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1 Inverse Trig Functions and Their Graphs 
 

1.1 Inverse Sine Function 
 

Clearly the function 𝑓(𝑥) = sin(𝑥) does not pass the horizontal line test over (−∞,∞). 
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But if we only look at the part of sin(𝑥) for 𝑥 ∈ [−𝜋/2, 𝜋/2]  (shown in red)  

 

 

that is, the part 

 

 

then sin(𝑥) does pass the horizontal line test.  So we can say that sin(𝑥) has an inverse for 𝑥 ∈

[−𝜋/2,𝜋/2]. 

 

𝑓(𝑥) = sin(𝑥) 

𝑓(𝑥) = sin(𝑥) 

𝑓(𝑥) = sin(𝑥) 
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We use the notation sin−1(𝑥) to denote this inverse.  Be careful not to confuse this with the 

reciprocal of sin(𝑥) which is denoted by (sin(𝑥))−1. 

 
In particular, 

(sin(𝑥))−1 =
1

sin(𝑥)
= csc(𝑥) ≠ sin−1(𝑥). 

 
Note: Another name for the inverse sine function is arc sine.  We can use the two terms inverse 

sine and arc sine interchangeably.  Two terms for the same thing. 

1.1.1 Graph of the Inverse Sine Function 
 

What does the graph of sin−1(𝑥) look like?  Recall that we can find the graph of 𝑓−1(𝑥) by 

reflecting the graph of 𝑓(𝑥) over the line 𝑦 = 𝑥. 

 

 

 

That is, to find the graph of sin−1(𝑥) we need to reflect sin(𝑥), shown in blue above, over the 

dotted line 𝑦 = 𝑥.  We see that what we will get is 

𝑓(𝑥) = sin(𝑥) 

𝑦 = 𝑥 
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So the graph of 𝑓−1(𝑥) = sin−1(𝑥) looks like 

 

 

Let’s contrast this graph with the graph of 𝑓(𝑥) = sin(𝑥). 

𝑓−1(𝑥) = sin−1(𝑥) 
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We can see that the domain of 𝑓(𝑥) = sin(𝑥), namely [−𝜋/2, 𝜋/2] , is the range of  

𝑓−1(𝑥) = sin−1(𝑥) and the range of 𝑓(𝑥) = sin(𝑥), namely [−1,1], is the domain of  

𝑓−1(𝑥) = sin−1(𝑥). 

 
This is a general property of functions and their inverses.  The domain of 𝑓(𝑥) is the range of 

𝑓−1(𝑥) and the range of 𝑓(𝑥) is the domain of 𝑓−1(𝑥). 

 

1.1.2 Calculating the Inverse Sine Function 
 

There is no convenient formula for calculating sin−1(𝑥).  To calculate sin−1(𝑥) we have to work 

backwards from the definition of an inverse function.  We know (by definition of an inverse 

function) that 

𝑓(𝑎) = 𝑏  ⟺ 𝑓−1(𝑏) = 𝑎. 

In our case this means that 

sin(𝑎) = 𝑏 ⟺ sin−1(𝑏) = 𝑎. 

So, for example, we know that 

sin−1 (
√2

2
) =

𝜋

4
 

because  

sin (
𝜋

4
) =

√2

2
. 

𝑓(𝑥) = sin(𝑥) 



mathcloset.com   7 

 

In general, to find the number 𝑐 such that sin−1(𝑥) = 𝑐 we have to think backwards and ask 

ourselves, “What is the number 𝑐 such that sin(𝑐) = 𝑥?”. 

 

 

 

 

 

1.1.3 Cancellation Properties of the Inverse Sine Function 
 
From the general properties of inverse functions, we have the following cancellation 

properties. 

 

sin−1(sin(𝑥)) = {

𝑥 𝑥 ∈ [−
𝜋

2
,
𝜋

2
]

  

𝑥∗ 𝑥 ∉ [−
𝜋

2
,
𝜋

2
]

 

where 𝑥∗ is that unique number such that sin(𝑥) = sin(𝑥∗) and 𝑥∗ ∈ [−
𝜋

2
,
𝜋

2
]. 

 

and 
 

sin(sin−1(𝑥)) = {
𝑥 𝑥 ∈ [−1,1]
  

undefined 𝑥 ∉ [−1,1]
 

 

Exercise 1.  Simplify. 

(a)  sin−1(1) (b)  sin−1 (
√3

2
) (c)  sin−1(2) 

 

 
For any 𝑥 ∈ [−1,1],  

sin−1(𝑥) = 𝑐  provided sin(𝑐) = 𝑥. 

For any 𝑥 ∉ [−1,1], 

sin−1(𝑥)  is not defined. 
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Solution 

 

 

 

∎ 

 

Exercise 2.  Simplify. 

(a)  sin−1(−1) (b)  sin−1 (
√2

2
) (c)  sin−1(−2) 

 
Solution 

(a) sin−1(−1) = −
𝜋

2
  because sin (−

𝜋

2
) = −1  and−

𝜋

2
 lies in [−

𝜋

2
,
𝜋

2
] 

(b) sin−1 (
√2

2
) =

𝜋

4
  because sin (

𝜋

4
) =

√2

2
  and 

𝜋

4
 lies in [−

𝜋

2
,
𝜋

2
] 

(c) sin−1(−2)  is undefined because there is no real number 𝑥 such that sin(𝑥) = −2. 

∎ 

 

Exercise 3.  Simplify. 

sin−1 (−
√2

2
) 

Solution 

sin−1 (−
√2

2
) = −

𝜋

4
  because sin (−

𝜋

4
) = −

√2

2
  and −

𝜋

4
 lies in [−

𝜋

2
,
𝜋

2
] 

∎ 

 

Exercise 4.  Simplify. 

(a)  sin−1(0) (b)  sin−1 (−
1

2
)  
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Solution 

(a) sin−1(0) = 0  because sin(0) = 0  and 0 lies in [−
𝜋

2
,
𝜋

2
] 

(b) sin−1 (−
1

2
) = −

𝜋

6
  because sin (−

𝜋

6
) = −

1

2
  and −

𝜋

6
 lies in [−

𝜋

2
,
𝜋

2
] 

∎ 

 

 
Exercise 5.  Simplify. 

(a)  sin (sin−1 (
1

4
)) 

(b)  sin (sin−1 (
3

2
)) 

(c)  sin (sin−1 (−
3

4
)) 

 
Solution 

Recall that sin(sin−1(𝑥)) = {
𝑥 𝑥 ∈ [−1,1]
  

undefined 𝑥 ∉ [−1,1]
 

So, 

(a) sin(sin−1(1/4)) =
1

4
  because 

1

4
 lies in [−1,1] 

(b) sin(sin−1(3/2))   is undefined because  
3

2
 does not lie in [−1,1] 

(c) sin(sin−1(−3/4))  =
−3

4
  because 

−3

4
 lies in [−1,1] 

∎ 

 

Exercise 6.  Simplify. 

(a)  sin−1 (sin (
𝜋

4
)) 
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(b)  sin−1 (sin (
3𝜋

4
)) 

(c)  sin−1 (sin (
7𝜋

6
)) 

 
Solution 

(a)  Recall that 

sin−1(sin(𝑥)) = {

𝑥 𝑥 ∈ [−
𝜋

2
,
𝜋

2
]

  

𝑥∗ 𝑥 ∉ [−
𝜋

2
,
𝜋

2
]

 

where 𝑥∗ is that unique number such that sin(𝑥) = sin(𝑥∗) and 𝑥∗ ∈ [−
𝜋

2
,
𝜋

2
].  So, 

 

sin−1 (sin (
𝜋

4
)) =

𝜋

4
  because 

𝜋

4
 lies in [−

𝜋

2
,
𝜋

2
]. 

(b) 

3𝜋

4
∉ [−

𝜋

2
,
𝜋

2
]    so  sin−1 (sin (

3𝜋

4
)) ≠

3𝜋

4
 

but rather 

sin−1 (sin (
3𝜋

4
)) = 𝑥∗ 

where 𝑥∗ in the unique value in the interval [−
𝜋

2
,
𝜋

2
] such that 

sin(𝑥∗) = sin (
3𝜋

4
). 

From our unit circle chart, we can see that the terminal point associated with 𝑡 = 3𝜋/4 is 

(−√2/2,√2/2). Also remember that sin(𝑡) equals the 𝑦-coordinate of the terminal point for 𝑡. 
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So, sin(3𝜋/4) = √2/2.  What value of 𝑡 in [−
𝜋

2
,
𝜋

2
] gives us sin(𝑡) = √2/2?  From our unit 

circle chart we can see that sin(𝜋/4) = √2/2 = sin(3𝜋/4) and it is also true that 𝜋/4 is in the 

interval  [−
𝜋

2
,
𝜋

2
]. 

So, 

sin−1 (sin (
3𝜋

4
)) = sin−1 (sin (

𝜋

4
)) =

𝜋

4
. 

 

(c) 

7𝜋

6
∉ [−

𝜋

2
,
𝜋

2
]    so  sin−1 (sin (

7𝜋

6
)) ≠

7𝜋

6
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but rather 

sin−1 (sin (
7𝜋

6
)) = 𝑥∗ 

 

where 𝑥∗ in the unique value in the interval [−
𝜋

2
,
𝜋

2
] such that 

sin(𝑥∗) = sin (
7𝜋

6
). 

 

From our unit circle chart the terminal point of 𝑡 = 7𝜋/6 has coordinates (𝑥, 𝑦) =

(−√3/2,−1/2) and sin(𝑡) is defined as the 𝑦 – coordinate of the terminal point of 𝑡.  So 

sin (
7𝜋

6
) = −

1

2
. 

 

We need to find that unique value 𝑥∗ such that 𝑥∗ ∈ [−
𝜋

2
,
𝜋

2
] and  

sin(𝑥∗) = sin (
7𝜋

6
) = −

1

2
. 

From our unit circle chart we can see that 

sin (−
𝜋

6
) = −

1

2
 

and it is also true that 

−
𝜋

6
∈ [−

𝜋

2
,
𝜋

2
]. 

So, 

sin−1 (sin (
7𝜋

6
)) = sin−1 (sin (−

𝜋

6
)) = −

𝜋

6
. 

 

Exercise 7.  Simplify. 

tan (sin−1 (
√2

2
)) 

Solution 

Recall that we showed in Exercise 2b that 
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sin−1 (
√2

2
) =

𝜋

4
  because sin (

𝜋

4
) =

√2

2
  and 

𝜋

4
 lies in [−

𝜋

2
,
𝜋

2
]. 

So 

tan (sin−1 (
√2

2
)) = tan (

𝜋

4
). 

 

Recall that if the terminal point of 𝑡 has coordinates (𝑥, 𝑦), then  tan(𝑡) = 𝑦/𝑥.  From our unit 

circle chart we see that the terminal point of 𝑡 = 𝜋/4 has coordinates (𝑥, 𝑦) = (√2/2,√2/2).  

So 

tan (sin−1 (
√2

2
)) = tan (

𝜋

4
) =

√2/2

√2/2
= 1. 

∎ 

1.2 Inverse Cosine Function 
 

If only look at the part of cos(𝑥) for 𝑥 ∈ [0,𝜋]  (shown in red)  

  

 

that is, the part 

𝑓(𝑥) = cos(𝑥) 
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then cos(𝑥) does pass the horizontal line test.  So we can say that cos(𝑥) has an inverse for 𝑥 ∈

[0, 𝜋]. 

 

1.2.1 Graph of the Inverse Cosine Function 
 

What does the graph of cos−1(𝑥) look like?  Reflect the graph of cos(𝑥) over the line 𝑦 = 𝑥. 

 

  

 

𝑓(𝑥) = cos(𝑥) 

𝑓(𝑥) = cos(𝑥) 

𝑦 = 𝑥 
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We see that what we will get is 

 

 

 

So, the graph of 𝑓−1(𝑥) = cos−1(𝑥) looks like 

 

 

Let’s contrast this graph with the graph of 𝑓(𝑥) = cos(𝑥). 

𝑓−1(𝑥) = cos−1(𝑥) 
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We can see that the domain of 𝑓(𝑥) = cos(𝑥), namely [0, 𝜋] , is the range of  

𝑓−1(𝑥) = cos−1(𝑥) and the range of 𝑓(𝑥) = cos(𝑥), namely [−1,1], is the domain of 

𝑓−1(𝑥) = cos−1(𝑥). 

 

1.2.2 Calculating the Inverse Cosine Function 
 

By the meaning of an inverse function,  

cos(𝑎) = 𝑏 ⟺ cos−1(𝑏) = 𝑎. 

In general, to find the number 𝑐 such that cos−1(𝑥) = 𝑐 we have to think backwards and ask 

ourselves, “What is the number 𝑐 such that cos(𝑐) = 𝑥?”. 

 

 

 

 

 

1.2.3 Cancellation Properties of the Inverse Cosine Function 
 

𝑓(𝑥) = cos(𝑥) 

For any 𝑥 ∈ [−1,1],  

cos−1(𝑥) = 𝑐  provided cos(𝑐) = 𝑥. 

For any 𝑥 ∉ [−1,1], 

cos−1(𝑥)  is not defined. 
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From the general properties of inverse functions, we have the following cancellation 

properties. 

 

cos−1(cos(𝑥)) = {
𝑥 𝑥 ∈ [0, 𝜋]
  
𝑥∗ 𝑥 ∉ [0, 𝜋]

 

where 𝑥∗ is that unique number such that cos(𝑥) = cos(𝑥∗) and 𝑥∗ ∈ [0, 𝜋] 

 

and 

cos(cos−1(𝑥)) = {
𝑥 𝑥 ∈ [−1,1]
  

undefined 𝑥 ∉ [−1,1].
 

 

 

 

1.3 Inverse Tangent Function 
 

If only look at the part of tan(𝑥) for 𝑥 ∈ [−𝜋/2, 𝜋/2]  (shown in red) 
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that is, the part 

  

 

then tan(𝑥) does pass the horizontal line test.  So we can say that tan(𝑥) has an inverse for 𝑥 ∈

[−𝜋/2,𝜋/2]. 

