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5 EXEra ProbBI@mMS ..o

1 Inverse Trig Functions and Their Graphs

1.1 Inverse Sine Function

Clearly the function f(x) = sin(x) does not pass the horizontal line test over (—oo, ).
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f(x) = sin(x)

1.
/l\ I D I I /
S 3m2 N w2 o w2 Wn
_1 g

But if we only look at the part of sin(x) for x € [-m/2,7/2] (shown in red)

2 4
f(x) = sin(x)

1_
/l\ I 0 I I /
om am2 N -2 Rz Ww
_'1 E

_2 g
that is, the part
2 i
f(x) = sin(x)
1 i
T T D T T
-TT -T7/2 0 ™2 ™
_1 1
_2 1

then sin(x) does pass the horizontal line test. So we can say that sin(x) has an inverse for x €
[—1t/2,7/2].
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We use the notation sin~1(x) to denote this inverse. Be careful not to confuse this with the
reciprocal of sin(x) which is denoted by (sin(x))?.

In particular,

(sin(x)) ! = —— = csc(x) # sin 1 (x).

sin(x)

Note: Another name for the inverse sine function is arc sine. We can use the two terms inverse
sine and arc sine interchangeably. Two terms for the same thing.

1.1.1 Graph of the Inverse Sine Function

What does the graph of sin™(x) look like? Recall that we can find the graph of f~1(x) by
reflecting the graph of f(x) over the line y = x.

2 P y=x
4
11
f(x) = sin(x)
T T D T T
—1T -T7/2 0 ™2 |
f, -1
/.ﬂ"
/.f _2_

That is, to find the graph of sin™!(x) we need to reflect sin(x), shown in blue above, over the
dotted line y = x. We see that what we will get is
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So the graph of f~1(x) = sin™!(x) looks like

1

™21 () = sin™* (%)

/2 1

Let’s contrast this graph with the graph of f(x) = sin(x).
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2 J
1 f(x) = sin(x)
T T D T T
il -Tr/2 0 ™2 ™
_1 4
_2 4

We can see that the domain of f(x) = sin(x), namely [—-/2,7/2], is the range of
f~1(x) = sin~1(x) and the range of f(x) = sin(x), namely [—1,1], is the domain of

f71(x) = sin™1(x).

This is a general property of functions and their inverses. The domain of f(x) is the range of
f~(x) and the range of f(x) is the domain of f~1(x).

1.1.2 Calculating the Inverse Sine Function

There is no convenient formula for calculating sin~*(x). To calculate sin~*(x) we have to work
backwards from the definition of an inverse function. We know (by definition of an inverse
function) that

fla=b o () =a
In our case this means that
sin(a) =b < sin~1(b) = a.

So, for example, we know that

because

mathcloset.com 6



In general, to find the number ¢ such that sin™*(x) = ¢ we have to think backwards and ask
ourselves, “What is the number ¢ such that sin(c) = x?”.

Forany x € [—1,1],

sin~!(x) = ¢ provided sin(c) = x.

Forany x € [—1,1],

sin~1(x) is not defined.

1.1.3 Cancellation Properties of the Inverse Sine Function

From the general properties of inverse functions, we have the following cancellation
properties.

T T
X XE [—E,E
sin"!(sin(x)) = o
= x¢[53

where x* is that unique number such that sin(x) = sin(x*) and x* € [—g,g]

and

X x € [-1,1]
sin(sin~*(x)) =

undefined x & [—1,1]

Exercise 1. Simplify.

(a) sin™*(1) (b) sin~?t (?) (c) sin™1(2)
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Solution

(a) sin~! 1 = Z because sin = = 1 and Z lies in [—4 .

143 _m o win L A3 T liac 3
(b) sin™" 5= = 3 because sin 5 = -5~ and 3 lies in [—

=
2 )

IJI:‘

|

(c) sin~!2 is undefined because there is no real number x such that sinx = 2.

Exercise 2. Simplify.

(a) sin~1(~1) (b) sin™ (£) (c) sin"(~2)
Solution

1y (T 2 T e [
(@) sin7(-1) = > becausesm( 2)— 1 and > Ilesm[ )

V2 T T V2 T T T
b i _1 —_— ] 1 —_— —_ — — | 1 _—— —
(b) sin (2 ) 2 because sin (4) > and 2 liesin [ 2,2]

() sin~1(=2) is undefined because there is no real number x such that sin(x) = —2.

Exercise 3. Simplify.

sin™?! —E
2
Solution
V2 T T V2 T T T
. _1 o — _ . _ — _ . . _
sin ( 2)— 2 becausesm( 4)— > and 2 I|esm[ 2,2]
Exercise 4. Simplify.
. _1 . _1 _l
(a) sin™1(0) (b) sin ( 2)
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Solution

(a) sin™'(0) = 0 becausesin(0) = 0 and 0 lies in —%,g]

(b) sin~? (—%) = —% because sin (—g) = —% and —g lies in [—%,%]
Exercise 5. Simplify.

(a) sin (sin‘1 G))

(b) sin (sin‘1 G))

(c) sin (sin‘1 (—Z))
Solution

x x € [—1,1]

Recall that sin(sin™1(x)) =
undefined x & [—1,1]

So,
. 1 1
(@) sin(sin™%(1/4)) = 7 because 7 liesin [—1,1]

3
(b) sin(sin™*(3/2)) is undefined because 3 does not lie in [—1,1]

-3 -3
(c) sin(sin~'(-3/4)) = e because - liesin [—1,1]

Exercise 6. Simplify.

(a) sin™?! (sin (%))
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Solution

(a) Recall that

€ T TL']
neny =] L 22
sin"!(sin(x)) = * . T n]
x* x 55
where x* is that unique number such that sin(x) = sin(x*) and x* € [—%,%] So,

sin™?! (sin (%)) = % because % lies in [—g,g]

(b)

37T$[ nn] __1(_ (3n))¢3n
2 57 so sin™" | sin 2 2

but rather

o (sn (7)) =
Sin Sin 4 =X

where x* in the unique value in the interval [— g,g] such that

sin(x*) = sin (%T)

From our unit circle chart, we can see that the terminal point associated with t = 3w /4 is
(—\/E/Z,\/E/Z). Also remember that sin(t) equals the y-coordinate of the terminal point for t.
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So, sin(3m/4) = v2/2. What value of t in [—g,g] gives us sin(t) = v/2/2? From our unit
circle chart we can see that sin(rr/4) = v2/2 = sin(3m/4) and it is also true that /4 is in the
. m T

interval [_E’E]'

So,

(c)

71165[ nn] __1(_ (771));&771
3 57 so sin™" ( sin G G
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but rather

where x* in the unique value in the interval [— %E] such that

sin(x*) = sin (7—6ﬂ)

From our unit circle chart the terminal point of t = 77/6 has coordinates (x,y) =
(—\/§/2, —1/2) and sin(t) is defined as the y — coordinate of the terminal point of t. So

) (7n)_ 1
Sin 6 = 2.

