∎ 
 
 

6.3.6 Inequality problems involving multiplying or dividing by functions of 𝒙           
 

16. Find the solution set of the inequality  
𝑥−2

−4𝑥+5
≤ −3. 

 
Solution 
 
It is tempting (but don’t do it) to multiply both sides of this inequality by −4𝑥 + 5.   
 
But when you multiply both sides of an inequality by a quantity you have to know whether that 
quantity is positive or negative.  This determines whether we have to flip the inequality or not. 
 
But −4𝑥 + 5 is positive for some values of 𝑥 and negative for others. 
 
To work around this problem we have to approach this in a way similar to the way we 
approached absolute values.  We break the problem into its two cases. 
 

𝑥 − 2

−4𝑥 + 5
≤ −3 ⟹ {

(𝑥 − 2) ≤ (−3)(−4𝑥 + 5)

(𝑥 − 2) ≥ (−3)(−4𝑥 + 5)

    if   (−4𝑥 + 5) > 0

    if   (−4𝑥 + 5) < 0
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Note:  The case (−4𝑥 + 5) = 0 is impossible because this would mean we would be dividing by 
0 in 

𝑥 − 2

−4𝑥 + 5
. 

 
Just as in previous sections,  
 

{
(𝑥 − 2) ≤ (−3)(−4𝑥 + 5)

(𝑥 − 2) ≥ (−3)(−4𝑥 + 5)

    if   (−4𝑥 + 5) > 0

    if   (−4𝑥 + 5) < 0
 

 
should be interpreted as  
 

({(𝑥 − 2) ≤ (−3)(−4𝑥 + 5)} and {(−4𝑥 + 5) > 0})  

or 

({(𝑥 − 2) ≥ (−3)(−4𝑥 + 5)} and {(−4𝑥 + 5) < 0}) 

 
which simplifies to 
 

(𝑥 − 2 ≤ 12𝑥 − 15  and − 4𝑥 + 5 > 0)  

or 

(𝑥 − 2 ≥ 12𝑥 − 15  and − 4𝑥 + 5 < 0) 

 
which simplifies to 
 

(13 ≤ 11𝑥   and − 4𝑥 > −5)  

or 

(13 ≥ 11𝑥  and − 4𝑥 < −5) 

 
which simplifies to 

(𝑥 ≥
13

11
  and  𝑥 <

5

4
)  

or 

(𝑥 ≤
13

11
 and 𝑥 >

5

4
) 

 
which simplifies to 
 

(
13

11
≤ 𝑥 <

5

4
)  or (𝑥 ∈ {  }) 
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Note:  There cannot be any values of 𝑥 such that   
 

𝑥 ≤
13

11
 and  𝑥 >

5

4
 

 
because  
 

5

4
=
55

44
>
52

44
=
13

11
. 

 
Therefore, our final answer is 
 

13

11
≤ 𝑥 <

5

4
. 

∎ 
 
 

6.4 Geometry and Inequalities 
 

Theorem:  The sum of the lengths of any two sides of a triangle must be greater than the 

third side. 

 
 

17. 
If the sides of a triangle have measures of 3𝑥 + 4, 6𝑥 − 1 and 8𝑥 + 2, find all possible 
values of 𝑥. 

 
Solution 
 

(3𝑥 + 4) + (6𝑥 − 1) > (8𝑥 + 2) 
and 

(3𝑥 + 4) + (8𝑥 + 2) > (6𝑥 − 1) 
and 

(6𝑥 − 1) + (8𝑥 + 2) > (3𝑥 + 4) 
 
which simplifies to 
 

9𝑥 + 3 > 8𝑥 + 2 
and 

11𝑥 + 6 > 6𝑥 − 1 
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and 
14𝑥 + 1 > 3𝑥 + 4 

 
which simplifies to 
 

𝑥 > −1 
and 

5𝑥 > −7 
and 

11𝑥 > 3 
 
which simplifies to 
 

(𝑥 > −1)  and  (𝑥 > −
7

5
)   and  (𝑥 >

3

11
). 

 
 
The values of 𝑥 which satisfy all three of these inequalities are the values of 𝑥 such that 
 

𝑥 >
3

11
. 

∎ 
 
 

6.5 Miscellaneous 
 
 

18. 

For how many positive integral values of 𝑎 is it true that 𝑥 = 2 is the only positive 
integer solution of the system of inequalities 
 

{
2𝑥 > 3𝑥 − 3

3𝑥 − 𝑎 > −6
} ? 

 
Solution 
 

2𝑥 > 3𝑥 − 3  and 3𝑥 − 𝑎 > −6 

−𝑥 > −3 and 3𝑥 > −6 + 𝑎 

𝑥 < 3 and 𝑥 > (−6 + 𝑎) 3⁄  
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⟹  
−6 + 𝑎

3
< 𝑥 < 3 

 
 
For 𝑥 = 2 to be the only integer in the interval 
 

−6 + 𝑎

3
< 𝑥 < 3 

 
it must be true that 
 

1 ≤
−6 + 𝑎

3
< 2. 