 

1.3.1 Graph of the Inverse Tangent Function 
 

What does the graph of tan−1(𝑥) look like?  Reflect the graph of tan(𝑥) over the line 𝑦 = 𝑥. 
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We see that what we will get is 

 

 

So, the graph of 𝑓−1(𝑥) = tan−1(𝑥) looks like 
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Let’s contrast this graph with the graph of 𝑓(𝑥) = tan(𝑥). 

 

 

We can see that the domain of 𝑓(𝑥) = tan(𝑥), namely [−𝜋/2, 𝜋/2] , is the range of 𝑓−1(𝑥) =

tan−1(𝑥) and the range of 𝑓(𝑥) = tan(𝑥), namely [−∞,∞], is the domain of 𝑓−1(𝑥) =

tan−1(𝑥). 
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1.3.2 Calculating the Inverse Tangent Function 
 

By the meaning of an inverse function,  

tan(𝑎) = 𝑏 ⟺ tan−1(𝑏) = 𝑎. 

In general, to find the number 𝑐 such that tan−1(𝑥) = 𝑐 we have to think backwards and ask 

ourselves, “What is the number 𝑐 such that tan(𝑐) = 𝑥?”. 

 

 

 

1.3.3 Cancellation Properties of the Inverse Tangent Function 
 

From the general properties of inverse functions, we have the following cancellation 

properties. 

 

tan−1(tan(𝑥)) =

{
 
 
 

 
 
 

𝑥 𝑥 ∈ (−𝜋/2, 𝜋/2)
  

𝑥∗
𝑥 ∉ (−𝜋/2, 𝜋/2) and

𝑥 ≠
(2𝑛 + 1)𝜋

2
 for any integer 𝑛

  

undefined 𝑥 =
(2𝑛 + 1)𝜋

2
 for some integer 𝑛

 

where 𝑥∗ is that unique number such that tan(𝑥) = tan(𝑥∗) and 𝑥∗ ∈ (−𝜋/2, 𝜋/2) 

 

and 

tan(tan−1(𝑥)) = 𝑥  for all 𝑥 ∈ (−∞,∞) 

 

For any 𝑥 ∈ [−∞,∞],  

tan−1(𝑥) = 𝑐  provided tan(𝑐) = 𝑥. 
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1.4 Inverse Secant, Cosecant and Cotangent Functions 
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Exercise 7.  Simplify. 

(a)  tan−1(−1) (b)  tan−1(√3) (c)  tan−1 (
√3

3
) 

Solution 

(a) tan−1(−1) = −
𝜋

4
  because tan (−

𝜋

4
) = −1  and−

𝜋

4
 lies in (−∞,∞) 

(b) tan−1(√3) =
𝜋

3
  because tan (

𝜋

3
) = √3  and 

𝜋

3
 lies in (−∞,∞) 

(c) tan−1 (
√3

3
) =

𝜋

6
  because tan (

𝜋

6
) =

√3

3
  and 

𝜋

6
 lies in (−∞,∞) 

 

 

1.5 Properties of the Inverse Trig Functions 
 

Functions Domain Range 

sin−1(𝑥) [−1,1] [−
𝜋

2
,
𝜋

2
] 

cos−1(𝑥) [−1,1] [0, 𝜋] 

tan−1(𝑥) ℝ (−
𝜋

2
,
𝜋

2
) 

cot−1(𝑥) ℝ (0, 𝜋) 
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sec−1(𝑥) ℝ ∖ (−1,1) (0, 𝜋] ∖ {
𝜋

2
} 

csc−1(𝑥) ℝ ∖ (−1,1) [−
𝜋

2
,
𝜋

2
] ∖ {0} 

 

Property I 

(i) sin−1 (sin(𝜃) ) = 𝜃 if 𝜃 ∈ [−
𝜋

2
,
𝜋

2
] 

(ii) cos−1 (cos(𝜃) ) = 𝜃 if 𝜃 ∈ [0, 𝜋] 

(iii) tan−1 (tan(𝜃) ) = 𝜃 if 𝜃 ∈ (−
𝜋

2
,
𝜋

2
) 

(iv) csc−1 (csc(𝜃) ) = 𝜃 if 𝜃 ∈ [−
𝜋

2
,
𝜋

2
] , 𝜃 ≠ 0 

(v) sec−1 (sec(𝜃) ) = 𝜃 if 𝜃 ∈ [0, 𝜋], 𝜃 ≠
𝜋

2
 

(vi)  cot−1 (cot(𝜃) ) = 𝜃 if 𝜃 ∈ (0, 𝜋) 

 

Property II 

(i) sin (sin−1(𝑥) ) = 𝑥 if 𝑥 ∈ [−1,1] 

(ii) cos (cos−1(𝑥) ) = 𝑥 if 𝑥 ∈ [−1,1] 

(iii) tan(tan−1(𝑥)) = 𝑥 if 𝑥 ∈ ℝ 

(iv) csc(csc−1(𝑥)) = 𝑥 if 𝑥 ∈ (−∞,−1] ∪ [1,∞) 

(v) sec (sec−1(𝑥) ) = 𝑥 if 𝑥 ∈ (−∞,−1] ∪ [1,∞) 

(vi)  cot (cot−1(𝑥) ) = 𝑥 if 𝑥 ∈ ℝ 
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Property III 

(i) sin−1(−𝑥) = − sin−1(𝑥) if 𝑥 ∈ [−1,1] 

(ii) cos−1(−𝑥) = 𝜋 − cos−1(𝑥) if 𝑥 ∈ [−1,1] 

(iii) tan−1(−𝑥) = − tan−1(𝑥) if 𝑥 ∈ ℝ 

(iv) csc−1(−𝑥) = 𝜋 − csc−1(𝑥) if 𝑥 ∈ (−∞,−1] ∪ [1,∞) 

(v) sec−1(−𝑥) = 𝜋 − sec−1(𝑥) if 𝑥 ∈ (−∞, 1] ∪ [1,∞) 

(vi)  cot−1(−𝑥) = 𝜋 − cot−1(𝑥) if 𝑥 ∈ ℝ 

 

Property IV 

(i) sin−1 (
1

𝑥
) = csc−1(𝑥)  if 𝑥 ∈ (−∞, 1] ∪ [1,∞) 

(ii) cos−1 (
1

𝑥
) = sec−1(𝑥)  if 𝑥 ∈ (−∞, 1] ∪ [1,∞) 

(iii) tan−1 (
1

𝑥
) = {

cot−1(𝑥)                if 𝑥 > 0 

−𝜋 + cot−1(𝑥)     if 𝑥 < 0 
 

 

Property V 

(i) sin−1(𝑥) + cos−1(𝑥) =
𝜋

2
 if 𝑥 ∈ [−1,1] 

(ii) tan−1(𝑥) + cot−1(𝑥) =
𝜋

2
 if 𝑥 ∈ ℝ 

(ii) sec−1(𝑥) + csc−1(𝑥) =
𝜋

2
 if 𝑥 ∈ (−∞,−1] ∪ [1,∞) 
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Property VI 

(i) 

 

(ii) 

 
 

Property VII 

(i) 

cos−1(𝑥) + cos−1(𝑦)    

      = {
cos−1 (𝑥𝑦 − √1 − 𝑥2 √1 − 𝑦2)                   if − 1 ≤ 𝑥, 𝑦 ≤ 1 and 𝑥 + 𝑦 ≥ 0

2𝜋 − cos−1 (𝑥𝑦 − √1 − 𝑥2 √1 − 𝑦2)      if − 1 ≤ 𝑥, 𝑦 ≤ 1 and 𝑥 + 𝑦 ≤ 0
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(ii) 

cos−1(𝑥) − cos−1(𝑦)    

   

= {
cos−1 (𝑥𝑦 + √1 − 𝑥2 √1 − 𝑦2)                if − 1 ≤ 𝑥, 𝑦 ≤ 1 and 𝑥 ≤ 𝑦               

− cos−1 (𝑥𝑦 + √1 − 𝑥2 √1 − 𝑦2)              if − 1 ≤ 𝑦 ≤ 0, 0 < 𝑥 ≤ 1 and 𝑥 ≥ 𝑦

 

 

Property VIII 

(i) 

tan−1(𝑥) + tan−1(𝑦)  

          =

{
 
 
 
 

 
 
 
 
tan−1 (

𝑥 + 𝑦

1 − 𝑥𝑦
)           if 𝑥𝑦 < 1                                     

𝜋 + tan−1 (
𝑥 + 𝑦

1 − 𝑥𝑦
) if 𝑥 > 0, 𝑦 > 0  and  𝑥𝑦 > 1  

−𝜋 + tan−1 (
𝑥 + 𝑦

1 − 𝑥𝑦
) if 𝑥 < 0,   𝑦 < 0  and  𝑥𝑦 > 1

 

(ii) 

tan−1(𝑥) − tan−1(𝑦)  

            =

{
 
 
 
 

 
 
 
 
tan−1 (

𝑥 − 𝑦

1 + 𝑥𝑦
)           if 𝑥𝑦 > −1                                      

𝜋 + tan−1 (
𝑥 − 𝑦

1 + 𝑥𝑦
) if 𝑥 > 0, 𝑦 < 0  and  𝑥𝑦 < −1  

−𝜋 + tan−1 (
𝑥 − 𝑦

1 + 𝑥𝑦
) if 𝑥 < 0,   𝑦 > 0  and  𝑥𝑦 < −1

 

 

Property IX 

(i) 

sin−1(𝑥) = cos−1 (√1 − 𝑥2) = tan−1 (
𝑥

√1 − 𝑥2
) = cot−1 (

√1 − 𝑥2

𝑥
) 

= sec−1 (
1

√1 − 𝑥2
) = csc−1 (

1

𝑥
) 
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(ii) 

cos−1(𝑥) = sin−1 (√1 − 𝑥2) = tan−1 (
√1 − 𝑥2

𝑥
) = cot−1 (

𝑥

√1 − 𝑥2
) 

= sec−1 (
1

𝑥
) = csc−1 (

1

√1 − 𝑥2
) 

(iii) 

tan−1(𝑥) = sin−1 (
𝑥

√1 + 𝑥2
) = cos−1 (

1

√1 + 𝑥2
) = cot−1 (

1

𝑥
) 

= csc−1 (
√1 + 𝑥2

𝑥
) = sec−1 (√1 + 𝑥2) 

 

Property X 

(i) 2 sin−1(𝑥) =

{
 
 
 
 

 
 
 
 
sin−1 (2√1 − 𝑥2)              if −

1

√2
≤ 𝑥 ≤

1

√2

𝜋 − sin−1 (2√1 − 𝑥2) if 
1

√2
≤ 𝑥 ≤ 1    

−𝜋 − sin−1 (2√1 − 𝑥2)       if − 1 ≤ 𝑥 ≤ −
1

√2

 

(ii) 2 cos−1(𝑥) =

{
 
 

 
 
cos−1(2𝑥2 − 1)           if 0 ≤ 𝑥 ≤ 1   

2𝜋 − cos−1(2𝑥2 − 1)   if − 1 ≤ 𝑥 ≤ 0

 

(iii) 2 tan−1(𝑥) =

{
 
 
 
 

 
 
 
 
tan−1 (

2𝑥

1 − 𝑥2
)           if − 1 < 𝑥 ≤ 1

𝜋 + tan−1 (
2𝑥

1 − 𝑥2
) if  𝑥 > 1            

−𝜋 + tan−1 (
2𝑥

1 − 𝑥2
) if  𝑥 < −1         
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Property XI 

(i) 3 sin−1(𝑥) =

{
 
 
 
 

 
 
 
 
sin−1(3𝑥 − 4𝑥3)           if −

1

2
≤ 𝑥 ≤

1

2

𝜋 − sin−1(3𝑥 − 4𝑥3)  if 
1

2
< 𝑥 ≤ 1    

−𝜋 − sin−1(3𝑥 − 4𝑥3)       if − 1 ≤ 𝑥 < −
1

2

 

(ii) 3 cos−1(𝑥) =

{
 
 
 
 

 
 
 
 
cos−1(4𝑥3 − 3𝑥)          if 

1

2
≤ 𝑥 ≤ 1       

2𝜋 − cos−1(4𝑥3 − 3𝑥)   if −
1

2
≤ 𝑥 ≤

1

2
    

2𝜋 + cos−1(4𝑥3 − 3𝑥)    if − 1 ≤ 𝑥 ≤ −
1

2

 

(iii) 3 tan−1(𝑥) =

{
 
 
 
 

 
 
 
 
tan−1 (

3𝑥 − 𝑥3

1 − 3𝑥2
)              if −

1

√3
< 𝑥 <

1

√3

𝜋 + tan−1 (
3𝑥 − 𝑥3

1 − 3𝑥2
) if  𝑥 >

1

√3
             

−𝜋 + tan−1 (
3𝑥 − 𝑥3

1 − 3𝑥2
) if  𝑥 < −

1

√3
         

 

 

Property XII 

(i) 2 tan−1(𝑥) =

{
 
 
 
 

 
 
 
 
sin−1 (

2𝑥

1 + 𝑥2
)           if − 1 ≤ 𝑥 ≤ 1

𝜋 − sin−1 (
2𝑥

1 + 𝑥2
) if  𝑥 > 1            

−𝜋 − sin−1 (
2𝑥

1 + 𝑥2
) if  𝑥 < −1         
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(ii) 2 tan−1(𝑥) =

{
 
 

 
 
cos−1 (

1 − 𝑥2

1 + 𝑥2
)           if 0 ≤ 𝑥 < ∞   

− cos−1 (
1 − 𝑥2

1 + 𝑥2
)        if − ∞ ≤ 𝑥 ≤ 0

 

 

Property XIII 

(i) tan−1(𝑥) + tan−1(𝑦) + tan−1(𝑧) = tan−1 (
𝑥 + 𝑦 + 𝑧 − 𝑥𝑦𝑧

1 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥
) 

(ii) 

tan−1(𝑤) + tan−1(𝑥) + tan−1(𝑦) + tan−1(𝑧) 
 

        = tan−1 (
𝑤 + 𝑥 + 𝑦 + 𝑧 − 𝑤𝑥𝑦 − 𝑤𝑥𝑧 − 𝑤𝑦𝑧 − 𝑥𝑦𝑧

1 − 𝑤𝑥 − 𝑤𝑦 −𝑤𝑧 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥 + 𝑤𝑥𝑦𝑧
) 

(iii) 

tan−1(𝑥1) + tan
−1(𝑥2) + ⋯+ tan

−1(𝑥𝑛) = tan
−1 (

𝑆1 − 𝑆3 + 𝑆5 −⋯

1 − 𝑆2 + 𝑆4 − 𝑆6 +⋯
) 

where 𝑆𝑘  denotes the sum of the product of 𝑥1, 𝑥2, … , 𝑥𝑛 taken 𝑘 at a time. 