We need to find that unique value x* such that x* € [—g,g] and
7m 1
sin(x*) =sin|— )= —=.
) =sin() ==
From our unit circle chart we can see that
) T 1
Sin (—g) = —E
and it is also true that
T T T
-s¢l-7:3

So,

Exercise 7. Simplify.

oo ()

Recall that we showed in Exercise 2b that

Solution
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V2 T T V2 T T T
N _r (T . . [ FX
sin <—> =2 because sin (4) =5 and 2 lies in [ ]

an (50 () = an (3)

Recall that if the terminal point of t has coordinates (x,y), then tan(t) = y/x. From our unit
circle chart we see that the terminal point of t = /4 has coordinates (x,y) = (\/2/2,\/5/2).

So
Y AYANS T N2/2
tan(sm (—2 ))-tan(z)——\/z/z—l

1.2 Inverse Cosine Function

So

If only look at the part of cos(x) for x € [0,7] (shown in red)

f(x) = cos(x)
—om —3vr12 0 n\w/éﬁz om
1

that is, the part
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f(x) = cos(x)

AN

. /2

0

then cos(x) does pass the horizontal line test. So we can say that cos(x) has an inverse for x €

[0, m].

1.2.1 Graph of the Inverse Cosine Function

What does the graph of cos™(x) look like? Reflect the graph of cos(x) over the line y = x.
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We see that what we will get is

So, the graph of f~1(x) = cos™(x) looks like

-
/2
f1(x) = cos™*(x)
0
-2 1 0 1 2
—T1/2 1

Let’s contrast this graph with the graph of f(x) = cos(x).
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1 .Nx) = cos(x)
T T D T
-TT -T1/2 0 'ITNT

11

We can see that the domain of f(x) = cos(x), namely [0, 7], is the range of
f~1(x) = cos™!(x) and the range of f(x) = cos(x), namely [—1,1], is the domain of

f71(x) = cos™1(x).

1.2.2 Calculating the Inverse Cosine Function

By the meaning of an inverse function,
cos(a) = b & cos™1(b) = a.

In general, to find the number ¢ such that cos™!(x) = ¢ we have to think backwards and ask

ourselves, “What is the number ¢ such that cos(c) = x?”.

Forany x € [—1,1],
cos (x) = ¢ provided cos(c) = x.
Forany x ¢ [—1,1],

cos~1(x) is not defined.

1.2.3 Cancellation Properties of the Inverse Cosine Function

mathcloset.com
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From the general properties of inverse functions, we have the following cancellation
properties.

x x €]0,m]
cos (cos(x)) =
x* x¢&]0,m]

where x* is that unique number such that cos(x) = cos(x*) and x* € [0, ]

and

x x € [—1,1]
cos(cos™1(x)) =
undefined x & [—1,1].

1.3 Inverse Tangent Function

If only look at the part of tan(x) for x € [—-m/2,7/2] (shown in red)
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15 f(x) = tan(x)

10

-10

-15

that is, the part

15 f(x) = tan(x)

I
=
o

then tan(x) does pass the horizontal line test. So we can say that tan(x) has an inverse for x €
[—1/2,7/2].

1.3.1 Graph of the Inverse Tangent Function

What does the graph of tan~1(x) look like? Reflect the graph of tan(x) over the line y = x.
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f(x) = tan(x)

I
I
I
|
|
|
|
I
I
I
¢
'z
1 ’

1
]
|
/2 0 ™2 T

We see that what we will get is

-31m7/2 -Tr -T1/2 0 /2 L 3m/2

So, the graph of f~1(x) = tan~1(x) looks like
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Let’s contrast this graph with the graph of f(x) = tan(x).

10 £(x) = tan(x)

10

-15

|
|
|
|
:
| -10
|
|
|
|
|
|

We can see that the domain of f(x) = tan(x), namely [—7t/2,7/2], is the range of f~1(x) =
tan~1(x) and the range of f(x) = tan(x), namely [—o, o], is the domain of f ~1(x) =

tan™ ! (x).
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1.3.2 Calculating the Inverse Tangent Function

By the meaning of an inverse function,
tan(a) = b < tan"1(b) = a.

In general, to find the number ¢ such that tan~1(x) = ¢ we have to think backwards and ask

ourselves, “What is the number ¢ such that tan(c) = x?”.

Forany x € [—o0, 0],

tan~1(x) = c¢ provided tan(c) = x.

1.3.3 Cancellation Properties of the Inverse Tangent Function

From the general properties of inverse functions, we have the following cancellation
properties.

[ x x € (—m/2,1m/2)
x ¢ (—m/2,m/2) and
tan"'(tan(x)) ={ ¥ X # G ; r for any integer n
2n+ Dm
kundefined X = — for some integer n

where x* is that unique number such that tan(x) = tan(x*) and x* € (- /2,1/2)

and

tan(tan™1(x)) = x forall x € (—o0, )
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Inverse Secant, Cosecant and Cotangent Functions

1.4

, =

-

b

3w

=

y=sec 'x

AR
|
|
|
|
|
" | i R
3_2 |
- " 4 }
| T
|
|
|
|
|
A"™
IIIIIII B
cl
||||||| W P E———
< “ “
=, — o
IIIIIII | B
|

y=csc 'x

22
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Exercise 7. Simplify.
(a) tan"1(-1)

Solution

/s
(a) tan™'(—1) = —— becausetan

_____:4‘ - e——— — ———

ra

— —

-y

|

(b) tan1(v/3)

4

YA

—1 0

y = cot

Ly

(c) tan?! (?)