 
Using our standard approach for isolating 𝑎 we have 
 

1 ≤
−6 + 𝑎

3
< 2 

 ⟹  3 ≤ −6 + 𝑎 < 6 

 ⟹  9 ≤ 𝑎 < 12 

 
So the integral values of 𝑎 that satisfy this inequality are 𝑎 = 9, 𝑎 = 10 and 𝑎 = 11.  So there 

are 3 positive integral values of 𝑎 that make 𝑥 = 2 the only positive integer solution of the 

original pair of inequalities.        

∎ 
 
 

6.6 Linear Programming Problems 
 

19. 
Both 𝑥 and 𝑦 are positive real numbers, and the point (𝑥, 𝑦) lies on or above both of 
the lines having equations 2𝑥 + 5𝑦 = 10 and 3𝑥 + 4𝑦 = 12.  What is the least 
possible value of 8𝑥 + 13𝑦?  (Source: Mathcounts). 

 
Solution 
 
The region above the line 2𝑥 + 5𝑦 = 10 is shown in blue and the region above the line 3𝑥 +

4𝑦 = 12 is shown in red.  Hence, the region that is above BOTH lines becomes purple 

(blue+red=purple). 
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We also are told that 𝑥 ≥ 0 and 𝑦 ≥ 0  (i.e.  the region in yellow). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The (𝑥, 𝑦) values that are in the purple and the yellow are highlighted below. 
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The goal of the problem is to find the smallest value of 8𝑥 + 13𝑦 if (𝑥, 𝑦) has to be a point in 
the above shaded region.  Problems of this type are known as linear programming problems. 
 
Now let’s play with this a bit.  Could (just as an example) we find an (𝑥, 𝑦) within this shaded 
region where 8𝑥 + 13𝑦 = 75? 
 
To see if this is possible, we need to graph the line 8𝑥 + 13𝑦 = 75.  We show this line below. 
 

 
 
We can see that 8𝑥 + 13𝑦 equals 75 at each of the points marked in green (because they fall on 

the line where 8𝑥 + 13𝑦 = 75) and these green points are in the highlighted region. 
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This shows that 8𝑥 + 13𝑦 can get at least as small as 75.   
 
But can we make it smaller?  Can we find a point(s) within the highlighted region where 8𝑥 +
13𝑦 = 50? 
 

 
 
The graph of the line 8𝑥 + 13𝑦 = 50 is shown above in solid blue and we see that there are 

points on this line that are within the shaded region.  (Clearly there are an infinite number of 

points on this line that are within this shaded region.  The three points shown in green just 

show particular cases.) 
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This shows that 8𝑥 + 13𝑦 can get at least as small as 50.  Can we make it smaller yet?  Can we 

find a point(s) within the highlighted region where 8𝑥 + 13𝑦 = 37? 

 

 
 
The graph of the line 8𝑥 + 13𝑦 = 37 is shown above in solid blue and we see that there are 

points (e.g. the green points) on this line that are within the shaded region.  (Clearly there are 

an infinite number of points on this line that are within this shaded region.  The point in green 

just shows a particular case.) 

 
This shows that 8𝑥 + 13𝑦 can get at least as small as 37. 
 
By now you most likely notice that we should lower this line until it hits the corner point. 
 

 
 Corner Point 
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The entire of this argument has come around to showing that 
 

8𝑥 + 13𝑦 
 
will be minimized (among points in the shaded region) at this corner point.  If we label the 
coordinates of this corner point as (𝑥0, 𝑦0) then 
 

8𝑥0 + 13𝑦0 
 
is the minimum value we are looking for. 
 
So how can we find this corner point?  This corner point is the point where the lines 2𝑥 + 5𝑦 =

10 and 3𝑥 + 4𝑦 = 12 intersect (i.e. cross). 

 

 
 

Finding the intersection of two lines boils down to solving two linear equations in two 
unknowns. 
 
That is, we want to find 𝑥 and 𝑦 so that 
 

2𝑥 + 5𝑦 = 10  and  3𝑥 + 4𝑦 = 12. 
 
The point of intersection is the point that lies on both lines which means this point satisfies 
BOTH of these equations. 
 
Solving for 𝑦 in the first equation we have 
 

𝑦 =
10 − 2𝑥

5
. 

Corner Point 
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Substituting this into the second equation we get 
 

3𝑥 + 4 (
10 − 2𝑥

5
) = 12 

 

3𝑥 + 4 (
10 − 2𝑥

5
) = 12 

 ⟹ 15𝑥 + 4(10 − 2𝑥) = 60 

 ⟹  15𝑥 + 40 − 8𝑥 = 60 

 ⟹  7𝑥 = 20 

 ⟹ 𝑥 =
20

7
. 

 
From here we can solve for 𝑦. 
 

𝑦 =
10 − 2 (

20
7 )

5
=
70 − 40

35
=
30

35
=
6

7
. 

 
 
So, the coordinates of this corner point are 
 

(𝑥0, 𝑦0) = (
20

7
,
6

7
). 

 
 
Finally, we can plug these values in to our function  8𝑥 + 13𝑦  to get the minimum possible 

value of this function over all points in the shaded region. 

 

8𝑥0 + 13𝑦0 = 8(
20

7
) + 13 (

6

7
) =

238

7
= 34. 

 
 
That is, the smallest value of 8𝑥 + 13𝑦 that can be obtained by considering only the (𝑥, 𝑦) 
points in the shaded region defined above is 34. 