(iv) If tan−1(𝑥) + tan−1(𝑦) =
𝜋

2
, then 𝑥𝑦 = 1 

(v) If tan−1(𝑥) + tan−1(𝑦) + tan−1(𝑧) =
𝜋

2
, then 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 1 

(vi) If tan−1(𝑥) + tan−1(𝑦) + tan−1(𝑧) = 𝜋, then 𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧 

 

Property XIV 

(i) If sin−1(𝑥) + sin−1(𝑦) + sin−1(𝑧) =
𝜋

2
, then 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥𝑦𝑧 = 1 
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(ii) 

If sin−1(𝑥) + sin−1(𝑦) + sin−1(𝑧) = 𝜋, then  

        𝑥√1 − 𝑥2 + 𝑦√1 − 𝑦2 + 𝑧√1 − 𝑧2 = 2𝑥𝑦𝑧 

(iii) If sin−1(𝑥) + sin−1(𝑦) + sin−1(𝑧) =
3𝜋

2
, then 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 3 

 

Property XV 

(i) If cos−1(𝑥) + cos−1(𝑦) + cos−1(𝑧) = 𝜋, then 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥𝑦𝑧 = 1 

(ii) If cos−1(𝑥) + cos−1(𝑦) + cos−1(𝑧) = 3𝜋, then 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 3 

 

Property XVI 

(i) If sin−1(𝑥) + sin−1(𝑦) = 𝜃, then cos−1(𝑥) + cos−1(𝑦) = 𝜋 − 𝜃 

(ii) If cos−1(𝑥) + cos−1(𝑦) = 𝜃, then sin−1(𝑥) + sin−1(𝑦) = 𝜋 − 𝜃 

 

Property XVII 

(i) If cos−1 (
𝑥

𝑎
) + cos−1 (

𝑦

𝑏
) = 𝜃, then 

𝑥2

𝑎2
−
2𝑥𝑦

𝑎𝑏
cos(𝜃) +

𝑦2

𝑏2
= sin2(𝜃) 

 

Property XVIII 

(i) If cot−1(𝑥) + cot−1(𝑦) =
𝜋

2
, then 𝑥𝑦 = 1 
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2 Law of Sines, Law of Cosines, and the Law of Tangents 
 
Trigonometric functions can be used directly to solve (finding missing sides and/or 

missing angles) right triangles.   

But the trigonometric functions can also be used to solve oblique triangles, that is, 

triangles with no right angles. 

To do this, we need to understand how to use the Law of Sines and the Law of 

Cosines. 
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Notation 

When we use the notation SAS (for example) with S for side and A for angle, it denotes that we 

know two sides and one angle.  But it tells us something else.  This notation means that the 

angle A we know is not just any of the three angles of a triangle but is specifically the angle 

between the two sides we know. 

And when we use ASA it means we know two angles and one side and the side we know is 

between the two we know. 

And when we use SAA it also means we know two angles and one side but in this case the side           

we know is NOT between the two angles we know but rather is immediately followed by the 

two angles we know. 

 

The ASA, SAA, SSA cases are solved by using the Law of Sines. 

The SAS and SSS cases are solved by using the Law of Cosines. 
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2.1 The Law of Sines 
 

 

 

We have already stated the following result for the area of a triangle. 

 

Applying this formula to the triangle below, we see that 

 

𝒜 =
1

2
𝑏𝑐 sin(𝐴) 𝒜 =

1

2
𝑎𝑐 sin(𝐵) 𝒜 =

1

2
𝑎𝑏 sin(𝐶) 

 
So, 
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1

2
 𝑏𝑐 sin(𝐴) =

1

2
 𝑎𝑐 sin(𝐵) =

1

2
 𝑎𝑏 sin(𝐶). 

 

Multiplying all parts by the same quantity 2/𝑎𝑏𝑐, we have 

 

(
2

𝑎𝑏𝑐
)(
1

2
 𝑏𝑐 sin(𝐴)) = (

2

𝑎𝑏𝑐
)(
1

2
 𝑎𝑐 sin(𝐵)) = (

2

𝑎𝑏𝑐
)(
1

2
 𝑎𝑏 sin(𝐶)). 

 

Simplifying we immediately have the Law of Sines, 

 

sin(𝐴)

𝑎
=
sin(𝐵)

𝑏
=
sin(𝐶)

𝑐
. 

 

2.1.1 SSA, The Ambiguous Case 
 

The Law of Sines can be used in the ASA or SAA to solve the triangle and find the unique (one 

and only one) triangle with the given properties. 

However, in the SSA case there may be two triangles, one triangle, or no triangles with the 

given properties. 

 

For this reason the SSA case is referred to as the “ambiguous case”. 

We illustrate the possibilities when angle 𝐴 and sides 𝑎 and 𝑏 are given.  In (a), no solution is 

possible, because side 𝑎 is too short to complete the triangle. 

 
(a) 

 

In (b) there is one solution and it is a right triangle. 
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(b) 

 

In part (c) two solutions are possible. 

 
(c) 

 

In part (d) only one solution is possible. 

 
(d) 

 

Suppose we know sides 𝑎, 𝑏 and angle 𝐴 as shown in the figure below.  The chart shown below 

tells us whether there will be 2 or 1 or no triangles that can be formed with these two sides and 

one angle. 
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.  

Caution! 
When using this chart in a SSA situation be sure that what you use for 𝒂 is the known side 
that is opposite the known angle in your problem – regardless of how the side and angle 
labels are placed in your problem.   
 
(e.g. In your problem you may be given sides 𝑏 and 𝑐 and the angle 𝐵 not between these 
two sides.  In this case, your 𝑏 would be the 𝑎 in the chart above and your 𝑐 would be the 𝑏 
in the chart above.  Be careful!) 

 

    

   

    First note that we are the SSA situation. 
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       Secondly, note that  

𝑏 = 248.6 > 𝑎 = 186.2 > 𝑏 sin(𝐴) = 248.6 ∙ sin(43.1°) = 169.862 

 

So, we are in the situation of SSA where there are two solutions. 
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Note: It is always the case the ∠𝑩𝟏 + ∠𝑩𝟐 = 𝟏𝟖𝟎°.  You can use this fact to find ∠𝐵2 once 

you have ∠𝐵1. 
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The two solved triangles 𝐴1𝐵1𝐶1 and 𝐴2𝐵2𝐶2 are shown below. 

 

 

2.2 The Law of Cosines 
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The coordinates of 𝐵 will then be (𝑐, 0). 

Suppose we let (𝑥𝐶 , 𝑦𝐶) represent the coordinates of 𝐶. 

 

If we drop a perpendicular from 𝐶 to the 𝑥-axis then using the triangle formed on the left we 

see that 

sin(180° − 𝐴) =
𝑦𝐶
𝑏

 

and 

cos(180° − 𝐴) =
−𝑥𝐶
𝑏
. 

 
But 

sin(180° − 𝐴) = sin(𝐴)  for all 𝐴 ∈ [0°, 180°] 
 
and 

cos(180° − 𝐴) = − cos(𝐴)   for all  𝐴 ∈ [0°, 180°]. 
 
 
So, 

𝐶 
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sin(𝐴) =
𝑦𝐶
𝑏
⟹ 𝑦𝐶 = 𝑏 sin(𝐴) 

and 

−cos(𝐴) = −
𝑥𝐶
𝑏
⟹ 𝑥𝐶 = 𝑏 cos(𝐴). 
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2.2.1 The Area of a Triangle in the SSS Case – Heron’s Formula 
 

 

 

 

PROOF  We start with the area of a triangle formula 𝒜 = 𝑎𝑏 sin(𝐶) /2.  Squaring both sides we 

have 

 

Next, we write the expressions 1 − cos(𝐶) and 1 + cos(𝐶) in terms of 𝑎, 𝑏, and 𝑐.  By the Law 

of Cosines we have 
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2.3 Examples to Illustrate the Use of the Law of Sines and the Law of Cosines 

 

2.3.1 Using the Law of Sines to “solve” a triangle in the ASA case. 
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Suppose we know 𝑚∠𝐴  (the measure of angle 𝐴), 𝑐 (the length of the side opposite angle 𝐶) 

and 𝑚∠𝐵  (the measure of angle 𝐵).  Then we are in the ASA case. 

The goal is to find the length of sides 𝑎 and 𝑏 and 𝑚∠𝐶, the measure of angle 𝐶.  The first step 

is to solve for 𝑚∠𝐶 by subtraction from 180°. 

𝒎∠𝑪 = 180 − 𝑚∠𝐴 −𝑚∠𝐵. 

 

Now that we know 𝐶, we can find 𝒂 and 𝒃 using the Law of Sines. 

 

and 
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Example 1.  Solve the following triangle. 

 

Solution 

This is an ASA problem.  So, 

𝑚∠𝐶 = 180° −𝑚∠𝐴 − 𝑚∠𝐵 = 180° − 52° − 70° = 58° 

 

𝑎 = 𝑐 ⋅
sin(𝐴)

sin(𝐶)
= 26.7 ⋅

sin(52°)

sin(58°)
≈ 24.8 

 

𝑏 = 𝑐 ⋅
sin(𝐵)

sin(𝐶)
= 26.7 ⋅

sin(70°)

sin(58°)
≈ 29.6. 

 
 

2.3.2 Using the Law of Sines to “solve” a triangle in the AAS case. 
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Suppose we know 𝑚∠𝐶  (the measure of angle 𝐶), 𝑚∠𝐴 ( the measure of angle 𝐴) and 𝑐 (the 

length of the side opposite angle 𝐶) and.  Then we are in the AAS case.  The goal is to find the 

length of sides 𝑎 and 𝑏 and 𝑚∠𝐵, the measure of angle 𝐵.  The first step is to solve for 𝑚∠𝐵 by 

subtraction from 180°. 

That is, 

𝒎∠𝑩 = 180 − 𝑚∠𝐴 −𝑚∠𝐶. 

 
Then, just as in the ASA case, we can find 𝒂 and 𝒃 using the Law of Sines. 

 

sin(𝐴)

𝒂
=
sin(𝐶)

𝑐
⟹ 𝒂 = 𝑐 ⋅

sin(𝐴)

sin(𝐶)
 

and 

sin(𝐵)

𝒃
=
sin(𝐶)

𝑐
⟹ 𝒃 = 𝑐 ⋅

sin(𝐵)

sin(𝐶)
. 

 

Example 2.  Solve the following triangle. 
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Solution 

This is an AAS problem.  So, 

𝑚∠𝐶 = 180° −𝑚∠𝐴 − 𝑚∠𝐵 = 180° − 98.4° − 24.6° = 57° 
 

𝑏 = 𝑎 ⋅
sin(𝐵)

sin(𝐴)
= 376 ⋅

sin(24.6°)

sin(98.4°)
≈ 158.22 

 

𝑐 = 𝑎 ⋅
sin(𝐶)

sin(𝐴)
= 376 ⋅

sin(57°)

sin(98.4°)
≈ 318.75 

 

2.3.3 Using the Law of Cosines to “solve” a triangle in the SAS case. 
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Suppose we know 𝑏 (the length of the side opposite angle 𝐵), 𝑚∠𝐴 (the measure of angle 𝐴) 

and  𝑐 (the length of the side opposite angle 𝐶).  Then we are in the SAS case.  The goal is to find 

the length of side 𝑎, 𝑚∠𝐵 (the measure of angle 𝐵) and 𝑚∠𝐶 (the measure of angle 𝐶). 

The first step is to solve for 𝒂 using the Law of Cosines. 

𝒂2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos(𝐴). 

So  

𝒂 = √𝑏2 + 𝑐2 − 2𝑏𝑐 cos(𝐴) . 

 

Now that we know the length of side 𝑎, we can continue to use the Law of Cosines to find 𝑚∠𝐵 

and 𝑚∠𝐶. 

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos(𝑩) ⟹ cos(𝑩) =
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
. 

 
Now it must be that 𝐵 ∈ [0,𝜋] (i.e. between 0° and 180°) and in this case cos−1(cos(𝐵)) = 𝐵  

implies  

𝑩 = cos−1(cos(𝑩)) = cos−1 (
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
). 

 

By the same reasoning, 

𝑪 = cos−1(cos(𝑪)) = cos−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
). 

 

Example 3.  Solve the following triangle. 
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Solution 

This is an SAS problem.  So,  

 

𝑎 = √𝑏2 + 𝑐2 − 2𝑏𝑐 cos(𝐴) = √212 + 422 − 2(21)(42) cos(39°) ≈ 28.881 

 

𝐵 = cos−1 (
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
) = cos−1 (

28.8812 + 422 − 212

2(28.881)(42)
) ≈ 27.23° 

 

𝐶 = cos−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
) = cos−1 (

28.8812 + 212 − 422

2(28.881)(21)
) ≈ 113.77°. 

 

2.3.4 Using the Law of Cosines to “solve” a triangle in the SSS case. 
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Suppose we know 𝑎 (the length of the side opposite angle 𝐴), 𝑏 (the length of the side opposite 

angle 𝐵) and  𝑐 (the length of the side opposite angle 𝐶).  Then we are in the SSS case.  The goal 

is to find 𝑚∠𝐴 (the measure of angle 𝐴), 𝑚∠𝐵 (the measure of angle 𝐵) and 𝑚∠𝐶 (the measure 

of angle 𝐶). 

We can use the Law of Cosines to solve for each of the unknown angles.  By the Law of Cosines, 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos(𝑨). 

But 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos(𝑨) ⟹ cos(𝑨) =
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
. 

 
Now it must be that 𝐴 ∈ [0,𝜋] (i.e. between 0° and 180°) and in this case cos−1(cos(𝐴)) = 𝐴  

implies 

𝑨 = cos−1(cos(𝑨)) = cos−1 (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
). 

 

By the same reasoning, 

 

𝑩 = cos−1(cos(𝑩)) = cos−1 (
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
) 

 
and 
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𝑪 = cos−1(cos(𝑪)) = cos−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
). 