4

T T T
(b) tan"l(\/g) = 3 because tan (§) =+/3 and 3 lies in (—o0, 00)

(V3 7 T
(c) tan 1(—) =z because tan (E)

3

V3
3

1.5 Properties of the Inverse Trig Functions

T
— and e lies in (—oo0, 00)

T T
__) = —1 and — = lies in (—o0, )

Functions Domain Range
-1 _ _rr
sin™*(x) [-1,1] [ 2,2]
cos 1(x) [—1,1] [0, 7]
) _Tr
tan~1(x) R ( 2,2)
cot™1(x) R (0,m)

mathcloset.com
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sec™(x) R\ (-1,1) (0, 7]\ {g}
csc™1(x) R\ (-1,1) —g,g] \ {0}
Property |
(i) | sin™?t (sin(@)) =0 if@ € —g,g]
(i) | cos ™t (cos(@) ) =6 if 6 € [0, 7]
T
(ii}) | tan~? (tan(6) ) = 6 foe(-5.3)
if 0 € [—g,g],e #0

(v) | sec™ (sec(B)

T
if @ € [0,7],0 ¢§

(cos®))
(tan®))

(iv) | csc™ (esc(6) ) = 6
(sec®)
(cot®) )

(vi) | cot™ (cot(B) ) =0 if @ € (0,m)
Property Il
(i) | sin (sin‘l(x)) =x if x € [—1,1]
(ii) | cos (cos‘l(x)) =x if x € [-1,1]
(iii) | tan(tan™*(x)) = x ifx €R

(iv) | csc(esc™(x)) = x

if x € (—o0,—1] U [1, )

(v) | sec (sec‘l(x)) =x

if x € (—o0,—1] U [1,0)

(vi) | cot (cot‘l(x)) =x

if x € R

mathcloset.com
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Property lli

(i) sin"!(—=x) = —sin"1(x) if x € [—1,1]
(i) | cos™(—=x)=m—cos 1(x) |ifx € [-1,1]
(i) | tan™'(=x) = —tan"'(x) |ifx€R

(iv)

csc (—x) =m —csc™1(x)

if x € (—oo0,—1] U [1,0)

(v)

sec (—x) = m —sec™1(x)

if x € (—o0,1] U [1,0)

(vi)

cot™1(—x) = m — cot™1(x)

if x e R

Property IV

(i)

sin™! (%) = csc 1(x)

if x € (—o0,1] U [1, 00)

(ii)

cos™?! (%) = sec™1(x)

if x € (—o0,1] U [1, 00)

(iii) | tan™t (1) — {cot‘l(x) ifx>0
x —m+cot™(x) ifx<0
Property V
(i) | sin™*(x) + cos™1(x) = g if x € [—-1,1]
s
(i) | tan~1(x) + cot™1(x) = = ifx ER

2

(ii)

s
sec™(x) + csc™1(x) = >

if x € (—o0,—1] U [1,0)
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Property VI

(i)

sin™1 (x\/l N xz)

sin™ (@) +sin” () = { 7 —sin! (2T 2 + V1 - x?)

fo<x,y<landx®+y*>1

f—1<x,y<Oandx?+y?>1

—m —sin™?! (x\/1 —yZ +yy1 —xz)

(if—1<x,y<tlandx?+y?<1Dor(ifxy<Oandx?+y?>1)

(ii)

sin™?! (x\/l —y2—y1— xz)

sin™!(x) —sin™'(y) =4 7 —sin™? (x\/l o A 3’\/1 — xz)

fo<x<1-1<y<Oandx?+y?>1

f—1<x<00<y<landx’+y?>1

—m — sin™! (::c\/l—y2 — /1 —xz)

(f—1<x,y<landx?*+y?<1)or(ifxy>0andx®+y?>1)

Property VII

(i)

cos™1(x) + cos™1(y)

cos™ (xy =T =%2 1= 77)
21 — cos™1 (xy ~J1-2x2 W)

f—-1<x,y<landx+y=0

f—-1<x,y<landx+y<0

mathcloset.com
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cos 1(x) — cos71(y)

i cos‘l(xy+\/1—x2w/1—y2) if—1<x,y<landx <y

—cos‘l(xy+\/1—x2,/1—y2) if—-1<y<00<x<landx>y

Property VIl

tan~1(x) + tan"1(y)

.

X+
tan‘l( y) ifxy <1
. 1—xy
(i)
= 9 7T+tan‘1<x+y> ifx>0,y>0 and xy > 1
1—xy 4 y

a(XtYYN .
—m + tan ( ) ifx<0, y<0and xy>1
\ 1—xy

tan"1(x) — tan"1(y)

‘

xX—=y .
-1 _
W tan (1+xy> ifxy > -1
ii

x—
=4 n+tan‘1<1+x);> ifx>0,y<0 and xy < -1

—n+tan‘1<x_y> ifx<0, y>0and xy < -1
\ 1+ xy 4 y
Property IX
x V1 —x2
in~1 = -1 — x2) = -1 = -1
sin~1(x) = cos (x/ 1—x ) tan (W> cot < 2 >

(i)

=sec™! ( — i x2> = csct (%)
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(ii)

(iif)

(ii) | 2cos™1(x) =4

\

2w —cos 1 (2x%2—1)

Property X
( 1 1
sin~1 (241 — x2 if ——=<x<—
(2/1-#) G
1
i 2 si -1 = _ cin—1 12 -
(i) | 2sin™"(x) = 7 — sin (2 1 x) |f\/§Sx31
—n—sin‘l(Z 1—x2) |f—1Sx<—i
\ V2
.
cos™1(2x? - 1) ifo<x<1

if—1<x<0

.

(i) | 2tan~1(x) = <

\

tan‘1< 2x )
1—x2

2x
tan” (=)
T + tan 12

2x
-t (=)
T + tan 1= 2

if —1<x<1

if x >1

if x <-—1
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Property XIi

.

1 1
in~1 — 453 ——<x<-
sin"!(3x — 4x3) if S SX <o

. Y L o1
(i) | 3sin™*(x) ={ m—sin"1(3x — 4x3) |f§<x31
—1 —sin~1(3x — 4x3) if —1<x<-—=
\
7
cos 1(4x3 — 3x) if=-<x<1
§ 9 ) 1 1
(i) | 3cos™(x) = { 27 — cos1(4x3 — 3x) 1f—§SxS§
1
21 + cos 1 (4x3 — 3x) if —1<x< -3
\
7
a1 3x —x3 ; 1 e 1
L i 7 X 7
3x — x3 1
ses _1 — _
(ii) | 3tan™"*(x) =1 7 + tan 1(1—3x2> |fx>ﬁ
Frant (KX fx<
k m+tan ™ o if x NG
Property XIl
7
.. 2x .
sin (1+x2> if —1<x<1
. 1 _ o 2x )
(i) | 2tan™"(x) =« n—sm1< ) if x>1
1+ x2
.. 2x .
—m — sin ( ) if x <—-1
\ 1+ x2
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1—x2
cos™ ! if0<x <o
1+ x2

1—x2
—cos‘1<1+x2> if—o0o<x<0

(i) | 2tan™1(x) =

Property Xlll

(i) | tan™'(x) + tan~*(y) + tan™!(z) = tan™" ( i )

1—xy—yz—zx

tan"t(w) + tan"(x) + tan"1(y) + tan~1(2)
(ii)

) _1(W+x+y+z—wxy—wxz—wyz—xyz)
= tan

1—wx—wy—wz—xy—yz—2zx +wxyz

" tan~*(x;) + tan~'(x,) + -+ + tan"*(x,,) = tan~?! (1 TS, 45, =5, -
ii

where S, denotes the sum of the product of x4, x,, ..., x,, taken k at a time.