∎ 
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20. 

Find all 𝑥 such that 

|
2|𝑥| − 3

4|𝑥 − 1|
| = 2. 

 
Solution 

Situation 𝟏.    
2|𝑥| − 3

4|𝑥 − 1|
= 2,      i.e.   2|𝑥| − 3 = 8|𝑥 − 1| 

 

 Break points: 0,1 

𝑥 − + + 

𝑥 − 1 − − + 

 

 

 

Case 𝟏.  𝒙 ∈ (−∞,𝟎] 

2|𝑥| − 3 = 8|𝑥 − 1| 

2(−𝑥) − 3 = 8(−(𝑥 − 1)) 

−2𝑥 − 3 = −8𝑥 + 8 

6𝑥 = 11 

𝑥 = 11/6 

Is this solution within the region we are currently considering, namely the region (−∞, 0]?  No.  

11/6 ∉ (−∞, 0].  So, this is not a valid solution.  It is an extraneous solution. 

 

Case 𝟐.  𝒙 ∈ [𝟎,𝟏] 

2|𝑥| − 3 = 8|𝑥 − 1| 

2(+𝑥) − 3 = 8(−(𝑥 − 1)) 

2𝑥 − 3 = −8𝑥 + 8 
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10𝑥 = 11 

𝑥 = 11/10 

Is this solution within the region we are currently considering, namely the region [0,1]?  No.  

11/10 ∉ [0,1].  So, this is not a valid solution.  It is an extraneous solution. 

 

Case 𝟑.  𝒙 ∈ [𝟏,∞) 

2|𝑥| − 3 = 8|𝑥 − 1| 

2(+𝑥) − 3 = 8(+(𝑥 − 1)) 

2𝑥 − 3 = 8𝑥 − 8 

−6𝑥 = −5 

𝑥 = 5/6 

Is this solution within the region we are currently considering, namely the region [1,∞)?  No.  

5/6 ∉ [1,∞).  So this is not a valid solution.  It is an extraneous solution. 

So, there are no values of 𝑥 where 2|𝑥| − 3 = 8|𝑥 − 1|. 

 

Situation 𝟐.    
2|𝑥| − 3

4|𝑥 − 1|
= −2,      i.e.   2|𝑥| − 3 = −8|𝑥 − 1| 

 Break points: 0,1 

𝑥 − + + 

𝑥 − 1 − − + 

 

 

 

Case 𝟏.  𝒙 ∈ (−∞,𝟎] 

2|𝑥| − 3 = −8|𝑥 − 1| 

2(−𝑥) − 3 = −8(−(𝑥 − 1)) 
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−2𝑥 − 3 = 8𝑥 − 8 

−10𝑥 = −5 

𝑥 = 1/2 

Is this solution within the region we are currently considering, namely the region (−∞, 0]?  No.  

1/2 ∉ (−∞, 0].  So this is not a valid solution.  It is an extraneous solution. 

 

Case 𝟐.  𝒙 ∈ [𝟎,𝟏] 

2|𝑥| − 3 = −8|𝑥 − 1| 

2(+𝑥) − 3 = −8(−(𝑥 − 1)) 

2𝑥 − 3 = 8𝑥 − 8 

−6𝑥 = −5 

𝑥 = 5/6 

Is this solution within the region we are currently considering, namely the region [0,1]?  Yes.  

5/6 ∈ [0,1].  So this is a valid solution.  It is not an extraneous solution. 

 

Case 𝟑.  𝒙 ∈ [𝟏,∞) 

2|𝑥| − 3 = −8|𝑥 − 1| 

2(+𝑥) − 3 = −8(+(𝑥 − 1)) 

2𝑥 − 3 = −8𝑥 + 8 

10𝑥 = 11 

𝑥 = 11/10 

Is this solution within the region we are currently considering, namely the region [1,∞)? Yes.  

11/10 ∈ [1,∞).  So this is a valid solution.  It is not an extraneous solution. 

So, there are two values of 𝑥 where 2|𝑥| − 3 = −8|𝑥 − 1|. 

∎ 
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21. Find all 𝑥 such that  |4𝑥 − 1| + 2𝑥 = 1 + |2 − 𝑥|. 

 
Solution 

Break Points ∶  4𝑥 − 1 = 0 ⟹ 𝑥 =
𝟏

𝟒
,   2 − 𝑥 = 0⟹ 𝑥 = 𝟐. 

4𝑥 − 1 − + + 

2 − 𝑥 + + − 

 

 

 

Case 𝟏.  𝒙 ∈ (−∞,
𝟏

𝟒
] 

|4𝑥 − 1| + 2𝑥 = 1 + |2 − 𝑥| 

−(4𝑥 − 1) + 2𝑥 = 1 + (+(2 − 𝑥)) 

−4𝑥 + 1 + 2𝑥 = 1 + 2 − 𝑥 

−𝑥 = 2 

𝑥 = −2 

Is this solution within the region we are currently considering, namely the region (−∞,
1

4
]?  Yes.  

−2 ∈ (−∞,
1

4
].  So this is a valid solution.  It is not an extraneous solution. 