 

Example 4.  Solve the following triangle. 

 

Solution 

This is an SSS problem.  So,  

 

𝐴 = cos−1 (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
) = cos−1 (

37.832 + 42.152 − 68.012

2(37.83)(42.15)
) ≈ 116.39° 

 

𝐵 = cos−1 (
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
) = cos−1 (

68.012 + 42.152 − 37.832

2(68.01)(42.15)
) ≈ 29.89° 

 

𝐶 = cos−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
) = cos−1 (

68.012 + 37.832 − 42.152

2(68.01)(37.83)
) ≈ 33.72° 

 

2.4 Extended Law of Sines 
 
For any triangle Δ𝐴𝐵𝐶 we can circumscribe a unique circle with center 𝑆 because any three 
non-colinear points uniquely determine a circle. 
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We stated in the Study Guide for Meet 2, Event B that the radius 𝑅 of the circumscribing circle 
can be expressed by the formula 
 

𝑅 =
𝑎𝑏𝑐

4Area(Δ𝐴𝐵𝐶)
. 

 
We also stated in Meet 2B study guide that the area of Δ𝐴𝐵𝐶 can be expressed by the Side 
Angle Side Formula 

Area(Δ𝐴𝐵𝐶) =
1

2
𝑎 𝑏 sin(𝐶). 

 
It follows by substitution that 
 

2𝑅 =
𝑎𝑏𝑐

2Area(Δ𝐴𝐵𝐶)
=

𝑎𝑏𝑐

2 (
1
2 𝑎𝑏 sin

(𝐶))
=

𝑎𝑏𝑐

𝑎𝑏 sin(𝐶)
=

𝑐

sin(𝐶)
 

 
or 

sin(𝐶)

𝑐
=
1

2𝑅
. 

 
Combining this result with the Law of Sines we have the Extended Law of Sines 
 

sin(𝐴)

𝑎
=
sin(𝐵)

𝑏
=
sin(𝐶)

𝑐
=
1

2𝑅
. 
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3 Solving Trigonometric Equations 
 

3.1 𝐬𝐢𝐧(𝒙) = 𝐬𝐢𝐧(𝒚) , 𝐜𝐨𝐬(𝒙) = 𝐜𝐨𝐬(𝒚) , etc. 
 
 

Equality of Same Trig Functions 

sin(𝑥) = sin(𝑦) ⟺ 𝑥 = 2𝑛𝜋 + (𝜋 − 𝑦)  or  𝑥 = 2𝑛𝜋 + 𝑦  for some integer 𝑛 

cos(𝑥) = cos(𝑦) ⟺ 𝑥 = 2𝑛𝜋 − 𝑦  or  𝑥 = 2𝑛𝜋 + 𝑦 for some integer 𝑛 

tan(𝑥) = tan(𝑦) ⟺ 𝑥 = 𝑛𝜋 + 𝑦 for some integer 𝑛 

cot(𝑥) = cot(𝑦) ⟺ tan(𝑥) = tan(𝑦) 

sec(𝑥) = sec(𝑦) ⟺ cos(𝑥) = cos(𝑦) 

csc(𝑥) = csc(𝑦) ⟺ sin(𝑥) = sin(𝑦) 

 
 
 

1. 
Find the general values of 𝑥 which satisfy the equation sin 2𝑥 = −

1

2
.   

(Source: Math-Only-Math.com) 

 

Solution 

sin(2𝑥) = −
1

2
 

⟺ sin(2𝑥) = −sin (
𝜋

6
) 

⟺ sin(2𝑥) = sin (𝜋 +
𝜋

6
) = sin (

7𝜋

6
) 

 

In general, sin(𝑥) = sin(𝑦) implies 𝑥 = 2𝑛𝜋 + (𝜋 − 𝑦)  or  𝑥 = 2𝑛𝜋 + 𝑦 for some integer 𝑛.   

 

⟺ 2𝑥 = 2𝑛𝜋 + (𝜋 −
7𝜋

6
)    or   2𝑥 = 2𝑛𝜋 +

7𝜋

6
   for some integer 𝑛 

⟺ 𝑥 = 𝑛𝜋 −
𝜋

12
    or    𝑥 = 𝑛𝜋 +

7𝜋

12
   for some integer 𝑛. 
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∎ 

 

 

3.2   Avoid Division by Zero and Creating Missing Solutions 
 
 

2. 
Solve for 𝑥 if 

1 + sin(𝑥)

cos(𝑥)
+

cos(𝑥)

1 + sin(𝑥)
= 4. 

 
Solution 

 

Because denominators of fractions cannot equal zero, real numbers that cause the 

denominators to equal zero must be eliminated from the set of possible solutions. 

 

cos(𝑥) ≠ 0 → 𝑥 ≠ ±
𝜋

2
± 𝑛𝜋 

and 

sin(𝑥) ≠ −1 → 𝑥 ≠
3𝜋

2
± 2𝑛𝜋. 

 

Therefore, before we even start to solve the problems, the set of real numbers in the set  

 

{±
𝜋

2
± 𝑛𝜋} 

 

must be excluded from the possible set of solutions. 

 

To simplify the equation, let’s multiple the second fraction by 1 in the form 

 

1 − sin(𝑥)

1 − sin(𝑥)
, 

 

then simplify and solve.  The result will be an equation that may be equivalent to the original 

equation, but an equation where we can solve for 𝑥.  With this type of manipulations, there 

may be extraneous solutions.  In other words, you may come up with solutions for the new 

equation that are not solutions to the original equation.  Be sure to check your answers with the 

original equation. 

 

1 + sin(𝑥)

cos(𝑥)
+

cos(𝑥)

1 + sin(𝑥)
= 4 
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1 + sin(𝑥)

cos(𝑥)
+

cos(𝑥)

1 + sin(𝑥)
⋅ (
1 − sin(𝑥)

1 − sin(𝑥)
) = 4 

1 + sin(𝑥)

cos(𝑥)
+
cos(𝑥) (1 − sin(𝑥) )

cos2(𝑥)
= 4 

1 + sin(𝑥)

cos(𝑥)
+
cos(𝑥) (1 − sin(𝑥) )

cos2(𝑥)
= 4 

1 + sin(𝑥)

cos(𝑥)
+
1 − sin(𝑥)

cos(𝑥)
= 4 

2

cos(𝑥)
= 4 

cos(𝑥) =
1

2
. 

 

First let’s find all answers for 0 ≤ 𝑥 ≤ 2𝜋.  The cosine function is only positive in the 1st and 4th 

quadrants.  In the first quadrant cos(𝜋/3) = cos(60°) = 1/2.  By symmetry we know that 

cos(2𝜋 − 𝜋/3) = cos(300°) = 1/2 in the fourth quadrant. 

 

Therefore, the set of all possible answers would be 

 

𝑥 =
𝜋

3
+ 2𝑛𝜋  or  𝑥 =

5𝜋

3
+ 2𝑛𝜋 

 

for 𝑛 = 0,±1,±2, ….  These answers are never one of the excluded values {±
𝜋

2
± 𝑛𝜋} so we 

don’t have to worry about that possibility. 

∎ 

 

 

3. Find the general solution for sin 𝜃 cos2 𝜃 = sin3 𝜃. 

 

Solution 

 

First and foremost – Don’t try to solve this by dividing both sides of the equation by sin 𝜃.  Why 

not? 

 

It is possible that you will lose solutions when you divide both sides of an equation by the same 

quantity.  It is the problem of missing solutions – the flip side of extraneous solutions.  In this 

problem you will lose solutions by dividing both sides by sin(𝜃). 
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Furthermore, to make the division valid we could not consider those values of 𝜃 where  

sin 𝜃 = 0. 

 

The correct approach is to subtract sin3 𝜃 from both sides and then proceed to simplify. 

 

sin 𝜃 cos2 𝜃 = sin3 𝜃 

⟺ sin𝜃 cos2 𝜃 − sin3 𝜃 = 0 

⟺ sin𝜃 (cos2 𝜃 − sin2 𝜃) = 0 

⟺ sin𝜃 (cos𝜃 − sin 𝜃)(cos𝜃 + sin 𝜃) = 0 

⟺ sin𝜃 = 0    or  (cos 𝜃 − sin 𝜃) = 0    or  (cos 𝜃 + sin 𝜃) = 0. 

 

Case 1.  sin 𝜃 = 0 

 

sin 𝜃 = 0 ⟺ 𝜃 = 𝑛𝜋 for some integer 𝑛. 

 

Case 2. cos𝜃 − sin 𝜃 = 0 

 

cos𝜃 − sin 𝜃 = 0 ⟺ cos𝜃 = sin 𝜃 

⟺ cos𝜃 = cos (
𝜋

2
− 𝜃). 

 

In general, cos(𝑥) = cos(𝑦) implies 𝑥 = 2𝑛𝜋 − 𝑦  or  𝑥 = 2𝑛𝜋 + 𝑦 for some integer 𝑛.   

 

In general, cos(𝑥) = cos(𝑦) implies 𝑥 = 2𝑛𝜋 ± 𝑦 for some integer 𝑛.  So, in this problem we 

have 

 

𝜃 = 2𝑛𝜋 ± (
𝜋

2
− 𝜃). 

But 

𝜃 = 2𝑛𝜋 − (
𝜋

2
− 𝜃) ⟺ 𝜋 (2𝑛 −

1

2
) = 0 

 

which is impossible.  Now 

 

𝜃 = 2𝑛𝜋 + (
𝜋

2
− 𝜃) ⟺ 2𝜃 = 2𝑛𝜋 +

𝜋

2
⟺ 𝜃 = 𝑛𝜋 +

𝜋

4
. 

 

Thus, 
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cos 𝜃 − sin 𝜃 = 0 ⟺ 𝜃 =
𝜋

4
+ 𝑛𝜋 

 

for some integer 𝑛. 

 

Case 3. cos𝜃 + sin 𝜃 = 0 

 

cos 𝜃 + sin 𝜃 = 0 ⟺ cos𝜃 = − sin 𝜃. 

 

We know that 

cos𝜃 = sin (
𝜋

2
+ 𝜃)   and  − sin 𝜃 = sin(−𝜃). 

 

Therefore 

cos𝜃 = −sin 𝜃 ⟺ sin (
𝜋

2
+ 𝜃) = sin(−𝜃) . 

 

In general, sin(𝑥) = sin(𝑦) implies 𝑥 = 2𝑛𝜋 + (𝜋 − 𝑦)  or  𝑥 = 2𝑛𝜋 + 𝑦 for some integer 𝑛.   

 

So, in this problem we have 

 
𝜋

2
+ 𝜃 = 2𝑛𝜋 + (𝜋 − (−𝜃))  or   

𝜋

2
+ 𝜃 = 2𝑛𝜋 + (−𝜃). 

But  
𝜋

2
+ 𝜃 = 2𝑛𝜋 + (𝜋 + 𝜃)  ⟺ (2𝑛 +

1

2
)𝜋 = 0 

 

which is impossible.  Now 
𝜋

2
+ 𝜃 = 2𝑛𝜋 + (−𝜃) ⟺ 2𝜃 = 2𝑛𝜋 −

𝜋

2
 

⟺ 𝜃 = 𝑛𝜋 −
𝜋

4
. 

Thus, 

cos 𝜃 + sin 𝜃 = 0 ⟺ 𝜃 = 𝑛𝜋 −
𝜋

4
 

 

for some integer 𝑛. 

 

Pulling the results from all three cases together, we have sin 𝜃 cos2 𝜃 = sin3 𝜃 if 

 

𝜃 = 𝑛𝜋    or    𝜃 = 𝑛𝜋 ±
𝜋

4
 

for some integer 𝑛. 
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∎ 

 

3.3   Equations of Quadratic Type 
 

4. Solve cos(4𝑥) = sin(2𝑥).   (Source: https://brownmath.com) 

 
Solution 
 
Here we can make good use of the identity cos(2𝜃) = 1 − 2 sin2(𝜃).  Let 𝜃 = 2𝑥.  Then 
 

cos(4𝑥) = 1 − 2 sin2(2𝑥). 
 
Making this substitution we are left with the equation 
 

1 − 2 sin2(2𝑥) = sin(2𝑥) 
or 
 

2 sin2(2𝑥) + sin(2𝑥) − 1 = 0. 
 
This is a quadratic equation in the variable sin(2𝑥) that factors nicely into 
 

(2 sin(2𝑥) − 1)(sin(2𝑥) + 1) = 0. 
Therefore, 

cos(4𝑥) = sin(2𝑥) ⟺ sin(2𝑥) =
1

2
  or   sin(2𝑥) = −1 

⟺ sin(2𝑥) = sin (
𝜋

6
)   or  sin(2𝑥) = sin (

3𝜋

2
). 

 
Now recall that the general rule of equality for sine functions: 
 

sin(𝑥) = sin(𝑦) implies 𝑥 = 2𝑛𝜋 + (𝜋 − 𝑦)  or  𝑥 = 2𝑛𝜋 + 𝑦 for some integer 𝑛 
 

So, 

sin(2𝑥) = sin (
𝜋

6
) ⟺ 2𝑥 = 2𝑛𝜋 + (𝜋 −

𝜋

6
)   or  2𝑥 = 2𝑛𝜋 +

𝜋

6
  for some integer 𝑛 

⟺ 𝑥 = 𝑛𝜋 +
5𝜋

12
  or  𝑥 = 𝑛𝜋 +

𝜋

12
 

and 

sin(2𝑥) = sin (
3𝜋

2
)⟺ 2𝑥 = 2𝑛𝜋 + (𝜋 −

3𝜋

2
)   or  2𝑥 = 2𝑛𝜋 +

3𝜋

2
 

⟺ 𝑥 = 𝑛𝜋 −
𝜋

4
  or  𝑥 = 𝑛𝜋 +

3𝜋

4
. 

 

https://brownmath.com/


mathcloset.com   61 

But 𝑛𝜋 − (𝜋/4) is superfluous because 
  

𝑛𝜋 −
𝜋

4
= 𝑚𝜋 +

3𝜋

4
  for  𝑚 = 𝑛 + 1. 

 
So, the set of all possible solutions is 
 

𝑥 =
5𝜋

2
+ 𝑛𝜋  or  𝑥 =

𝜋

12
+ 𝑛𝜋  or  𝑥 =

3𝜋

4
+ 𝑛𝜋  for some integer 𝑛. 