Sl_S3+S5_"‘ )

T
(iv) | If tan™1(x) + tan"1(y) = > thenxy =1

s
(v) | If tan~1(x) + tan"1(y) + tan~1(2) = > thenxy + yz+ zx =1

(vi) | If tan"1(x) + tan"1(y) + tan"1(z) =, thenx + y + z = xyz

Property XIV

s
(i) | Ifsin~(x) + sin"(y) + sin"1(2) = > thenx? +y2 +z2+2xyz=1
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Ifsin~1(x) + sin~1(y) + sin~1(z) = m, then

(i xN1=x2+y1—=y2+2yJ1—22=2xyz

3m

(iii) | If sin~2(x) + sin~(y) + sin"1(z) = >

,thenxy +yz+zx =3

Property XV

(i) | If cos™(x) + cos™*(y) + cos™'(z) = m,then x? + y?2 + z? + 2xyz =1

(i) | If cos™(x) + cos™1(y) + cos~1(z) = 3m, then xy + yz + zx = 3

Property XVI

(i) | If sin™1(x) + sin~1(y) = 6, then cos™*(x) + cos™(y) =m — 0

(i) | If cos™1(x) + cos™(y) = 0, then sin"*(x) +sin"*(y) =nm — @

Property XVII
2 2
(i) | If cos™? (z) + cos™?! (%) = 0, then 2—2 — 2;—bycos(H) + Z—z = sin%(0)
Property XVIII

s
(i) | If cot™1(x) + cot™(y) = > thenxy =1
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0 sin(#) cos(9) tan(8)

x

arcsin(z) sin(arcsin(z)) = = cos(arcsin(z)) = /1 — 22 tan(arcsin(z)) = Vi
P
arccos(z) sin(arccos(z)) = /1 —z° cos(arccos(z)) == tan(arccos(z)) = 1; 2
‘ll
. T 1
arctan(z) sin(arctan(z)) = = cos(arctan(z)) = tan(arctan(z)) = z
vi1i+ 1+ 22 o
VI — 1
arcesc(z) sin(arcesc(z)) = % cos(arcesc(z)) = V& —1 tan(arcese(z)) = T
z -1 40
arcsec(z) sin(arcsec(z)) = v Il_ 1 cos(arcsec(z)) = % tan(arcsec(z)) = v/z% — 1
o
. 1 - ®
arccot(z) sin(arccot(z)) = Norw cos(arccot(z)) = ﬁ tan(arccot(z)) = % =3

2 Law of Sines, Law of Cosines, and the Law of Tangents

Trigonometric functions can be used directly to solve (finding missing sides and/or
missing angles) right triangles.

But the trigonometric functions can also be used to solve oblique triangles, that is,
triangles with no right angles.

To do this, we need to understand how to use the Law of Sines and the Law of
Cosines.

mathcloset.com

Diagram
1
X
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V1 -x2
4
1
Vi-x
|
x
V1+x?
X
a
1
x
1
=]
V-1
l
\x' 1
"
1
Y1+x?
1
=]
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To state these laws (or formulas) more easily, we follow the

convention of labeling the angles of a triangle as A, B, C

and the lengths of the corresponding opposite sides as a, b, c,
as in Figure 1.
C

In general, a triangle is determined by three of its six parts
(angles and sides) as long as at least one of these three
parts is a side.

So the possibilities are as follows.

Case 1 One side and two angles (ASA or SAA)

f‘\
P
F A
s A
’ ” \\
»
.IA'\ J’A‘.
ASA or SAA

Case 2 Two sides and the angle opposite one of those sides (SSA)
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Case 3 Two sides and the included angle (SAS)

SAS

Case 4 Three sides (SSS)

SSS

Notation

When we use the notation SAS (for example) with S for side and A for angle, it denotes that we
know two sides and one angle. But it tells us something else. This notation means that the
angle A we know is not just any of the three angles of a triangle but is specifically the angle
between the two sides we know.

And when we use ASA it means we know two angles and one side and the side we know is
between the two we know.

And when we use SAA it also means we know two angles and one side but in this case the side
we know is NOT between the two angles we know but rather is immediately followed by the
two angles we know.

The ASA, SAA, SSA cases are solved by using the Law of Sines.

The SAS and SSS cases are solved by using the Law of Cosines.
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2.1 The Law of Sines

THE LAW OF SINES 4
In triangle ABC we have

sinA _sinB _ sinC
a c

PROOF

We have already stated the following result for the area of a triangle.

AREA OF A TRIANGLE

The area s of a triangle with sides of lengths a and b
and with included angle @ is

s =4absin 6

Applying this formula to the triangle below, we see that

-

1 1 1
A= Ebc sin(4) A= Sac sin(B) A= Eab sin(C)

So,
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1 1 1
3 bcsin(A) = 5 ac sin(B) = 3 ab sin(C).

Multiplying all parts by the same quantity 2/abc, we have

(%) (% bc sin(A)) = (%) (% ac sin(B)) = (%) (% ab sin(C)).

Simplifying we immediately have the Law of Sines,

sin(4) B sin(B) B sin(C)
a b ¢

2.1.1 SSA, The Ambiguous Case

The Law of Sines can be used in the ASA or SAA to solve the triangle and find the unique (one
and only one) triangle with the given properties.

However, in the SSA case there may be two triangles, one triangle, or no triangles with the

given properties.

For this reason the SSA case is referred to as the “ambiguous case”.

We illustrate the possibilities when angle A and sides a and b are given. In (a), no solution is
possible, because side a is too short to complete the triangle.

In (b) there is one solution and it is a right triangle.
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In part (c) two solutions are possible.

In part (d) only one solution is possible.

Suppose we know sides a, b and angle A as shown in the figure below. The chart shown below
tells us whether there will be 2 or 1 or no triangles that can be formed with these two sides and
one angle.
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Criterion Number of solutions

a=bh 1
b>a=>=bsinA 2
a=~bsinA 1
a << bsinA 0

Caution!