 

Case 𝟐.  𝒙 ∈ [𝟏/𝟒, 𝟐] 

|4𝑥 − 1| + 2𝑥 = 1 + |2 − 𝑥| 

+(4𝑥 − 1) + 2𝑥 = 1 + (+(2 − 𝑥)) 

4𝑥 − 1 + 2𝑥 = 1 + 2 − 𝑥 

7𝑥 = 4 

𝑥 = 4/7 
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Is this solution within the region we are currently considering, namely the region [1/4,2]?  Yes.  

4/7 ∈ [1/4,2].  So, this is a valid solution.  It is not an extraneous solution. 

Case 𝟑.  𝒙 ∈ [𝟐,∞) 

|4𝑥 − 1| + 2𝑥 = 1 + |2 − 𝑥| 

+(4𝑥 − 1) + 2𝑥 = 1 + (−(2 − 𝑥)) 

4𝑥 − 1 + 2𝑥 = 1 − 2 + 𝑥 

5𝑥 = 0 

𝑥 = 0 

Is this solution within the region we are currently considering, namely the region [2,∞)?  No.  

0 ∉ [2,∞).  So, this is not a valid solution.  It is an extraneous solution. 

So, there are two values of 𝑥 where |4𝑥 − 1| + 2𝑥 = 1 + |2 − 𝑥|.  Namely at 𝑥 = −2 and at 

𝑥 = 4/7. 

A graph will help you to visualize what is going on.  You can see from the graph that |4𝑥 − 1| +

2𝑥 and 1 + |2 − 𝑥| intersect (i.e. are equal) at two places, namely, 𝑥 = −2 and 𝑥 = 4/7 (as we 

just showed algebraically). 

 

 

∎ 
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22. Find the solution set to  |4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥|. 

 
Solution 

Break Points ∶  4𝑥 − 1 = 0 ⟹ 𝑥 =
𝟏

𝟒
,   2 − 𝑥 = 0⟹ 𝑥 = 𝟐. 

4𝑥 − 1 − + + 

2 − 𝑥 + + − 

 

 

 

Case 𝟏.  𝒙 ∈ (−∞,
𝟏

𝟒
] 

|4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥| 

−(4𝑥 − 1) + 2𝑥 ≥ 1 + (+(2 − 𝑥)) 

−4𝑥 + 1 + 2𝑥 ≥ 1 + 2 − 𝑥 

−𝑥 ≥ 2 

𝑥 ≤ −2. 

So, what we are looking for are those 𝑥 ∈ (−∞, 1/4] and (−∞,−2].  That is, 

𝑥 ∈ (−∞, 1/4] ∩ (−∞,−2] = (−∞,−𝟐]. 

 

Case 𝟐.  𝒙 ∈ [𝟏/𝟒, 𝟐] 

|4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥| 

+(4𝑥 − 1) + 2𝑥 ≥ 1 + (+(2 − 𝑥)) 

4𝑥 − 1 + 2𝑥 ≥ 1 + 2 − 𝑥 

7𝑥 ≥ 4 

𝑥 ≥ 4/7. 
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So, what we are looking for are those 𝑥 ∈ [1/4,2] and [4/7,∞).  That is, 

𝑥 ∈ [1/4,2] ∩ [4/7,∞) = [𝟒/𝟕 , 𝟐]. 

 

Case 𝟑.  𝒙 ∈ [𝟐,∞) 

|4𝑥 − 1| + 2𝑥 ≥ 1 + |2 − 𝑥| 

+(4𝑥 − 1) + 2𝑥 ≥ 1 + (−(2 − 𝑥)) 

4𝑥 − 1 + 2𝑥 ≥ 1 − 2 + 𝑥 

5𝑥 ≥ 0 

𝑥 ≥ 0 

 

So, what we are looking for are those 𝑥 ∈ [2,∞) and [0,∞).  That is, 

𝑥 ∈ [2,∞) ∩ [0,∞) = [𝟐,∞). 

 

So, the values of 𝑥 where |4𝑥 − 1| + 2𝑥 < 6 − |2 − 𝑥| are 

𝑥 ∈ (−∞,−𝟐]  or [𝟒/𝟕 , 𝟐] or [𝟐,∞). 

That is,  

𝑥 ∈ (−∞,−𝟐] ∪ [𝟒/𝟕 , 𝟐] ∪ [𝟐,∞) 

𝑥 ∈ (−∞,−𝟐] ∪ [𝟒/𝟕,∞). 

In graph form, the answer is 

 

 

 

You can see from the graph that |4𝑥 − 1| + 2𝑥 (in blue) is greater than or equal to (i.e. above 

or touching) 1 + |2 − 𝑥|  (in red) when −∞ < 𝑥 ≤ −2 and also when 4/7 ≤ 𝑥 < ∞ (as we just 

showed algebraically).   

𝑥 𝟒

𝟕
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∎ 
 

7 Extra Solved Problems 
 

 

23.  The hour hand and the minute hand coincide sometime between 3 o’clock and 4 o’clock.  
Express the exact time as a rational number of minutes after 3 o’clock.  (Source: MSHSML 
3A054) 

 

Solution 
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∎ 

 

24.  The graph of the equation 5𝑥 + 7𝑦 = 76 passes through (11,3).  Find a second lattice 
point (i.e. a point having integer coordinates) in the first quadrant that lies on the same line.  
(Source: MSHSML 3A023) 

 

Solution 

 

 

The slope of 5𝑥 + 7𝑦 = 76 equals −5/7.  So, if you go left 7 units and up 5 units from any 

point on this line you will end up at another point on this line.  And if you start at a lattice point 

and go left an integer number of units and go up an integer number of units, you will 

necessarily end up at another lattice point (which is also on this line). 
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Note: In MSHSML Meet 1, Event D we saw similar problems about lattice points on a line when 

they don’t give you an initial lattice point to work from.  Then you have to use number theory. 