∎ 
 

3.4   Recasting in Terms of Sine and Cosine Only 

 
 

5. Solve 2 csc(𝑥) − cot(𝑥) = tan(𝑥).  (Source: mathonweb.com) 

 
Solution 
 
Rewriting the equation in terms of just sin(𝑥) and cos(𝑥) is a standard step to consider when 
several different trig functions appear in the problem. 
 

2 csc(𝑥) − cot(𝑥) = tan(𝑥)⟺
2

sin(𝑥)
−
cos(𝑥)

sin(𝑥)
=
sin(𝑥)

cos(𝑥)
 

⟺
2− cos(𝑥)

sin(𝑥)
=
sin(𝑥)

cos(𝑥)
 

⟺ 2cos(𝑥) − cos2(𝑥) = sin2(𝑥) 

⟺ 2cos(𝑥) = sin2(𝑥) + cos2(𝑥) = 1 

⟺ cos(𝑥) =
1

2
 

⟺ cos(𝑥) = cos (
𝜋

3
) 

⟺ 𝑥 = 2𝑛𝜋 −
𝜋

3
  or  2𝑛𝜋 +

𝜋

3
. 

∎ 
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3.5   Matching with a Pythagorean Relationship 
 
 

6. Solve sec(𝑥) = tan(𝑥) + 1 for 0 ≤ 𝑥 < 2𝜋. 

 
Solution 

 

Knowing the Pythagorean relationship sec2(𝜃) = tan2(𝜃) + 1 is a hint that we should square 

both sides.  But squaring can introduce extraneous solutions so we will have to check for this at 

the end of the problem. 

 

sec(𝑥) = tan(𝑥) + 1 

sec2(𝑥) = (tan(𝑥) + 1)2 = tan2(𝑥) + 2 tan(𝑥) + 1 

tan2(𝑥) + 1 = tan2(𝑥) + 2 tan(𝑥) + 1 

2 tan(𝑥) = 0 

tan(𝑥) = 0 

tan(𝑥) = tan(0) 

𝑥 = 𝑛𝜋  for some integer 𝑛. 

 

So, given the restriction 0 ≤ 𝑥 < 2𝜋, our only two candidate solutions are 𝑥 = 0 and 𝑥 = 𝜋.  

But as we mentioned above we must check for extraneous solutions. 

 

Is 𝑥 = 0 an actual solution? Does sec(0) =
?
tan(0) + 1?  Yes, because sec(0) = 1 and  

tan(0) = 0. 

 

Is 𝑥 = 𝜋 an actual solution? Does sec(𝜋) =
?
tan(𝜋) + 1?  No, because sec(𝜋) is undefined and  

tan(𝜋) = 0. 

 

So, 𝑥 = 0 is the only solution on [0,2𝜋). 

∎ 

 

  



mathcloset.com   63 

3.6   Using the “Sum to Product” Identity 
 

Sum to Product 

cos(𝛼) + cos(𝛽) = 2 cos (
𝛼 + 𝛽

2
)cos (

𝛼 − 𝛽

2
) (4) 

cos(𝛼) − cos(𝛽) = −2 sin (
𝛼 + 𝛽

2
) sin (

𝛼 − 𝛽

2
)  (5) 

sin(𝛼) + sin(𝛽) = 2 sin (
𝛼 + 𝛽

2
) cos (

𝛼 − 𝛽

2
) (6) 

sin(𝛼) − sin(𝛽) = 2 sin (
𝛼 − 𝛽

2
) cos (

𝛼 + 𝛽

2
) (7) 

 
 

7. Solve  sin 𝑥 + sin 5𝑥 = sin 3𝑥  for 𝑥 in [0,𝜋/2]. (Source: Math-Only-Math.com) 

 
Solution 
 

sin(5𝑥) + sin(𝑥) = sin(3𝑥)  

 ⟺ 2sin (
5𝑥 + 𝑥

2
) cos (

5𝑥 − 𝑥

2
) = sin(3𝑥) (using Identity (6) above) 

 ⟺ 2sin(3𝑥) cos(2𝑥) = sin(3𝑥) 
(remember not to divide 
out a variable on both 
sides) 

 ⟺ 2sin(3𝑥) cos(2𝑥) − sin(3𝑥) = 0  

 ⟺ sin(3𝑥) (2 cos(2𝑥) − 1) = 0  

 

Case 1.  sin(3𝑥) = 0 

 
sin(3𝑥) = 0 ⟺ 3𝑥 = 𝑛𝜋 

⟺ 𝑥 =
𝑛𝜋

3
. 

Case 2.  2 cos(2𝑥) − 1 = 0 
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2 cos(2𝑥) − 1 = 0 

2 cos(2𝑥) = 1 

cos(2𝑥) =
1

2
 

cos(2𝑥) = cos (
𝜋

3
) 

 

In general, cos(𝑥) = cos(𝑦) implies 𝑥 = 2𝑛𝜋 − 𝑦  or  𝑥 = 2𝑛𝜋 + 𝑦 for some integer 𝑛.   

 

2𝑥 = 2𝑛𝜋 −
𝜋

3
  or  2𝑥 = 2𝑛𝜋 +

𝜋

3
 

𝑥 = 𝑛𝜋 −
𝜋

6
  or  𝑥 = 𝑛𝜋 +

𝜋

6
 

So, the set of all possible solutions would be all 𝑥 such that  

𝑥 =
𝑛𝜋

3
,   𝑥 = 𝑛𝜋 −

𝜋

6
,   𝑛𝜋 +

𝜋

6
 

for some integer 𝑛.  But the problem restricts 𝑥 to the interval [0, 𝜋/2]. 
 
Taking 𝑛 = 0 in the general form 𝑥 = 𝑛𝜋/3 yields 𝑥 = 0 which is in [0, 𝜋/2]. 
 
Taking 𝑛 = 1 in the general form 𝑥 = 𝑛𝜋/3 yields 𝑥 = 𝜋/3 which is in [0, 𝜋/2]. 
 
Taking 𝑛 = 0 in the general form 𝑥 = 𝑛𝜋 + 𝜋/6 yields 𝑥 = 𝜋/6 which is in [0,𝜋/2]. 
 
All other cases yield solutions outside [0, 𝜋/2]. 
 
So, the set of all possible solutions would be 𝑥 = 0, 𝑥 = 𝜋/6 and 𝑥 = 𝜋/3. 

∎ 
 
 

8. 
Solve cos(3𝑥) + sin(2𝑥) − sin(4𝑥) = 0. 
 
(Source: Methods of Solving Nonstandard Problems, Ellina Grigorieva) 

 
Solution 
 

cos(3𝑥) + (sin(2𝑥) − sin(4𝑥)) = 0  

 ⟺ cos(3𝑥) − 2 sin(𝑥) cos(3𝑥) = 0 (using Identity (7) above) 
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 ⟺ cos(3𝑥) (1 − 2 sin(𝑥)) = 0  

 ⟺ cos(3𝑥) = 0  or   sin(𝑥) =
1

2
  

 ⟺ 𝑥 =
𝜋

6
+
𝜋

3
𝑛  or  𝑥 = (−1)𝑘

𝜋

6
+ 𝜋𝑘  for some integers 𝑛 and 𝑘. 

 

However, the values (−1)𝑘(𝜋/6) + 𝜋𝑘 for some integer 𝑘 are all special cases of (𝜋/6) +

(𝜋/3)𝑛 for some integer 𝑛.  That is, we can simplify our final answer to  

𝑥 =
𝜋

6
+
𝜋

3
𝑛  for some integer 𝑛. 

 
 

3.7   Using the “Product to Sum” Identity 
 
 

Product to Sum 

cos(𝛼) cos(𝛽) =
1

2
(cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽) ) (1) 

sin(𝛼) sin(𝛽) =
1

2
(cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽) ) (2) 

sin(𝛼) cos(𝛽) =
1

2
(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) ) (3) 

 
 

9. 
Solve sin(5𝑥) cos(3𝑥) = sin(6𝑥) cos(2𝑥). 
 
(Source: Methods of Solving Nonstandard Problems, Ellina Grigorieva) 

 
Solution 
 
By the Identity (3) above we have 
 

sin(5𝑥) cos(3𝑥) =
1

2
(sin(5𝑥 + 3𝑥) + sin(5𝑥 − 3𝑥) ) =

1

2
(sin(8𝑥) + sin(2𝑥) ) 

 

sin(6𝑥) cos(2𝑥) =
1

2
(sin(6𝑥 + 2𝑥) + sin(6𝑥 − 2𝑥) ) =

1

2
(sin(8𝑥) + sin(4𝑥) ). 

 
Making these substitutions, the original equation is transformed to 
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1

2
(sin(8𝑥) + sin(2𝑥) ) =

1

2
(sin(8𝑥) + sin(4𝑥) )  

 ⟺ sin(2𝑥) = sin(4𝑥)  

 ⟺ sin(2𝑥) − sin(4𝑥) = 0  

 ⟺ 2sin (
2𝑥 − 4𝑥

2
) cos (

2𝑥 + 4𝑥

2
) = 0 (using Identity (7) above) 

 ⟺ 2sin(−𝑥) cos(3𝑥) = 0  

 ⟺−2sin(𝑥) cos(3𝑥) = 0  

 ⟺ sin(𝑥) = 0  or cos(3𝑥) = 0  

 ⟺ 𝑥 = 𝜋𝑛  or 3𝑥 =
𝜋

2
+ 𝜋𝑘  for some integers 𝑛 and 𝑘  

 ⟺ 𝑥 = 𝜋𝑛  or 𝑥 =
𝜋

6
+
𝜋𝑘

3
  for some integers 𝑛 and 𝑘  

∎ 
 

3.8   𝒂 𝐬𝐢𝐧(𝒙) + 𝒃 𝐜𝐨𝐬(𝒚) = 𝒄 
 

10. Solve √3cos(𝑥) + sin(𝑥) = √2, for 0 ≤ 𝑥 ≤ 2𝜋. 

 
Solution 
 

 
Useful Identity:   
 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = √𝑎2 + 𝑏2 ⋅ cos(𝑥 − 𝜃) 
 
where 𝜃 is that angle in 0 ≤ 𝜃 ≤ 2𝜋 such that  
 

cos(𝜃) =
𝑎

√𝑎2 + 𝑏2
  and   sin(𝜃) =

𝑏

√𝑎2 + 𝑏2
. 

 
Note: We can determine which of the four quadrants 𝜃 belongs in according to which 

combination of positive and negative cos(𝜃) and sin(𝜃) are. 
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To understand why this works, notice that with these substitutions we have 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = cos(𝑥) cos(𝜃) + sin(𝑥) sin(𝜃) = cos(𝑥 − 𝜃). 

Furthermore, these are valid substitutions because with these substitutions we have −1 ≤

cos(𝜃) ≤ 1, −1 ≤ sin(𝜃) ≤ 1 and sin2(𝜃) + cos2(𝜃) = 1. 

 
Using the above identity, we have 

cos(𝜃) =
√3

√(√3)
2
+ 12

=
√3

2
 

and 

sin(𝜃) =
1

√(√3)
2
+ 12

=
1

2
. 

 
We see that cos(𝜃) and sin(𝜃) are both positive so 𝜃 is in the first quadrant.  In particular, we 

see that 𝜃 = 𝜋/6. 

 
So,  

√3

2
cos(𝑥) +

1

2
sin(𝑥) = cos (𝑥 −

𝜋

6
). 

Therefore, 
 

√3 cos(𝑥) + sin(𝑥) = 2 cos (𝑥 −
𝜋

6
) = √2,  for 0 ≤ 𝑥 ≤ 2𝜋 

or 

cos (𝑥 −
𝜋

6
) =

1

√2
, for 0 ≤ 𝑥 ≤ 2𝜋. 

 
Therefore 

𝑥 −
𝜋

6
=
𝜋

4
  or  𝑥 −

𝜋

6
= 2𝜋 −

𝜋

4
 

𝑥 =
𝜋

4
+
𝜋

6
=
5𝜋

12
   or   𝑥 = 2𝜋 −

𝜋

4
+
𝜋

6
=
23𝜋

12
. 

∎ 
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3.9 Maximize (minimize) 𝒂 𝐬𝐢𝐧(𝒙) + 𝒃 𝐜𝐨𝐬(𝒚) 
 

11. Find the maximum value of sin(𝑥) + cos(𝑥). 

 
Solution 
 
This is another example where the technique below can be used. 
 

Useful Identity:   
 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = √𝑎2 + 𝑏2 ⋅ cos(𝑥 − 𝜃) 
 
where 𝜃 is that angle in 0 ≤ 𝜃 ≤ 2𝜋 such that  
 

cos(𝜃) =
𝑎

√𝑎2 + 𝑏2
  and   sin(𝜃) =

𝑏

√𝑎2 + 𝑏2
. 

 
Note: We can determine which of the four quadrants 𝜃 belongs in according to which 

combination of positive and negative cos(𝜃) and sin(𝜃) are. 

 
sin(𝑥) + cos(𝑥) = 1 ⋅ cos(𝑥) + 1 ⋅ sin(𝑥) ⟹ 𝑎 = 1, 𝑏 = 1. 

 
Let 𝜃 be that angle in [0,2𝜋] such that 
  

cos(𝜃) =
1

√12 + 12
=
1

√2
  and sin(𝜃) =

1

√12 + 12
=
1

√2
. 

 
Because both sin(𝜃) and cos(𝜃) are positive, we are looking for an angle in the 1𝑠𝑡  quadrant.  

By inspection we see that 𝜃 = 𝜋/4. 

 
Therefore,  

sin(𝑥) + cos(𝑥) = √12 + 12 ⋅ cos (𝑥 −
𝜋

4
) = √2 cos (𝑥 −

𝜋

4
). 

 

In this form we can clearly see that the maximum value of sin(𝑥) + cos(𝑥) is √2 and this occurs 

when 𝑥 = 𝜋/4. 

∎ 
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3.10 System of Trigonometric Equations 
 

12. 
Solve the system sin(𝑥) + sin(𝑦) = 1 and cos(𝑥) + cos(𝑦) = 0 for 𝑥 and 𝑦. 

(Source: math.stackexchange.com) 

 
Solution 
 

First a couple notes about steps frequently needed in problem similar to this one.  To keep the 

notation simple, let 𝐴 represent some function of 𝑥 and 𝑦 (e.g. sin(𝑥) + sin(𝑦) ) and let 𝐵 

represent some function of 𝑥 and 𝑦 and consider solving the system 𝐴 = 𝑎 and 𝐵 = 𝑏 for 𝑥 and 

𝑦 for some constants 𝑎 and 𝑏. 