When using this chart in a SSA situation be sure that what you use for a is the known side
that is opposite the known angle in your problem — regardless of how the side and angle
labels are placed in your problem.

(e.g. In your problem you may be given sides b and ¢ and the angle B not between these
two sides. In this case, your b would be the a in the chart above and your ¢ would be the b
in the chart above. Be careful!)

EXAMPLE | SSA, the Two-Solution Case

Solve triangle ABC if ZA = 43.1°, a = 186.2, and b = 248.6.

SOLUTION

First note that we are the SSA situation.
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Secondly, note that

b = 248.6 > a = 186.2 > bsin(A) = 248.6 - sin(43.1°) = 169.862

So, we are in the situation of SSA where there are two solutions.

c

From the Law of Sines

bsinA _ 248.6sin 43.1°
a 186.2

= (.91225

sin B =

mathcloset.com
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There are two possible angles B between 0° and 180° such that

sinB = 0.91225.

Using a calculator, we find that one of the angles is

sin~'(0.91225) =~ 65.8°.

The other angle is approximately 180° — 65.8° = 114.2°,

We denote these two angles by B, and B, so that

/B, ~ 658  and

B, ~ 114.2°

Note: It is always the case the 2B, + 2B, = 180°. You can use this fact to find 2B, once

you have £B;.

Thus two triangles satisfy the given conditions: triangle A,B,C,

and triangle A,B,C..

Solve triangle A B, C;:
/.C; =~ 180° — (43.1° + 65.8°) = 71.1°

Thus

_a;sinC; _ 186.2sin 71.1°

5 = =~ ~ 2578
“ sin A, sin 43.1°

mathcloset.com
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Solve triangle A,B,C;:

£C,~ 180° — (43.1° + 114.2°) = 22.7°  Find 2C,

Thus

a,sin C;  186.2 sin 22.7° ,
—_ = = 1{)5.2 Law of S B
27 naA, 5in 43.1° aw o Sines

The two solved triangles A;B,C; and A,B,C, are shown below.

2.2 The Law of Cosines

THE LAW OF COSINES

g
In any triangle ABC, we have
a* = b* + ¢* — 2bccos A ) a
b?> = a* + ¢* — 2ac cos B

¢t =a*+ b* — 2abcos C
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PROOF

To prove the Law of Cosines, place triangle ABC so that

ZA is at the origin,

A(0, 0)

The coordinates of B will then be (c, 0).

Suppose we let (x¢, y.) represent the coordinates of C.

If we drop a perpendicular from C to the x-axis then using the triangle formed on the left we
see that

sin(180° — A) = Ye

b
and
—x
cos(180° — A) = TC'
But
sin(180° — A) = sin(4) for all 4 € [0°,180°]
and
cos(180° — A) = —cos(A4) forall 4 € [0°,180°].
So,
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Ye

sin(4) = ,

= y¢ = bsin(4)
and
Xc
—cos(4) = - = x. = b cos(A).
YA

C(bcosA,bsinA)

S

A(0, 0) ¢ B0 X

Using the Distance Formula, we get
a* = (bcosA — ¢)* + (bsinA — 0)?
= b*cos’A — 2bccos A + ¢ + b*sin’A
= b*(cos’A + sin’A) — 2bccos A + ¢

=b*+ ¢ — 2bccos A Because sin’A + cos’A = 1

This proves the first formula. The other two formulas are obtained

in the same way by placing each of the other vertices of the

triangle at the origin and repeating the preceding argument. W
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2.2.1 The Area of a Triangle in the SSS Case — Heron’s Formula

HERON’S FORMULA
The area s{ of triangle ABC is given by

A= Vs(s —a)(s — b)(s — c)

where s =3(a + b + c) is the semiperimeter of the

triangle; that is, s is half the perimeter.

PROOF We start with the area of a triangle formula A = ab sin(C) /2. Squaring both sides we
have

A? =1a*b? sin’C
=4a*b*(1 — cos*C) Pythagorean identity

=4a’b*(1 — cos C)(1 + cos C) Factor

Next, we write the expressions 1 — cos(C) and 1 + cos(C) in terms of a, b, and c. By the Law
of Cosines we have
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at + b* — ¢?

cos C =T Law of Cosines
2 4 p2 — 2
l+COSC=1+% Add 1
2ab + a® + b* — c? . —
= ommon denominator
2ab
(a + b)? — c? .
=— actor
2ab
(@+b+c)at+b—c)
= Sab Difference of squares
Similarly
l_coscz(c+a—b)(c—a+b)

2ab

Substituting these expressions in the formula we obtained for 54° gives

(@+b+ec)atb—c) (c+ta—b)c—a+b)

A =qab? 2ab 2ab
_(a+bt+c)(a+tb—c) (cta—b) (c—a+b)
2 2 2 2
=s(s —c)(s — b)(s — a)
Heron’s Formula now follows by taking the square root of each side. l

2.3 Examples to lllustrate the Use of the Law of Sines and the Law of Cosines

2.3.1 Using the Law of Sines to “solve” a triangle in the ASA case.
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THE LAW OF SINES <

In triangle ABC we have "
sinA _sinB _ sinC \
a b c
A - B
=7

Suppose we know m£A (the measure of angle A), ¢ (the length of the side opposite angle C)
and m4B (the measure of angle B). Then we are in the ASA case.

The goal is to find the length of sides a and b and m4C, the measure of angle C. The first step
is to solve for m4C by subtraction from 180°.

msC = 180 — ms£A — m4B.

Now that we know C, we can find a and b using the Law of Sines.

sin(4) _ sin(C) - sin(4)

a=c:-
a c ¢ sin(C)

and

sin(B) _ sin(C) b _ sin(B)
b ¢ _|°7°¢ sin(C)’
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Example 1. Solve the following triangle.

52° 707
26.7

Solution

This is an ASA problem. So,
msC = 180° — msA — msB = 180° — 52° — 70° = 58°

sin(4) sin(52°)
a=C-———<= 77— = 248

sin(C) sin(58°)

in(B in(70°
b=c-Sl,nL= . -wz29.6.

sin(C) sin(58°)

2.3.2 Using the Law of Sines to “solve” a triangle in the AAS case.

THE LAW OF SINES
In triangle ABC we have »

sinA _sinB _sinC
a b c
B
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Suppose we know m4£C (the measure of angle C), m£A ( the measure of angle A) and ¢ (the
length of the side opposite angle C) and. Then we are in the AAS case. The goal is to find the
length of sides a and b and m4B, the measure of angle B. The first step is to solve for m4B by
subtraction from 180°.

That is,

msB = 180 — mszA — m«C.