∎ 

 

25.  An auto is twice as old as its tires were when the auto was as old as the tires are now.  
When the tires are as old as the auto is, the combined ages of the tires and the auto will be 
two years and three months.  How old (in months) are the tires now?  (Source: MSHSML 
3A014) 

 

Solution 

 

 

 

∎ 

 

26.  Find the sum of all positive integers 𝑎 and 𝑏 where 𝑎 > 𝑏 and the determinant 

 
(Source: MSHSML 3A164) 

 

Solution 
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∎ 

 

27.  Determine exactly all values of the real number 𝑐 for which the determinant of  

 
Is positive.  (Source: MSHSML 3A153) 

 
Solution 

 

 

∎ 

 

28.    𝐴 = [
𝑥 𝑦
5 8

] and 𝐵 = [
𝑥 𝑦
2 3

].  If det 𝐴 = 10 and det 𝐵 = 36, determine 𝑥 and 𝑦 exactly. 

(Source: MSHSML 3A143) 

 
Solution 
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∎ 

 

29.  It is known that the system of equations {

𝐴𝑥 + 𝑦 + 𝑧 = 1
𝑥 + 𝐵𝑦 + 𝑧 = 1
𝑥 + 𝑦 + 𝐶𝑧 = 1

 has no solution.   

Determine exactly the value of 𝐴𝐵𝐶 − (𝐴 + 𝐵 + 𝐶).   (Source: MSHSML 3A124) 

 
Solution 

 

∎ 

 

30.  The vertices of Δ𝐴𝑂𝐵 are 𝐴 = (𝑎, 𝑏), 𝑂 = (0,0), and 𝐵 = (𝑐, 𝑑).  The values of 𝑎, 𝑏, 𝑐, 

and 𝑑 are all positive integers and they are all different.  If the area of Δ𝐴𝑂𝐵 is 13, what is 

the smallest possible of value of the sum 𝑎 + 𝑏 + 𝑐 + 𝑑?  (Source: 3T171) 

 
Solution 

The area of Δ𝐴𝑂𝐵 is the determinant 
1
2
|
0 0 1
𝑎 𝑏 1
𝑐 𝑑 1

|, making 𝑎𝑑 − 𝑏𝑐 = 26.  To minimize the 

sum choose 𝑏𝑐 as small as possible, making 𝑎𝑑 as small as possible.  Let 𝑏 = 1 and 𝑐 = 2, then 

𝑎𝑑 = 28.  Because 1 and 2 have already been assigned, the smallest 𝑎 can be is 4, making 𝑑 =

7.  Therefore, the minimum value of 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1 + 2 + 4 + 7 = 14. 
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∎ 

 
 

Test 3A, Linear Equations 

 

Solution 

 

∎ 

 

 

Solution 

 

∎ 

 

 

Solution 
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∎ 

 

 

Solution 

 

∎ 

 

 

Solution 

 

∎ 
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Solution 

 

∎ 

 

 

Solution 

 

∎ 
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Solution 

 

∎ 

 

 

 

Solution 

 

∎ 
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Solution 

 

∎ 

 

 

 

Solution 
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∎ 

 

 

 

Solution 
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∎ 

 

 

 

 

 

Solution 

 

∎ 

 

 

Solution  
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∎ 

 

 

Solution 

 

∎ 
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Test 3A, Concurrent Lines 

 

 
Solution 

 

 

 

Test 3A  Gaussian Elimination 

31. 

3T051 
Express in the form (𝑎𝑧 + 𝑏, 𝑐𝑧 + 𝑑, 𝑧) all solutions to the system 

2𝑥 − 3𝑦 − 3𝑧−= 4 
3𝑥 − 5𝑦 + 2𝑧 = −3. 

 

Solution 

(
2 −3 −3 4
3 −5 2 −3

)  

𝑅1 → 𝑅1 × 3,   𝑅2 → 𝑅2 × 2 

(
6 −9 −9 12
6 −10 4 −6

)  

𝑅2 → 𝑅2 − 𝑅1 

(
6 −9 −9 12
0 −1 13 −18

) 

𝑅1 → 𝑅1 − (𝑅2 × 9) 

(
6 0 −126 174
0 −1 13 −18

) 

𝑅1 → 𝑅1/6 
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(
1 0 −21 29
0 −1 13 −18

) 

𝑅2 → (−1) × 𝑅2 

(
1 0 −21 29
0 1 −13 18

) 

 

𝑥 − 21𝑧 = 29 
𝑦 − 13𝑧 = 18 

or 
𝑥 = 29 + 21𝑧 
𝑦 = 18 + 13𝑧 

 

(𝟐𝟗 + 𝟐𝟏𝒛, 𝟏𝟖 + 𝟏𝟑𝒛, 𝒛) 

∎ 

 

 

32. 