 

 (𝑖) If you replace the equation 𝐴 = 𝑎 with 𝐴2 = 𝑎2 you will not lose any solutions but 

  you may gain some false (extraneous) ones.  So, you will need to check all solutions 

  to see if they really solve the original equations 𝐴 = 𝑎 and 𝐵 = 𝑏. 

 

 (𝑖𝑖) sometimes it helps to replace the equation 𝐴 = 𝑎 with some linear function of 𝐴  

  and 𝐵 (e.g.  𝑐1𝐴 + 𝑐2𝐵 = 𝑐1𝑎 + 𝑐2𝑏, 𝑐1 ≠ 0).  This does not change the solution  

  set.  That is, the solution sets to the two systems 

 

{
𝐴 = 𝑎
𝐵 = 𝑏

}  and {
𝑐1𝐴 + 𝑐2𝐵 = 𝑐1𝑎 + 𝑐2𝑏, 𝑐1 ≠ 0

𝐵 = 𝑏
} 

 

  are the same because this is an invertible transformation.  A typical case is where you  

  replace 𝐴 = 𝑎 with 𝐴 − 𝐵 = 𝑎 − 𝑏 or 𝐴 + 𝐵 = 𝑎 + 𝑏. 

 

We will begin by squaring both equations.  This will allow us to take advantage of the 

Pythagorean relationship sin2(𝜃) + cos2(𝜃) = 1. 

 

So, we have 

sin2(𝑥) + sin2(𝑦) + 2 sin(𝑥) sin(𝑦) = 1 

cos2(𝑥) + cos2(𝑦) + 2 cos(𝑥) cos(𝑦) = 0. 

 

Now we will replace the first equation with the sum of these two equations.  The sum of these 

two equations, after simplification, is sin(𝑥) sin(𝑦) + cos(𝑥) cos(𝑦) = −1/2.  But we can 

further simplify by applying the angle addition formula 

 

sin(𝜃) sin(𝛽) + cos(𝜃) cos(𝛽) = cos(𝜃 − 𝛽). 
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We can then rewrite the equation cos(𝑥 − 𝑦) = −1/2  as  cos(𝑥 − 𝑦) = cos(2𝜋/3) in as much 

as cos(2𝜋/3) = −1/2.  This rewrite will make it plain how to use our result on the “Equality of 

Same Trig Functions” given in the previous table. 

 

Finally, it will be useful to note that 

 

cos(𝑥) + cos(𝑦) = 0 ⟺ cos(𝑥) = −cos(𝑦) ⟺ cos(𝑥) = cos(𝜋 − 𝑦). 

 

So, the original system of equations has been transformed to the equivalent (up to potential 

extraneous solutions) system: 

cos(𝑥 − 𝑦) = cos (
2𝜋

3
) 

cos(𝑥) = cos(𝜋 − 𝑦). 

 

The solution to the first equation is 

𝑥 − 𝑦 = 2𝑛1𝜋 −
2𝜋

3
  or   𝑥 − 𝑦 = 2𝑛2𝜋 +

2𝜋

3
 

 

and the solution to the second equation is 

 

𝑥 = 2𝑛3𝜋 − (𝜋 − 𝑦)  or   𝑥 = 2𝑛4𝜋 + (𝜋 − 𝑦) 

 

where 𝑛1, 𝑛2, 𝑛3 and 𝑛4 can be any (not necessarily equal) integers. 

 

These leads to four cases: 
 

Case 1 
𝑥 = 2𝑛1𝜋 −

2𝜋

3
+ 𝑦 

𝑥 = 2𝑛3𝜋 − 𝜋 + 𝑦 

Case 2 
𝑥 = 2𝑛1𝜋 −

2𝜋

3
+ 𝑦 

𝑥 = 2𝑛4𝜋 + 𝜋 − 𝑦 

Case 3 
𝑥 = 2𝑛2𝜋 +

2𝜋

3
+ 𝑦 

𝑥 = 2𝑛3𝜋 − 𝜋 + 𝑦 

Case 4 
𝑥 = 2𝑛2𝜋 +

2𝜋

3
+ 𝑦 

𝑥 = 2𝑛4𝜋 + 𝜋 − 𝑦 

 
Cases 1 and 3 lead to contradictions because the variable 𝑦 cancels out and we are left with an 

equality that is never true. 

 

Case 2 
𝑥 = 2𝑛1𝜋 −

2𝜋

3
+ 𝑦 

𝑥 = 2𝑛4𝜋 + 𝜋 − 𝑦 
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2𝑛1𝜋 −
2𝜋

3
+ 𝑦 = 2𝑛4𝜋 + 𝜋 − 𝑦 

2𝑦 = 2𝜋(𝑛4 − 𝑛1) +
5𝜋

3
 

𝑦 = (𝑛4 − 𝑛1)𝜋 +
5𝜋

6
 

𝑥 = 2𝑛1𝜋 −
2𝜋

3
+ (𝑛4 − 𝑛1)𝜋 +

5𝜋

6
= (𝑛4 + 𝑛1)𝜋 +

𝜋

6
 

(𝑥, 𝑦) = ((𝑛4 + 𝑛1)𝜋 +
𝜋

6
, (𝑛4 − 𝑛1)𝜋 +

5𝜋

6
)   for some integers 𝑛1 and 𝑛4. 

 

Case 4 
𝑥 = 2𝑛2𝜋 +

2𝜋

3
+ 𝑦 

𝑥 = 2𝑛4𝜋 + 𝜋 − 𝑦 

 

2𝑛2𝜋 +
2𝜋

3
+ 𝑦 = 2𝑛4𝜋 + 𝜋 − 𝑦 

2𝑦 = 2𝜋(𝑛4 − 𝑛2) + 𝜋 −
2𝜋

3
 

𝑦 = (𝑛4 − 𝑛2)𝜋 +
𝜋

6
 

𝑥 = 2𝑛2𝜋 +
2𝜋

3
+ ((𝑛4 − 𝑛2)𝜋 +

𝜋

6
) = (𝑛4 + 𝑛2)𝜋 +

5𝜋

6
 

(𝑥, 𝑦) = ((𝑛4 + 𝑛2)𝜋 +
5𝜋

6
, (𝑛4 − 𝑛2)𝜋 +

𝜋

6
)  for some integers 𝑛2 and 𝑛4. 

 
Are any of these solutions extraneous?  Fortunately, we don’t have to plug each solution back 

into the original equations.  Looking at Case 2, the only relevant question is whether (𝑛4 + 𝑛1), 

(𝑛4 − 𝑛1), (𝑛4 + 𝑛2) and (𝑛4 − 𝑛2) are even or odd.  All cases where 𝑛1 and 𝑛4 have the same 

parity (i.e. are both even or both odd) reduce to (𝑥, 𝑦) = (5𝜋/6,𝜋/6).  All cases where 𝑛1 and 

𝑛4 have different parity reduce to (𝑥, 𝑦) = (11𝜋/6,7𝜋/6).  So in fact there are just two cases to 

check.  It turns out that (𝑥, 𝑦) = (11𝜋/6,7𝜋/6) does not satisfy the equation sin(𝑥) +

sin(𝑦) = 1.  The same analysis holds for the solutions that arise from Case 4. 

 

In summary all valid (non-extraneous) solutions will have the form 
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(𝑥, 𝑦) = (2𝑛𝜋 +
5𝜋

6
, 2𝑚𝜋 +

𝜋

6
)  for some integers 𝑛 and 𝑚 

or 

(𝑥, 𝑦) = (2𝑛𝜋 +
𝜋

6
, 2𝑚𝜋 +

5𝜋

6
)  for some integers 𝑛 and 𝑚. 

∎ 

 

 
 

13. 
Determine all values of 𝐴, if cos𝐴 − cos𝐵 = −sin 80° and 𝐴 + 𝐵 = 60°, where  

0° ≤ 𝐴 ≤ 180°.  (Source: MSHSML 3C154) 

 
Solution 

Because 𝐵 = 60° − 𝐴 we have 

 
cos𝐴 − cos𝐵 = cos𝐴 − cos(60° − 𝐴) 

= cos𝐴 − (cos60° cos 𝐴 + sin 60° sin 𝐴) 

= cos𝐴 (1 − cos60°) − sin 60° sin 𝐴 

= cos𝐴 (1 −
1

2
) −

√3

2
sin 𝐴 

= sin 30°  cos𝐴 − cos30° sin 𝐴 

= sin(30° − 𝐴) 

= −sin(𝐴 − 30°). 

Note: In the above argument we have used the following two Subtraction Identities  

cos(𝑥 − 𝑦) = cos 𝑥 cos 𝑦 + sin 𝑥 sin 𝑦 

sin(𝑥 − 𝑦) = sin 𝑥 cos 𝑦 − cos 𝑥 sin 𝑦 

and the Even-Odd Identity 

sin(−𝑥) = − sin 𝑥 

as stated in the Study Guide for Meet 2, Event C. 

 
Therefore, 

−sin(𝐴 − 30°) = − sin(80°). 
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Now recall the general equivalence result (stated in radians) stated earlier in this study guide 

that 

 

sin(𝑥) = sin(𝑦) ⟺ 𝑥 = 2𝑛𝜋 + (𝜋 − 𝑦)  or  𝑥 = 2𝑛𝜋 + 𝑦  for some integer 𝑛. 

 

From this result (after translating into degrees) it follows that for some integer 𝑛 

𝐴 − 30° = 2𝑛(180°) + (180° − 80°) 

or 

𝐴 − 30° = 2𝑛(180°) + 80°. 

Simplifying, we have 

𝐴 = 110° + 360°𝑛   or  𝐴 = 130° + 360°𝑛 

for some integer 𝑛. 

But recall that the statement of the problem requires that 0° ≤ 𝐴 ≤ 180°.  Therefore, the only 

possible values of 𝐴 are 110° and 130°. 

∎ 

 
 

14. 
How many solutions to sin 𝜃 = −cos 𝜃 exist on the interval 0 ≤ 𝜃 < 2𝜋? 

(Source: MSHSML 3C101) 

 
Solution 

 

∎ 

 
 

15. 
Find the solution of the equation cos 𝑥 − sin 𝑥 = 0 where 𝜋 ≤ 𝑥 < 3𝜋/2. 

(Source: MSHSML 3C081) 

 
Solution 
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∎ 

 

 

16. 
Find all solutions to the equation sec2 𝜃 − 3 sec 𝜃 − 2 = 0 on the interval  

0 ≤ 𝜃 < 2𝜋.  (Source: MSHSML 3C082) 

 
Solution 

 

 

∎ 
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17. 
The obtuse angle in a triangle has a sine of 3/5.  What is the tangent of this angle? 

(Source: MSHSML 3C051) 

 
Solution 

 

 

 

∎ 

 

4 De Moivre’s Theorem and the Roots of Unity 
 

Complex Number 

A complex number is any number that can be written in the form 
𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers and 𝑖 is the imaginary unit 
(𝑖2 = −1).  𝑎 is called the real part, and 𝑏 is called the imaginary 
part. 

Equality of Two 
Complex Numbers 

𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖 ⟺ 𝑎 = 𝑐  AND  𝑏 = 𝑑 
    i.e. the real parts must be equal and the imaginary parts must  
           be equal. 

Addition and 
Subtraction of Complex 
Numbers 

Combine like terms. 

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 

(𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖 

Multiplication of 
Complex Numbers 

Use the definition of 𝑖2 = −1 and the FOIL method: 

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 

Multiplication of a 
Complex Number by a 
Constant 

𝑐 ∙ (𝑎 + 𝑏𝑖) = 𝑎𝑐 + (𝑏𝑐)𝑖 
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Conjugate of a 
Complex Number 

The complex conjugate of 𝑎 + 𝑏𝑖 is defined to be 𝑎 − 𝑏𝑖. 

Notation for a Complex 
Number and its 
Conjugate 

If 𝑧 is a complex number then we denote the conjugate of 𝑧 by 𝑧. 

      e.g.  If 𝑧 = 3 + 2𝑖, then 𝑧 = 3 − 2𝑖 and if 𝑧 = −1 − 2𝑖, then 

               𝑧 = −1 + 2𝑖.  We can also write this as  𝑎 + 𝑏𝑖 = 𝑎 − 𝑏𝑖. 
 

Product of a Complex 
Number and its 
Conjugate, Part 1. 

(𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = (𝑎2 − 𝑏(−𝑏)) + (−𝑎𝑏 + 𝑎𝑏)𝑖 = 𝑎2 + 𝑏2 

Division of Complex 
Numbers 

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
= (

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
) (
𝑐 − 𝑑𝑖

𝑐 − 𝑑𝑖
) =

(𝑎𝑐 + 𝑏𝑑) + (−𝑎𝑑 + 𝑏𝑐)𝑖

𝑐2 + 𝑑2
 

Absolute Value (Norm) 
of a Complex Number 

The absolute value of a complex number is defined by 

|𝑎 + 𝑏𝑖| = √𝑎2 + 𝑏2. 

Product of a Complex 
Number and its 
Conjugate, Part 2. 

𝑧 ∙ 𝑧 = |𝑧|2 

Proof:  Let 𝑧 = 𝑎 + 𝑏𝑖.  Then  

𝑧 ∙ 𝑧 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏2 = |𝑎 + 𝑏𝑖|2 = |𝑧|2 

 
Multiplicative Inverse 
of a Complex Number 

𝑧 ∙ (
𝑧

|𝑧|2
) = 1, provided |𝑧|2 ≠ 0 

 
That is, 𝑧 and 𝑧/|𝑧|2 are multiplicative inverses. 
 