Then, just as in the ASA case, we can find a and b using the Law of Sines.

a c a_c.sin(C)

sin(4) 3 sin(C) - sin(4)

and

sin(B) 3 sin(C) b sin(B)
b = _C.sin(C)'

Example 2. Solve the following triangle.
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Solution

This is an AAS problem. So,

msC = 180° — msA — msB = 180° — 98.4° — 24.6° = 57°

B sin(B) 3
b=a-gry =
3 sin(C) 3
= 4%n@)

sin(24.6°)

" 5in(98.4°)

sin(57°)
sin(98.4°)

~ 158.22

~ 318.75

2.3.3 Using the Law of Cosines to “solve” a triangle in the SAS case.

THE LAW OF COSINES

In any triangle ABC, we have
a* = b*+ ¢* — 2bccos A

b* = a* + ¢* — 2ac cos B

ct=a*+ b* - 2abcos C

A
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Suppose we know b (the length of the side opposite angle B), m£A (the measure of angle A)
and c (the length of the side opposite angle C). Then we are in the SAS case. The goal is to find
the length of side a, m4B (the measure of angle B) and m4C (the measure of angle C).

The first step is to solve for a using the Law of Cosines.
a? = b? + ¢? — 2bc cos(4).

So

a= \/bz + ¢2 — 2bc cos(4) .

Now that we know the length of side a, we can continue to use the Law of Cosines to find m«B
and m«C.
a’® + c? — b?

b? = a? + ¢? — 2ac cos(B) = cos(B) =
2ac

Now it must be that B € [0, 7] (i.e. between 0° and 180°) and in this case cos 1(cos(B)) = B

implies
a? + c¢? — b?
B = cos *(cos(B)) = cos™?! <—>
2ac
By the same reasoning,
a? + b? — c?
C = cos *(cos(C)) = cos™H | ————).
2ab

Example 3. Solve the following triangle.
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21
39°

Solution

This is an SAS problem. So,

a = /b% + c? — 2bc cos(A) = /212 + 422 — 2(21)(42) cos(39°) =~ 28.881

b gt [THCETDY | (2888174422 212\
- cos 2ac - cos 2028881)(42) ) <"

. a?+b? —c?\ _ ot 28.8812 + 212 — 427\ 11377
- - 2(28.881)(21) Tt

2.3.4 Using the Law of Cosines to “solve” a triangle in the SSS case.

THE LAW OF COSINES

In any triangle ABC, we have

)

a=b*+ ¢* = 2bccos A

a* + ¢ — 2accos B A

a’ + b* — 2ab cos C
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Suppose we know a (the length of the side opposite angle A), b (the length of the side opposite
angle B) and c (the length of the side opposite angle C). Then we are in the SSS case. The goal
is to find m4£A (the measure of angle A), m4B (the measure of angle B) and m4C (the measure
of angle C).

We can use the Law of Cosines to solve for each of the unknown angles. By the Law of Cosines,
a? = b? + c? — 2bc cos(A).
But

b? + c? — a?
a® = b? + c? — 2bccos(A) = cos(4) = ——.
2bc
Now it must be that A € [0,7] (i.e. between 0° and 180°) and in this case cos™'(cos(4)) = A4
implies

b? + c? — a?
A = cos™*(cos(4)) = cos™ | ————).
2bc
By the same reasoning,
a? + ¢? — b?
B = cos™(cos(B)) = cos™?! <—>
2ac

and
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2 2 _ L2
C = cos *(cos(C)) = cos?! (M;C>
2ab
Example 4. Solve the following triangle.
B
68.01
42.15
.
37.83 Yy

Solution

This is an SSS problem. So,

b? + c? — a? 37.83%2 4+ 42.15% — 68.01%
A=cos!|——— | =cos7!

2bc 2(37.83)(42.15) > ~ 11639

B coqt (AR (68017 + 42152 — 37837
- €08 2ac - €08 2(68.01)(42.15)

> ~ 29.89°

a?+ b% — c? 68.01%2 + 37.832 — 42.15%
C=cos!|———)=cos™!

~ 33.72°
2ab 2(68.01)(37.83) >

2.4 Extended Law of Sines

For any triangle AABC we can circumscribe a unique circle with center S because any three
non-colinear points uniquely determine a circle.
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We stated in the Study Guide for Meet 2, Event B that the radius R of the circumscribing circle
can be expressed by the formula

R abc
"~ 4 Area(AABC)

We also stated in Meet 2B study guide that the area of AABC can be expressed by the Side
Angle Side Formula

1
Area(AABC) = Eab sin(C).

It follows by substitution that

abc abc abc c

2R = 2 Area(AABC) - 2 (%ab sin(C)) ~ab sin(C) - sin(C)

or
sin(C) 1
c 2R

Combining this result with the Law of Sines we have the Extended Law of Sines

sin(4) _ sin(B) 3 sin(C) 1

a b @ 2R’
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3 Solving Trigonometric Equations

3.1 sin(x) = sin(y), cos(x) = cos(y), etc.

Equality of Same Trig Functions

sin(x) = sin(y) © x =2nw + (m —y) or x = 2nmw + y for some integer n

cos(x) = cos(y) © x = 2nm — y or x = 2nm + y for some integer n

tan(x) = tan(y) & x = nm + y for some integer n

cot(x) = cot(y) © tan(x) = tan(y)

sec(x) = sec(y) & cos(x) = cos(y)

csc(x) = csc(y) © sin(x) = sin(y)

Find the general values of x which satisfy the equation sin 2x = — %
(Source: Math-Only-Math.com)

Solution

sin(2x) = — 3
i)

< sin(2x) = —sin (E)

) ) T (T
< sin(2x) = sin (T[ + E) = sin (?>

In general, sin(x) = sin(y) implies x = 2nm + (T — y) or x = 2nm + y for some integer n.

7T s
& 2x = 2nm + (n - ?> or 2x =2nm+ 3 for some integern

T 7T

S X =NmT —— or x=nmw+— forsomeinte ern.
12 12 g
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3.2 Avoid Division by Zero and Creating Missing Solutions

Solve for x if
2. 1 + sin(x) N cos(x) 3
cos(x) 1 +sin(x)

Solution

Because denominators of fractions cannot equal zero, real numbers that cause the
denominators to equal zero must be eliminated from the set of possible solutions.

T
cos(x)iOﬁxiiEinn

and

) 3
sin(x) # —1->x # 7i 2NT.

Therefore, before we even start to solve the problems, the set of real numbers in the set

{+

must be excluded from the possible set of solutions.