3A043 
There are many solutions to the set of three equations below.  Express 𝑦 and 𝑧 in 
terms of 𝑥 so that every real value of 𝑥 gives a solution to these equations. 

2𝑥 − 𝑦 + 𝑧 = 8 
3𝑥 − 𝑦 + 2𝑧 = 11 
5𝑥 − 𝑦 + 4𝑧 = 17 

 

Solution 

(
2 −1 1 8
3 −1 2 11
5 −1 4 17

) 

𝑅1 → 3 × 𝑅1,𝑅2 → 2 × 𝑅2 

(
6 −3 3 24
6 −2 4 22
5 −1 4 17

) 

𝑅2 → 𝑅2 − 𝑅1 

(
6 −3 3 24
0 1 1 −2
5 −1 4 17

) 

𝑅1 → 5 × 𝑅1,𝑅3 → 6 × 𝑅3 

(
30 −15 15 120
0 1 1 −2
30 −6 24 102

) 
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𝑅3 → 𝑅3 − 𝑅1 

(
30 −15 15 120
0 1 1 −2
0 9 9 −18

) 

𝑅3 → 𝑅3 − 𝑅2 × 9 

(
30 −15 15 120
0 1 1 −2
0 0 0 0

) 

𝑅1 → 𝑅1 + 𝑅2 × 15 

(
30 0 30 90
0 1 1 −2
0 0 0 0

) 

𝑅1 → 𝑅1/30 

(
1 0 1 3
0 1 1 −2
0 0 0 0

) 

 

𝑥 + 𝑧 = 3 
𝑦 + 𝑧 = −2 

𝑧 = 3 − 𝑥 
𝑦 = −2 − 𝑧 

𝑧 = 3 − 𝑥 
𝑦 = −2 − (3 − 𝑥) 

𝑧 = 3 − 𝑥 
𝑦 = −5 + 𝑥 

 

𝒚 = −𝟓 + 𝒙 
𝒛 = 𝟑 − 𝒙 

∎ 

 

33. 

3T003 
Find two functions, 𝑓 and 𝑔, so that for any integer 𝑚, (𝑓(𝑚), 𝑔(𝑚),𝑚) is a lattice 
point that lies on the three planes determined by 

6𝑥 + 7𝑦 − 9𝑧 = 16 
2𝑥 + 3𝑦 − 5𝑧 = 4 
5𝑥 + 2𝑦 + 4𝑧 = 21. 

 

Solution 

(
6 7 −9 16
2 3 −5 4
5 2 4 21

 ) 

𝑅2 → 3 × 𝑅2 
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(
6 7 −9 16
6 9 −15 12
5 2 4 21

 ) 

𝑅2 → 𝑅2 − 𝑅1 

(
6 7 −9 16
0 2 −6 −4
5 2 4 21

 ) 

𝑅1 → 𝑅1 × 5,𝑅3 → 6 × 𝑅3 

(
30 35 −45 80
0 2 −6 −4
30 12 24 126

 ) 

𝑅3 → 𝑅3 − 𝑅1 

(
30 35 −45 80
0 2 −6 −4
0 −23 69 46

 ) 

𝑅2 → 23 × 𝑅2,𝑅3 → 2 × 𝑅3 

(
30 35 −45 80
0 46 −138 −92
0 −46 138 92

 ) 

 

𝑅3 → 𝑅3 + 𝑅2 

(
30 35 −45 80
0 46 −138 −92
0 0 0 0

 ) 

𝑅1 → 𝑅1/5,  𝑅2 → 𝑅2/46 

(
6 7 −9 16
0 1 −3 −2
0 0 0 0

 ) 

𝑅1 → 𝑅1 − 7 × 𝑅2 

(
6 0 12 30
0 1 −3 −2
0 0 0 0

 ) 

𝑅1 → 𝑅1/6 

(
1 0 2 5
0 1 −3 −2
0 0 0 0

 ) 
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𝑥 + 2𝑧 = 5 

𝑦 − 3𝑧 = −2 

𝑥 = 5 − 2𝑧 

𝑦 = −2 + 3𝑧 

𝒙(𝒎) = 𝟓 − 𝟐𝒎 

𝒚(𝒎) = −𝟐 + 𝟑𝒎 

 

∎ 

 

34. 

3A034 
There are many solutions to the set of three equations below.  Express 𝑦 and 𝑧 in 
terms of 𝑥 so that every real value of 𝑥 gives a solution to these equations. 

2𝑥 + 𝑦 − 𝑧 = −2 
5𝑥 + 2𝑦 + 𝑧 = 3 
4𝑥 + 𝑦 + 5𝑧 = 12. 

 

Solution 

(
2 1 −1 −2
5 2 1 3
4 1 5 12

) 

Move 𝐶1 to go between 𝐶3 and 𝐶4. 