Proof:  We just proved that  𝑧 ∙ 𝑧 = |𝑧|2.  So, on dividing both sides  
by |𝑧|2, we have 

𝑧 ∙ (
𝑧

|𝑧|2
) = 1 

 
provided |𝑧|2 ≠ 0, i.e. provided 𝑧 ≠ 0 + 0𝑖.  
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Absolute Value of a 
Product 

|𝑧1 ⋅ 𝑧2| = |𝑧1| ⋅ |𝑧2| 
 
Proof:  Let 𝑧1 = 𝑎 + 𝑏𝑖 and let 𝑧2 = 𝑐 + 𝑑𝑖.  Then 
 
𝑧1 ⋅ 𝑧2 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 
 
Therefore, 
 

|𝑧1 ⋅ 𝑧2|
2 = (𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2 

= 𝑎2𝑐2 − 2𝑎𝑏𝑐𝑑 + 𝑏2𝑑2 + 𝑎2𝑑2 + 2𝑎𝑏𝑐𝑑 + 𝑏2𝑐2 

= 𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑2 + 𝑏2𝑐2 

= 𝑎2(𝑐2 + 𝑑2) + 𝑏2(𝑐2 + 𝑑2) 

= (𝑎2 + 𝑏2)(𝑐2 + 𝑑2) 

= |𝑧1|
2 ⋅ |𝑧2|

2. 

Taking square roots of both sides gives us the final result 

|𝑧1 ⋅ 𝑧2| = |𝑧1| ⋅ |𝑧2|. 

Absolute Value of a 
Power 

|𝑧𝑛| = |𝑧|𝑛  for any positive integer 𝑛. 

Absolute Value of a 
Ratio 

|
𝑧1
𝑧2
| =

|𝑧1|

|𝑧2|
 

Absolute Value of a 
Conjugate 

|𝑧| = |𝑧| 
 
Proof: Let 𝑧 = 𝑎 + 𝑏𝑖 and  𝑧 = 𝑎 − 𝑏𝑖.  Then 
 

|𝑧| = |𝑎 − 𝑏𝑖| = √𝑎2 + (−𝑏)2 = √𝑎2 + 𝑏2 = |𝑎 + 𝑏𝑖| = |𝑧|. 

Conjugate of Sum, 
Difference, Product 
and Ratio 

  𝑧1 + 𝑧2  = 𝑧1 + 𝑧2 
 

  𝑧1 − 𝑧2  = 𝑧1 − 𝑧2 
 

  𝑧1𝑧2  = 𝑧1 ⋅ 𝑧2 
 

 ( 
𝑧1
𝑧2
)  =

𝑧1
𝑧2

 

Conjugate of a Power  𝑧𝑛 = (𝑧)𝑛  for any positive integer 𝑛. 
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Powers of 𝒊 

𝑖4𝑚+𝑘 = 𝑖𝑘  and  𝑖−4𝑚+𝑘 = 𝑖𝑘  for any integer 𝑚 

𝑖0 = 1 𝑖0 = 𝑖4 = 𝑖8 = 𝑖12 = 𝑖16 = ⋯ = 𝑖4𝑘    for any integer 𝑘 

𝑖1 = 𝑖 = √−1  𝑖1 = 𝑖5 = 𝑖9 = 𝑖13 = ⋯ = 𝑖4𝑘+1   for any integer 𝑘 

𝑖2 = −1 𝑖2 = 𝑖6 = 𝑖10 = 𝑖14 = ⋯ = 𝑖4𝑘+2   for any integer 𝑘 

𝑖3 = −𝑖 𝑖3 = 𝑖7 = 𝑖11 = 𝑖15 = ⋯ = 𝑖4𝑘+3   for any integer 𝑘 

𝑖−1 = −𝑖 𝑖3 = 𝑖−1 = 𝑖−5 = 𝑖−9 = 𝑖−13 = ⋯ = 𝑖−4𝑘+3   for any integer 𝑘 

𝑖−2 = −1 𝑖2 = 𝑖−2 = 𝑖−6 = 𝑖−10 = 𝑖−14 = ⋯ = 𝑖−4𝑘+2   for any integer 𝑘 

𝑖−3 = 𝑖 𝑖1 = 𝑖−3 = 𝑖−7 = 𝑖−11 = 𝑖−15 = ⋯ = 𝑖−4𝑘+1   for any integer 𝑘 

𝑖−4 = 1 𝑖0 = 𝑖−4 = 𝑖−8 = 𝑖−12 = 𝑖−16 = ⋯ = 𝑖−4𝑘    for any integer 𝑘 

e.g. 

𝑖27 = 𝑖4(6)+3 = 𝑖3 = −𝑖 

𝑖−27 = 𝑖−4(7)+1 = 𝑖1 = 𝑖. 

 

All of the notes from Test 1D concerning complex roots of quadratic equations are relevant for 

Test 3C and are reproduced here. 

 

4.1 Complex Roots of Quadratic Equations 
 

Complex Number 

A complex number is any number that can be written in the form 
𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers and 𝑖 is the imaginary unit 
(𝑖2 = −1).  𝑎 is called the real part, and 𝑏 is called the imaginary 
part. 

Equality of Two 
Complex Numbers 

𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖 ⟺ 𝑎 = 𝑐  AND  𝑏 = 𝑑 
    i.e. the real parts must be equal and the imaginary parts must  
           be equal. 
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Conjugate of a 
Complex Number 

The complex conjugate of 𝑎 + 𝑏𝑖 is defined to be 𝑎 − 𝑏𝑖. 

Notation for a Complex 
Number and its 
Conjugate 

If 𝑧 is a complex number then we denote the conjugate of 𝑧 by 𝑧. 

      e.g.  If 𝑧 = 3 + 2𝑖, then 𝑧 = 3 − 2𝑖 and if 𝑧 = −1 − 2𝑖, then 

               𝑧 = −1 + 2𝑖.  We can also write this as  𝑎 + 𝑏𝑖 = 𝑎 − 𝑏𝑖. 
 

 

Complex Conjugate Roots Theorem 

If 𝑝(𝑥) is any polynomial (of any degree) with real coefficients and if 𝑎 + 𝑏𝑖 is a complex root 
of 𝑝(𝑥), then its complex conjugate 𝑎 − 𝑏𝑖 is also a root of 𝑝(𝑥). 

 

Note: This theorem does not continue to hold true when some or all coefficients of the 

polynomial are complex numbers. 

 

Discriminant 
 

     𝑏2 − 4𝑎𝑐 is called the discriminant of the quadratic function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 
 
If … 

𝑏2 − 4𝑎𝑐 > 0 𝑓(𝑥) has two distinct real roots 

𝑏2 − 4𝑎𝑐 = 0 𝑓(𝑥) has two equal real roots 

𝑏2 − 4𝑎𝑐 < 0 
𝑓(𝑥) has complex conjugate 
roots 

 

 
 

Graphing 

We can represent a complex number as a point on the ℛℯ (Real) and ℐ𝓂 (Imaginary) axes.  The 

complex number 𝑎 + 𝑏𝑖 has real part 𝑎 and imaginary part 𝑏 and is located at the coordinates 

(𝑎, 𝑏) in this coordinate system. 
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Polar Form of a Complex Number 

But we can also represent the point (𝑎, 𝑏) by specifying its (𝑟, 𝜃) values, where 𝑟 is the absolute 

distance this point is from the origin (0,0) and 𝜃 is the angle this point makes with the positive 

ℛℯ (Real) axis. 

 

We refer to (𝑎, 𝑏) as the rectangular form and (𝑟, 𝜃) as the polar form of a complex number.  

We can calculate one pair of coordinates from the other. 

Given the rectangular coordinates (𝑎, 𝑏) we can calculate the polar coordinates (𝑟, 𝜃) through 

𝑟 = √𝑎2 + 𝑏2  

and 



mathcloset.com   81 

𝜃 =

{
 
 
 
 

 
 
 
 

   

tan−1 (
𝑏

𝑎
)  𝑎 > 0

   

𝜋 + tan−1 (
𝑏

𝑎
)  𝑎 < 0

   
𝜋/2  𝑎 = 0, 𝑏 > 0
   

3𝜋/2  𝑎 = 0, 𝑏 < 0.
   

  

Given the polar coordinates (𝑟, 𝜃) we can calculate the rectangular coordinates (𝑎, 𝑏) through  

𝑎 = 𝑟 cos(𝜃) 

𝑏 = 𝑟 sin(𝜃). 

That is, 𝑎 + 𝑏𝑖 = 𝑟 cos(𝜃) + 𝑖 𝑟 sin(𝜃) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃) ).  The number 𝑟 is called the 

modulus and the angle 𝜃 is called the argument of the complex number 𝑎 + 𝑏𝑖.  In the polar 
form the origin is also called the pole. 
 

You might notice that the modulus 𝑟 for a complex number in polar form 𝑟(cos(𝜃) + 𝑖 sin(𝜃) ) 

is equivalent to the norm for a complex number expressed in rectangular form.  We note that if 

𝑎 + 𝑏𝑖 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃) ) = (𝑟 cos(𝜃) ) + 𝑖(𝑟 sin(𝜃) ) 

then 

√𝑎2 + 𝑏2 = √(𝑟 cos(𝜃) )
2
+ (𝑟 sin(𝜃) )

2
 = √𝑟2(cos2(𝜃) + sin2(𝜃) ) = √𝑟2(1) = 𝑟. 

 

Alternate Notations 

The abbreviated notations 

cos(𝜃) + 𝑖 sin(𝜃) = cis(𝜃) 

and 

𝑟(cos(𝜃) + 𝑖 sin(𝜃) ) = 𝑟∠𝜃 

are commonly used so don’t be thrown if you see them used. 

 

Multiplication and Division (in Polar Form) 

Let the two complex numbers 𝑧1 and 𝑧2 have the polar forms  
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𝑧1 = 𝑟1 (cos(𝜃1) + 𝑖 sin(𝜃1) )  and  𝑧2 = 𝑟2 (cos(𝜃2) + 𝑖 sin(𝜃2) ) 

then 

𝑧1 ⋅ 𝑧2 = 𝑟1𝑟2 (cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2) ) 

and 

𝑧1
𝑧2
=
𝑟1
𝑟2
(cos(𝜃1 − 𝜃2) + 𝑖 sin(𝜃1 − 𝜃2) ) ,  provided 𝑧2 ≠ 0. 

 

4.2 Powers and Roots in Polar Form – DeMoivre’s Theorem 
 

(𝑟(cos(𝜃) + 𝑖 sin(𝜃) ))
𝑛

= 𝑟𝑛 (cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃) )       (DeMoivre’s Theorem) 

and 

(𝑟(cos(𝜃) + 𝑖 sin(𝜃) ))
−𝑛

= (
1

𝑟
)
𝑛

(cos(𝑛𝜃) − 𝑖 sin(𝑛𝜃) ) 

and 

 

√𝑟(cos(𝜃) + 𝑖 sin(𝜃) )
𝑛

 = 𝑟(1/𝑛) (cos (
𝜃 + 2𝑘𝜋

𝑛
)+ 𝑖 sin (

𝜃 + 2𝑘𝜋

𝑛
)) ,   𝑘 = 0,1,… , 𝑛 − 1 

 

and 

(𝑟(cos(𝜃) + 𝑖 sin(𝜃) ))
𝑝/𝑞

= 𝑟(𝑝/𝑞) (cos (
𝑝𝜃 + 2𝑘𝜋

𝑞
) + 𝑖 sin (

𝑝𝜃 + 2𝑘𝜋

𝑞
)) ,   𝑘

= 0,1,… , 𝑞 − 1 

 

for positive integers 𝑝, 𝑞 and 𝑛. 

 

 

 

 



mathcloset.com   83 

4.3 Exponential Form of Complex Number (Euler’s Formula) 
 

For  𝜃 measured in radians     

𝑟𝑒𝑖𝜃 = 𝑟 (cos(𝜃) + 𝑖 sin(𝜃) )     (Euler’s Formula) 

 Therefore, 

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) 

𝑒−𝑖𝜃 = cos(−𝜃) + 𝑖 sin(−𝜃) = cos(𝜃) − 𝑖 sin(𝜃). 

It follows that 

cos(𝜃) =
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
 

and 

sin(𝜃) =
𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
. 

 

4.4 Complex Roots of Unity 
 

A root of unity is a complex number 𝑧 which satisfies  𝑧𝑛 = 1 for some positive integer 𝑛.  

Equivalently, we write 𝑧 = √1
𝑛

. 

 

Solving for the 𝒏𝒕𝒉 roots of unity  

Since 𝑧𝑛 = 1 is a polynomial with complex coefficients and a degree of 𝑛, it must have exactly 

𝑛 complex roots according to the Fundamental Theorem of Algebra.  These 𝑛 complex roots are 

the 𝑛 values of 𝑧 = √1
𝑛

. 

We will start by finding the rectangular form 𝑎 + 𝑏𝑖 of the number 1.  As this is a real number 

it’s imaginary part 𝑏 equals 0 and we simply have 1 = 𝑎 + 𝑏𝑖 = 1 + 0𝑖. 

Now we will convert this to the polar form 𝑟(cos(𝜃) + 𝑖 sin(𝜃) ).  We know that 𝑟 =

√𝑎2 + 𝑏2 = √12 + 02 = 1 and 𝜃 = tan−1(𝑏/𝑎) = tan−1(0/1) = tan−1(0) = 0. 

That is, 

1 = 1 + 0𝑖 = 1 (cos(0) + 𝑖 sin(0) ). 



mathcloset.com   84 

 

Now we solve for all the 𝑛𝑡ℎ roots of unit using the formula 

 

√𝑟(cos(𝜃) + 𝑖 sin(𝜃) )
𝑛

 = 𝑟(1/𝑛) (cos (
𝜃 + 2𝑘𝜋

𝑛
) + 𝑖 sin (

𝜃 + 2𝑘𝜋

𝑛
)) ,   𝑘 = 0,1,… , 𝑛 − 1. 

 

So the 𝑛𝑡ℎ roots of unity are 

 

√1
𝑛

= √1(cos(0) + 𝑖 sin(0) ) 
𝑛

= 11/𝑛 (cos (
0 + 2𝑘𝜋

𝑛
) + 𝑖 sin (

0 + 2𝑘𝜋

𝑛
)) ,   𝑘

= 0,1,… , 𝑛 − 1 

= cos (
2𝑘𝜋

𝑛
) + 𝑖 sin (

2𝑘𝜋

𝑛
) ,   𝑘 = 0,1,… , 𝑛 − 1. 

Using Euler’s formula 

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) 

we can also write the 𝑛𝑡ℎ roots of unity as 

𝑒𝑖(2𝜋𝑘/𝑛),   𝑘 = 0,1,… , 𝑛 − 1. 