+ nn}

NS

To simplify the equation, let’s multiple the second fraction by 1 in the form

1 — sin(x)
1 — sin(x)’

then simplify and solve. The result will be an equation that may be equivalent to the original
equation, but an equation where we can solve for x. With this type of manipulations, there
may be extraneous solutions. In other words, you may come up with solutions for the new
equation that are not solutions to the original equation. Be sure to check your answers with the
original equation.

1 + sin(x) cos(x) B
cos(x) 1+sin(x)
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1 + sin(x) cos(x) 1—sin(x)\ 4
cos(x) 1 +sin(x) (1 — sin(x)) -

1 +sin(x) cos(x) (1 - sin(x))
cos(x) cos?(x)

1 +sin(x) cos(x) (1 — sin(x))

cos(x) cos2(x) =4
1+ sin(x) 1 —sin(x) 3
cos(x) cos(x)
2
cos(x) -
cos(x) = %

First let’s find all answers for 0 < x < 2m. The cosine function is only positive in the 15t and 4t
quadrants. In the first quadrant cos(m/3) = cos(60°) = 1/2. By symmetry we know that
cos(2m — m/3) = cos(300°) = 1/2 in the fourth quadrant.

Therefore, the set of all possible answers would be

T 5w
x=§+2n7r orx=?+2n7r

forn =0,+1,+2,.... These answers are never one of the excluded values {i + nrt} sowe

NI

don’t have to worry about that possibility.

3. Find the general solution for sin 8 cos? 8 = sin3 4.

Solution

First and foremost — Don’t try to solve this by dividing both sides of the equation by sin . Why
not?

It is possible that you will lose solutions when you divide both sides of an equation by the same
guantity. It is the problem of missing solutions — the flip side of extraneous solutions. In this
problem you will lose solutions by dividing both sides by sin(8).

mathcloset.com 57



Furthermore, to make the division valid we could not consider those values of 8 where
sin@ = 0.

The correct approach is to subtract sin® 8 from both sides and then proceed to simplify.

sin @ cos? = sin3 6
& sinf cos? 0 —sin36 =0
& sinf (cos? 6 —sin?8) =0
< sinf (cos® —sinH)(cosB +sinf) =0

< sind =0 or (cos@ —sinf) =0 or (cosf +sinf) = 0.

Casel. sinf =0

sinf = 0 & 6 = nm for some integer n.

Case2.cosf —sinf8 =0

cosf —sinf@ =0 < cosf =sinf

< cosf = cos (g— 9).

In general, cos(x) = cos(y) implies x = 2nm —y or x = 2nm + y for some integer n.

In general, cos(x) = cos(y) implies x = 2nm + y for some integer n. So, in this problem we
have

But

which is impossible. Now
6 = 2nn+(z—9) & 20 = 2nn+z<:>9 —nrr+E
B 2 B 2 B 4

Thus,
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T
cos@—sin0=0<:>9=z+n7r

for some integer n.

Case3.cosf +sinf =0

cosf +sinf =0 < cosf = —sinb.

We know that

T
cos @ = sin (E + 0) and — sin@ = sin(—6).

Therefore

T
cosf = —sin 6 < sin (E + 0) = sin(—0).

In general, sin(x) = sin(y) implies x = 2nmw + (m — y) or x = 2nm + y for some integer n.

So, in this problem we have

I

T
2+0=2n7t+(7r—(—0)) or §+0=2nn+(—9).

But

T 1
§+0=2nn+(n+9) @(2n+z>n=0

which is impossible. Now

/s /s
§+0 =2nw+ (—0) & 260 = Znn—i
0 T
S0 =nr——
=
Thus,

T
cos@+sin9=0<:)9=nrr—z

for some integer n.

Pulling the results from all three cases together, we have sin 8 cos? 8 = sin3 0 if

T
6 =nm or 0=nniz

for some integer n.
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3.3 Equations of Quadratic Type

4. Solve cos(4x) = sin(2x). (Source: https://brownmath.com)

Solution

Here we can make good use of the identity cos(20) = 1 — 2sin?(0). Let 8 = 2x. Then
cos(4x) = 1 — 2sin?(2x).

Making this substitution we are left with the equation

1 — 2sin?(2x) = sin(2x)
or

2sin?(2x) + sin(2x) — 1 = 0.
This is a quadratic equation in the variable sin(2x) that factors nicely into

(2sin(2x) — 1)(sin(2x) + 1) = 0.
Therefore,

cos(4x) = sin(2x) & sin(2x) = 5 or sin(2x) = —1

T 3
< sin(2x) = sin (E) or sin(2x) = sin (7)

Now recall that the general rule of equality for sine functions:

sin(x) = sin(y) implies x = 2nm + (T — y) or x = 2nm + y for some integer n

So,
sin(2x) = sin (E) S 2x = 2nm + (T[ — E) or 2x = 2nm + i for some integer n
—5Me - 6 - 6 &
N 5t N T
= = JR— — —_
x=nm+_o or x=nm+7
and

3 3 3
sin(2x) = sin (7> S 2x = 2nmw + (7T — 7) or 2x = 2nm + >
T 3

SX=nNm—— Oor X =nm+—.
4 4
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But nt — (1/4) is superfluous because

T emu+E form=n+1
nrm 4—m7'[ 4 orm=n .

So, the set of all possible solutions is

5 T 3n )
X =—+nm or x =—+nm or x =— + nm for some integer n.
2 12 4
[
3.4 Recasting in Terms of Sine and Cosine Only
5. Solve 2 csc(x) — cot(x) = tan(x). (Source: mathonweb.com)
Solution
Rewriting the equation in terms of just sin(x) and cos(x) is a standard step to consider when
several different trig functions appear in the problem.
2 cos(x sin(x
2 csc(x) — cot(x) = tan(x) & — —— (x) = (x)
sin(x) sin(x) cos(x)
2 — cos(x) B sin(x)
sin(x)  cos(x)
& 2 cos(x) — cos?(x) = sin?(x)
& 2 cos(x) = sin?(x) + cos?(x) =1
1
< cos(x) ==
2
T
< cos(x) = cos (§)
2 T 2nm + T
S x = —— —.
X =2nm = or 2nm + 3
|
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3.5 Matching with a Pythagorean Relationship

6. Solve sec(x) = tan(x) + 1 for 0 < x < 2m.

Solution

Knowing the Pythagorean relationship sec?(0) = tan?(0) + 1 is a hint that we should square
both sides. But squaring can introduce extraneous solutions so we will have to check for this at
the end of the problem.

sec(x) = tan(x) + 1
sec?(x) = (tan(x) + 1)? = tan?(x) + 2tan(x) + 1
tan?(x) + 1 = tan?(x) + 2tan(x) + 1
2tan(x) =0
tan(x) =0
tan(x) = tan(0)

x = nm for some integer n.