(
1 −1 2 −2
2 1 5 3
1 5 4 12

) 

𝑅2 → 𝑅2 − (2 × 𝑅1) 

(
1 −1 2 −2
0 3 1 7
1 5 4 12

) 

𝑅3 → 𝑅3 − 𝑅1 

(
1 −1 2 −2
0 3 1 7
0 6 2 14

) 

𝑅3 → 𝑅3 − 2 × 𝑅2 

(
1 −1 2 −2
0 3 1 7
0 0 0 0

) 

𝑅1 → 3 × 𝑅1 + 𝑅2 
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(
3 0 7 1
0 3 1 7
0 0 0 0

) 

 

3𝑦 + 7𝑥 = 1 

3𝑧 + 𝑥 = 7 

𝒚 =
𝟏

𝟑
−
𝟕

𝟑
𝒙 

𝒛 =
𝟕

𝟑
−
𝟏

𝟑
𝒙 

 

∎ 

 

35. 

3A092 
Solve the system 

2𝑥 − 3𝑦 + 6 = 0 
2𝑥 + 𝑦 − 10 = 0 

 

Solution 

Step 1.  Rewrite the system in the “standard” form 

2𝑥 − 3𝑦 = −6 

2𝑥 + 𝑦 = 10. 

 

(
2 −3 −6
2 1 10

) 

𝑅2 → 𝑅2 − 𝑅1 

(
2 −3 −6
0 4 16

) 

𝑅2 → 𝑅2/4 

(
2 −3 −6
0 1 4

) 

𝑅1 → 𝑅1 + (3 × 𝑅2) 

(
2 0 6
0 1 4

) 
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𝑅1 → 𝑅1/2 

(
1 0 3
0 1 4

) 

 

𝒙 = 𝟑,   𝒚 = 𝟒 

 

∎ 

 

36. 

3A093 
Solve the system 

𝑝 + 𝑞 + 2𝑟 = 1 
2𝑝 − 𝑞 = 3 
−𝑝 + 4𝑟 = 1 

 

Solution 

(
1 1 2 1
2 −1 0 3
−1 0 4 1

 ) 

𝑅2 → 𝑅2 − 2 × 𝑅1 

(
1 1 2 1
0 −3 −4 1
−1 0 4 1

 ) 

𝑅3 → 𝑅3 + 𝑅1 

(
1 1 2 1
0 −3 −4 1
0 1 6 2

 ) 

𝑅3 → 3 × 𝑅3 + 𝑅2 

(
1 1 2 1
0 −3 −4 1
0 0 14 7

 ) 

𝑅3 → 𝑅3/7 

(
1 1 2 1
0 −3 −4 1
0 0 2 1

 ) 
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𝑅2 → 2 × 𝑅3 + 𝑅2 

(
1 1 2 1
0 −3 0 3
0 0 2 1

 ) 

𝑅1 → 3 × 𝑅1 + 𝑅2 

(
3 0 6 6
0 −3 0 3
0 0 2 1

 ) 

𝑅1 → 3 × 𝑅3 − 𝑅1 

(
−3 0 0 −3
0 −3 0 3
0 0 2 1

 ) 

 

−3𝑝 = −3,   − 3𝑞 = 3,    2𝑟 = 1 

 

𝒑 = 𝟏 ,  𝒒 = −𝟏,  𝒓 = 𝟏/𝟐 

 

∎ 

 

37. 

3A011 
Find a lattice point, not the origin, that lies on the plane determined by  

2𝑥 − 3𝑦 + 5𝑧 = 0. 
(Remember that a lattice points in space are points have integers for coordinates.) 

 

Solution 

Any integer choices of 𝑦 and 𝑧 that makes 𝑥 an integer will suffice.  For example, (𝑦, 𝑧) = (1,1). 

Then 

2𝑥 − 3(1) + 5(1) = 0 

2𝑥 + 2 = 0 

𝑥 = −1. 

So (𝑥, 𝑦, 𝑧) = (−1,1,1) is a lattice point on the plane determined by 2𝑥 − 3𝑦 + 5𝑧 = 0. 
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∎ 

 

38. 

3A012 
Find two distinct lattice points that lie on the plane determined by the planes.  

2𝑥 − 3𝑦 + 5𝑧 = 0 
3𝑥 − 4𝑦 + 7𝑧 = 1. 

 

Solution 

 

(
2 −3 5 0
3 −4 7 1

)~ (
6 −9 15 0
6 −8 14 2

)~(
6 −9 15 0
0 1 −1 2

)~ (
6 0 6 18
0 1 −1 2

) 

~(
1 0 1 3
0 1 −1 2

) 

 

𝑥 + 𝑧 = 3 

𝑦 − 𝑧 = 2 

or 

𝑥 = 3 − 𝑧 

𝑦 = 2 + 𝑧 

 

Any integer choice of 𝑧 that makes 𝑥 and 𝑦 integers will suffice.  For example, 𝑧 = 1 and 𝑧 = 2. 

For 𝑧 = 1, 𝑥 = 3 − 1 = 2 and 𝑦 = 2 + 1 = 3.  Therefore, (𝑥, 𝑦, 𝑧) = (2,3,1) is a lattice point on 

the line determined by these two planes. 

For 𝑧 = 2, 𝑥 = 3 − 2 = 1 and 𝑦 = 2 + 2 = 4.  Therefore, (𝑥, 𝑦, 𝑧) = (1,4,2) is a lattice point on 

the line determined by these two planes. 

∎ 

 

39. 