 

When the 𝑛𝑡ℎ roots of unity are plotted on the complex plane (with the real part [Re] on the 

horizontal axis and the imaginary part [Im] on the vertical axis), we can see that they all lie on 

the unit circle and form the vertices of a regular polygon with 𝑛 sides and a circumradius of 1. 



mathcloset.com   85 

 

Here we are showing the 8 values of √1
8

 on the complex plane.  That is, the 8𝑡ℎ roots of unity.  

You might be wondering why the focus on the 𝑛𝑡ℎ roots of unity and not the 𝑛𝑡ℎ roots of 7 or 

any other number?  It turns out that the roots of unity in particular play a big role in several 

fields of mathematics including number theory and combinatorics. 

 

5 Extra Problems  
 

Problem 1. 

A map maker wants to determine the distance between boundary markers 𝐴 and 𝐷 which are 

on opposite sides of the Chippewa River at a location near the confluence of the Chippewa and 

the Mississippi. 
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The map maker establishes landmarks at points 𝐵 and 𝐶 on the same line connecting boundary 

markers 𝐴 and 𝐷 and finds the distance 𝑎 between points 𝐴 and 𝐵 and the distance 𝑏 between 

points 𝐶 and 𝐷.  However, the map maker cannot directly measure the distance between points 

𝐵 and 𝐶. 

The map maker uses a landmark 𝐹 on the far side of the Mississippi to measure the angles 𝛼, 𝛽 

and 𝛾 as shown on the map above.  Using this information find 𝐴𝐷, the distance between 

boundary markers 𝐴 and 𝐷.  

The data for this problem is 𝑎 = 2320 ft, 𝑏 = 3580 ft, 𝛼 = 24°, 𝛽 = 14° and 𝛾 = 30°. 

Solution 

Let 𝑥 = 𝐵𝐶.  Using the Law of Sines we can see that 

 

𝑎

sin 𝛼
=

𝐹𝐵

sin 𝐴
  and 

𝑎 + 𝑥

sin(𝛼 + 𝛽)
=

𝐹𝐶

sin𝐴
⟹

𝐹𝐵

𝐹𝐶
=

𝑎

𝑎 + 𝑥
⋅
sin(𝛼 + 𝛽)

sin 𝛼
. 

and 

𝑏

sin 𝛾
=

𝐹𝐶

sin𝐷
  and 

𝑏 + 𝑥

sin(𝛽 + 𝛾)
=

𝐹𝐵

sin 𝐷
⟹

𝐹𝐶

𝐹𝐵
=

𝑏

𝑏 + 𝑥
⋅
sin(𝛽 + 𝛾)

sin 𝛾
. 

 

Hence, 
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𝐹𝐵

𝐹𝐶
⋅
𝐹𝐶

𝐹𝐵
= (

𝑎

𝑎 + 𝑥
⋅
sin(𝛼 + 𝛽)

sin 𝛼
)(

𝑏

𝑏 + 𝑥
⋅
sin(𝛽 + 𝛾)

sin 𝛾
) 

or 

(𝑎 + 𝑥)(𝑏 + 𝑥) sin 𝛼 sin 𝛾 = 𝑎𝑏 sin(𝛼 + 𝛽) sin(𝛽 + 𝛾). 

 

The only unknown in this last equation is the distance 𝑥 = 𝐵𝐶.  We can rewrite this last 

equation as the quadratic 

(sin 𝛼 sin 𝛾)𝑥2 + (sin 𝛼 sin 𝛾)(𝑎 + 𝑏)𝑥 + 𝑐 = 0 

 

where 𝑐 = 𝑎𝑏(sin 𝛼 sin 𝛾 − sin(𝛼 + 𝛽) sin(𝛽 + 𝛾)).  

 

Using the quadratic formula to solve for 𝑥 we find 

𝑥 =
−(𝑎 + 𝑏)(sin 𝛼 sin 𝛾) ± √((𝑎 + 𝑏)(sin 𝛼 sin 𝛾))

2
− 4(sin 𝛼 sin 𝛾)(𝑐)

2 sin 𝛼 sin 𝛾
. 

 

Evaluating this expression with the given data and knowing that 𝑥 is necessarily positive, we 

find after simplification that 𝑥 ≈ 1276 ft. 

Hence, 𝐴𝐷 ≈ 2320 + 1276 + 3580 = 7176 ft. 

∎ 

 

Problem 2. 

A ship at sea located at point 𝑀 radios the Coast Guard Station at point 𝐹 and reports they are 

having engine trouble and have dropped anchor at their current location.  A Coast Guard rescue 

ship is currently at sea at location 𝐿.  The Coast Guard has observation towers at points 𝐶 and 𝐹 

which are known to be 𝑑 miles apart. Assume both ships are visible from both towers. 
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The angles 𝛽, 𝛾, 𝛿 and 𝜖 are determined by officers at the two towers.  Additionally, officers at 

𝐶 determine that the bearing (measured in degrees clockwise from North) from point 𝐶 to 

point 𝐿 is 𝛼. 

From this information determine the bearing from point 𝐿 to point 𝑀 and find 𝐿𝑀, the distance 

between the two ships. 

The data for this problem is 𝛼 = 67°, 𝛽 = 33°, 𝛾 = 45°, 𝛿 = 51°, 휀 = 28° and 𝑑 = 3 miles. 

Solution 

We will define the additional angles as shown below.   
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From Δ𝐶𝐿𝐹 we can determine that 𝜂 = 180° − 𝛿 − 𝛾 − 𝛽 and from the Law of Sines, 

sin 𝜂

𝑑
=
sin(𝛾 + 𝛽)

𝐹𝐿
⟹ 𝐹𝐿 =

𝑑 sin(𝛾 + 𝛽)

sin 𝜂
=

𝑑 sin(𝛾 + 𝛽)

sin(180° − 𝛿 − 𝛾 − 𝛽)
 

= 𝑑 ⋅
sin(𝛾 + 𝛽)

sin(𝛿 + 𝛾 + 𝛽)
 

 

From Δ𝐶𝐿𝑀 we can determine that 𝜅 = 180° − 𝛾 − 𝛿 − 휀 and from the Law of Sines, 

sin 𝜅

𝑑
=
sin 𝛾

𝐹𝑀
⟹ 𝐹𝑀 =

𝑑 sin 𝛾

sin 𝜅
=

𝑑 sin 𝛾

sin(180° − 𝛾 − 𝛿 − 휀)
 

= 𝑑 ⋅
sin 𝛾

sin(𝛾 + 𝛿 + 휀)
. 

 

We can use the Law of Cosines with Δ𝐹𝐿𝑀 to solve for 𝐿𝑀. 
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𝐿𝑀2 = 𝐹𝐿2 + 𝐹𝑀2 − 2 ⋅ 𝐹𝐿 ⋅ 𝐹𝑀 ⋅ cos 휀. 

 

Thus, 

𝐿𝑀 = √𝐹𝐿2 + 𝐹𝑀2 − 2 ⋅ 𝐹𝐿 ⋅ 𝐹𝑀 ⋅ cos 휀 

= √(
𝑑 sin(𝛾 + 𝛽)

sin(𝛿 + 𝛾 + 𝛽)
)

2

+ (
𝑑 sin 𝛾

sin(𝛾 + 𝛿 + 휀)
)
2

− 2(
𝑑 sin(𝛾 + 𝛽)

sin(𝛿 + 𝛾 + 𝛽)
)(

𝑑 sin 𝛾

sin(𝛾 + 𝛿 + 휀)
) cos 휀 

 

= 𝑑√(
sin(𝛾 + 𝛽)

sin(𝛿 + 𝛾 + 𝛽)
)

2

+ (
sin 𝛾

sin(𝛾 + 𝛿 + 휀)
)
2

− 2(
sin(𝛾 + 𝛽)

sin(𝛿 + 𝛾 + 𝛽)
) (

sin 𝛾

sin(𝛾 + 𝛿 + 휀)
) cos 휀 . 

 

The data for this problem is 𝛼 = 67°, 𝛽 = 33°, 𝛾 = 45°, 𝛿 = 51°, 휀 = 28° and 𝑑 = 3 miles.   

With this data entered into the formula for 𝐿𝑀 we get that 𝐿𝑀 ≈ 1.94 miles. 

 

Given the proximity of points 𝐶 and 𝐿 we can assume that the north pointing vectors from both 

locations are (essentially) parallel.  Therefore, the bearing that the ship at 𝐿 should take to 

reach point 𝑀 is 𝛼 + 𝜎 = 𝛼 + (180° − 𝜂 − 𝜃). 
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We have previously determined that  

𝜂 = 180° − 51° − 45° − 33° = 51° 

 

and from the Law of Sines we have 

sin(𝜃)

𝐹𝑀
=
sin(휀)

𝐿𝑀
. 

Therefore 

𝜃 = sin−1 (
sin(휀) ⋅ 𝐹𝑀

𝐿𝑀
). 
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= sin−1(
sin(28°) ⋅ (

3 ⋅ sin 45°
sin(45° + 51° + 28°)

)

1.94
) ≈ 38°. 

Hence the boat at 𝐿 should take a bearing of  

𝛼 + (180° − 𝜂 − 𝜃) ≈ 67° + (180° − 51° − 38°) = 158° 

clockwise from North. 

∎ 

 
 
 
Source: MSHSML 3C013 

The expression 
2 tan(

𝜋

24
)

1−tan2(
𝜋

24
)
 can be written in the form 𝑎 + 𝑏√𝑐 where 𝑎, 𝑏 and 𝑐 are integers.  

Find 𝑎 + 𝑏 + 𝑐. 

 
Solution 

This problem tests whether or not you have memorized the necessary trigonometry formulas.  

What formulas should you memorize?  At a minimum, the various sum and difference formulas 

and the exact results for trigonometric functions building on the 30-60-90 and the 45-45-90 

triangles.  You can derive other needed formulas from this information – but it can be time 

consuming.  I recommend you memorize more formulas by building yourself a set of flashcards. 

In particular, you need the following identities and results in this problem: 

 

Tangent Identities 
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tan(2𝜃) =
2 tan(𝜃)

1 − tan2(𝜃)
 

tan(𝜃 − 𝛽) =
tan(𝜃) − tan(𝛽)

1 + tan(𝜃) tan(𝛽)
 

tan(60°) = tan (
𝜋

3
) = √3 

tan(45°) = tan (
𝜋

4
) = 1. 

 

2 tan (
𝜋
24
)

1 − tan2 (
𝜋
24)

= tan (2(
𝜋

24
)) = tan (

𝜋

12
) 

= tan (
𝜋

3
−
𝜋

4
) =

tan (
𝜋
3) − tan (

𝜋
4)

1 + tan (
𝜋
3
) tan (

𝜋
4
)

 

=
√3 − 1

1 + (√3)(1)
=
√3 − 1

1 + √3
 

=
√3 − 1

1 + √3
⋅ (
1 − √3

1 − √3
) 

=
√3 − 1 − 3 + √3

1 − 3
=
2√3 − 4

−2
= 2 − √3. 

 

Finally, we recognize this answer is of the required form 𝑎 + 𝑏√𝑐 with 𝑎 = 2, 𝑏 = −1 and  

𝑐 = 3.  Therefore, 𝑎 + 𝑏 + 𝑐 = 2 − 1 + 3 = 4.  

∎ 

 

Source: MSHSML 3C014 
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Solution 

The key step is in recognizing the need for an auxiliary line(s) (an extra line(s) need to complete 

a proof or solve a geometry or trigonometry problem).  Recognizing what extra line(s) are 

needed is generally not immediately obvious. 
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First consider the right triangle Δ𝐴𝐶𝐷.  Using rt.Δ𝐴𝐶𝐷 we have 

tan(𝐴) =
𝐶𝐷

𝐴𝐷
=
6

2
= 3 ⟹ 𝐴 = arctan(3). 

Second consider the right triangle Δ𝐵𝐶𝐷.  Using rt. Δ𝐵𝐶𝐷 we have 

tan(𝐵) =
𝐶𝐷

𝐷𝐵
=
6

3
= 2⟹ 𝐵 = arctan(2). 

Finally consider the triangle Δ𝐴𝐶𝐸.  Is this a right triangle?  Let’s find the lengths of each side 

using the distance formula between two points. 

dist((𝑥2, 𝑦2), (𝑥1, 𝑦1)) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 . 

The point 𝐴 has coordinates (0,0) 

The point 𝐸 has coordinates (4,2) 

The point 𝐶 has coordinates (2,6). 

𝐴𝐸 = dist((4,2), (0,0)) = √(0 − 4)2 + (0 − 2)2 = √20 = 2√5 

𝐶𝐸 = dist((2,6), (4,2)) = √(4 − 2)2 + (2 − 6)2 = √20 = 2√5 

𝐴𝐶 = dist((2,6), (0,0)) = √(0 − 2)2 + (0 − 6)2 = √40 = 2√10. 

Notice that  

𝐴𝐸2 + 𝐶𝐸2 = (2√5)
2
+ (2√5)

2
= 40 

𝐴𝐶2 = (2√10)
2
= 40. 
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So, 

𝐴𝐸2 + 𝐶𝐸2 = 𝐴𝐶2. 

 

Hence by the converse of the Pythagorean formula, Δ𝐴𝐶𝐸 is a right triangle and because the 

two legs have the same length (namely, 2√5), it is a 45-45-90 triangle. 

 

Consider the right triangle Δ𝐴𝐶𝐸.  Using rt. Δ𝐴𝐶𝐸 we have 

tan(𝐶) =
𝐴𝐸

𝐶𝐸
=
2√5

2√5
= 1⟹ 𝐶 = arctan(1). 

 

So, our final conclusion is that 

𝐴 = arctan(3) 

𝐵 = arctan(2) 

𝐶 = arctan(1). 

 

Incidentally, we know that 

𝐴 + 𝐵 + 𝐶 = 𝜋 

because these are the three angles of a triangle.  So, we can also note that we have just proven 

that 

arctan(3) + arctan(2) + arctan(1) = 𝜋.   

∎ 

 

Source: MSHSML 3C002 

 

Solution 
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∎ 

 

Source: MSHSML 3C003 

 

 

Solution 
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∎ 

 

Source: MSHSML 3C004 

 

 

Solution 
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