3A013 
Find a lattice point, not the origin, that lies on the line determined by  

2𝑥 − 3𝑦 + 5𝑧 = 0 
3𝑥 − 4𝑦 + 7𝑧 = 1 
4𝑥 − 5𝑦 + 4𝑧 = −3. 
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Solution 

Instead of starting from the very beginning I can take advantage of the fact that this problem 

has the same first two equations as the previous problem.  So I can make the substitutions  

𝑥 = 3 − 𝑧 

𝑦 = 2 + 𝑧 

Into the third plane. 

4(3 − 𝑧) − 5(2 + 𝑧) + 4𝑧 = −3 

12 − 4𝑧 − 10 − 5𝑧 + 4𝑧 = −3 

2 − 5𝑧 = −3 

−5𝑧 = −5 

𝑧 = 1. 

Now plug 𝑧 = 1 into the  

𝑥 = 3 − 𝑧 

𝑦 = 2 + 𝑧 

to get 

(𝒙, 𝒚, 𝒛) = (𝟐, 𝟑, 𝟏). 

∎ 

 

 

40. 

3A003 
Find 𝑎 + 𝑏 given that  

3𝑎 − 5𝑏 + 𝑐 = 4 
2𝑎 + 4𝑏 − 𝑐 = 3 
7𝑎 − 11𝑏 + 2𝑐 = 9 

 

Solution 

(
3 −5 1 4
2 4 −1 3
7 −11 2 9

 )~(
6 −10 2 8
6 12 −3 9
7 −11 2 9

)~(
6 −10 2 8
0 22 −5 1
7 −11 2 9

)~(
42 −70 14 56
0 22 −5 1
42 −66 12 54

) 
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~(
42 −70 14 56
0 22 −5 1
0 4 −2 −2

)~(
3 −5 1 4
0 22 −5 1
0 2 −1 −1

)~(
3 −5 1 4
0 22 −5 1
0 0 −6 −12

)~(
3 −5 1 4
0 22 −5 1
0 0 1 2

) 

 

~(
3 −5 0 2
0 22 0 11
0 0 1 2

) 

 

𝑐 = 2, 𝑏 =
1

2
,   3𝑎 − 5 (

1

2
) = 2 

3𝑎 = 2 +
5

2
=
9

2
 

𝑎 =
3

2
 

𝒂 + 𝒃 =
𝟑

𝟐
+
𝟏

𝟐
= 𝟐. 

∎ 

 

 

1. The sum of the squares of two consecutive odd integers is 130.  What are the 

integers? 

(Source: Minnesota State High School Mathematics League, Individual Event, 3A, 1980-1981, 
Problem #1) 
 
Solution 
 

 



mathcloset.com   75 

∎ 

 

 

2. 

Homer cuts a 72′ × 96′ lawn, starting along one outside edge and continuing to 

cut a border around it as indicated in the figure.  How wide is the border when 

Homer is half through? 

 

(Source: Minnesota State High School Mathematics League, Individual Event, 3A, 1980-1981, 
Problem #2) 
 
Solution 
 

 

∎ 
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3. The rate of one train is 21 mph more than that of another.  If the faster train 

takes two hours less than the other for a trip of 252 miles, at what rate does the 

faster train travel? 

(Source: Minnesota State High School Mathematics League, Individual Event, 3A, 1980-1981, 
Problem #3) 
 
Solution 
 

 

∎ 

 

 
 
(Source: Minnesota State High School Mathematics League, Individual Event, 3A, 1986-1987, 
Problem #2) 
 
Solution 
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(Source: Minnesota State High School Mathematics League, Individual Event, 3A, 1986-1987, 
Problem #3) 

 
Solution 
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(Source: Minnesota State High School Mathematics League, Individual Event, 3A, 1986-1987, 
Problem #4) 

 
Solution 
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Test 3A, Determinants 
 

41. 3T171 

 
Solution 

 
Key  
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42. 
3A162 

 
Solution 

 
 

43. 
3A164 

 
Solution 
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44.  
3A153 

 
Solution 

 
 

45. 3T151  

 
Solution 

 
 

46. 
3A143 

 
Solution 
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47. 
3A131 

 
Solution 

 
 

48. 3T133 

 
Solution 

 
 

49. 
3A124 

 
Solution 
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50. 3A113 

 
Solution 

 
 

51. 3A083 

 
Solution 

 
 

52. 3A063 

 

Solution 
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53. 3A064 

 

Solution 
 

 

 

54. 3A052 

 
Solution 
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Solution  2(a) 

𝑎𝑥 + 2𝑎𝑦 + 6𝑎𝑧 = 𝑏𝑥 + 𝑏𝑧 + 𝑐𝑦 + 2𝑐𝑧 + 2𝑑𝑧 
 

𝑎 = 𝑏 
 

2𝑎 = 𝑐 
 

6𝑎 = 𝑏 + 2𝑐 + 2𝑑 
 
so 

6𝑎 = 𝑎 + 4𝑎 + 2𝑑 
 
or 

𝑎 = 2𝑑. 
 
So 
 

𝑎 = 𝑎 
𝑏 = 𝑎 
𝑐 = 2𝑎 
𝑑 = 𝑎 2⁄ . 

 
To make them all integers (and as small as possible), let 𝑎 = 𝑏 = 2, 𝑐 = 4, 𝑑 = 1. 

∎ 