So, given the restriction 0 < x < 2, our only two candidate solutions are x = 0 and x = .
But as we mentioned above we must check for extraneous solutions.

Is x = 0 an actual solution? Does sec(0) Z tan(0) + 1? Yes, because sec(0) = 1 and
tan(0) = 0.

?
Is x = m an actual solution? Does sec(m) = tan(m) + 1? No, because sec(r) is undefined and
tan(m) = 0.

So, x = 0 is the only solution on [0,27).
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3.6 Using the “Sum to Product” Identity

Sum to Product

cos(a) + cos(B) = 2 cos (a ; ﬁ) cos (a ; 'B) (4)

cos(a) — cos(B) = —2sin (a ; ﬁ) sin (a ; 'B) (5)

sin(a) + sin(B) = 2sin (a ; ﬁ) cos (a ; '8) (6)

sin(a) — sin(B) = 2sin (a ; ﬁ) cos (a ; '8) (7)

7. Solve sinx + sin 5x = sin3x for x in [0,7/2]. (Source: Math-Only-Math.com)

Solution

sin(5x) + sin(x) = sin(3x)

5x 4+ x 5x —x
o2 sin( > >cos( > ) = sin(3x) (using Identity (6) above)
(remember not to divide
< 2sin(3x) cos(2x) = sin(3x) out a variable on both
sides)

< 2sin(3x) cos(2x) — sin(3x) = 0

< sin(3x) (2cos(2x) —1) =0

Case 1. sin(3x) =0

sin(3x) =0 3x =nn

Case2. 2cos(2x)—1=0
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2cos(2x)—1=0
2cos(2x) =1

1
cos(2x) = 3

cos(2x) = cos (g)

In general, cos(x) = cos(y) implies x = 2nm —y or x = 2nm + y for some integer n.

T T
2x=2n7r—§ or 2x=2n7r+§

s +7r
X=NT—— 0of X =N+ —
6 6

So, the set of all possible solutions would be all x such that

nmw T +7T
—, x=nm——, nu+—
3 6 6

x =
for some integer n. But the problem restricts x to the interval [0,7/2].

Taking n = 0 in the general form x = nm/3 yields x = 0 which is in [0, /2].
Taking n = 1 in the general form x = nm/3 yields x = /3 which is in [0,7/2].
Taking n = 0 in the general form x = nm + /6 yields x = /6 which isin [0,7/2].

All other cases yield solutions outside [0, /2].

So, the set of all possible solutions would be x = 0,x = /6 and x = /3.

Solve cos(3x) + sin(2x) — sin(4x) = 0.

(Source: Methods of Solving Nonstandard Problems, Ellina Grigorieva)

Solution

cos(3x) + (sin(2x) — sin(4x)) =0

< cos(3x) — 2sin(x) cos(3x) =0 (using Identity (7) above)
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< cos(3x) (1 —2sin(x)) =0

& cos(3x) =0 or sin(x) =

N| =

T T T
S x = 3 +§n or x = (—1)"5 + mk for some integers n and k.

However, the values (—1)*(m/6) + mk for some integer k are all special cases of (r/6) +
(m/3)n for some integer n. That is, we can simplify our final answer to

T T )
x = g + §n for some integer n.

3.7 Using the “Product to Sum” Identity

Product to Sum

cos(a) cos(B) = %(cos(a —B) + cos(a+ B)) (1)

sin(a) sin(B) = %(cos(a —B) —cos(a +B)) (2)

sin(a) cos(B) = %(sin(a + B) + sin(a — B)) (3)

9 Solve sin(5x) cos(3x) = sin(6x) cos(2x).

(Source: Methods of Solving Nonstandard Problems, Ellina Grigorieva)

Solution

By the Identity (3) above we have
1 1
sin(5x) cos(3x) = > (sin(5x + 3x) + sin(5x — 3x) ) = 5 (sin(8x) + sin(2x) )

sin(6x) cos(2x) = %(sin(6x + 2x) + sin(6x — 2x) ) = %(sin(8x) + sin(4x) )

Making these substitutions, the original equation is transformed to
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%(sin(8x) +sin(2x)) = %(sin(Sx) + sin(4x))

< sin(2x) = sin(4x)

< sin(2x) —sin(4x) =0

- [(2x —4x 2x + 4x . .
& 2sin ( ) cos ( ) =0 (using Identity (7) above)

2 2

< 2sin(—x)cos(3x) =0
< —2sin(x)cos(3x) =0
< sin(x) = 0 or cos(3x) =0

T
S x=7nn or3x = 5 + mk for some integersn and k

t wk

S x=mmnorx= 5 + 3 for some integers n and k

3.8 a sin(x)+ b cos(y) =c

10. | Solve V3 cos(x) + sin(x) = V2, for 0 < x < 2m.

Solution

Useful Identity:

acos(x) + bsin(x) =+/a? + b? - cos(x — )
where 6 is that angle in 0 < 6 < 27 such that
a b

Note: We can determine which of the four quadrants 8 belongs in according to which

cos(0) = and sin(@) =

combination of positive and negative cos(8) and sin(8) are.
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To understand why this works, notice that with these substitutions we have
a cos(x) + bsin(x) = cos(x) cos(8) + sin(x) sin(8) = cos(x — 9).
Furthermore, these are valid substitutions because with these substitutions we have —1 <

cos(f) <1, —1 < sin(@) < 1 and sin?(8) + cos?(0) = 1.

Using the above identity, we have

cos(@) = L = ?
(V3)° + 12
and
O B

(V3)" +12

We see that cos(8) and sin(8) are both positive so 8 is in the first quadrant. In particular, we
see that 6 = /6.

So,
V3 1 T
7cos(x) + Esm(x) = cos (x - g)
Therefore,
is
V3 cos(x) + sin(x) = 2 cos (x - E) =2, for0<x<2m
or
T 1
cos(x——)z—,forOSxSZn
2
Therefore
mom n_z is
X—p=g orx—o=2nr—7
_n+n_5n _ n+n_23n
YT T 12 T T T e T 12
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3.9 Maximize (minimize) a sin(x) + b cos(y)

11. Find the maximum value of sin(x) + cos(x).

Solution

This is another example where the technique below can be used.

Useful Identity:

acos(x) + bsin(x) =+/a? + b? - cos(x — )

where 6 is that angle in 0 < 6 < 2m such that

a ] b
cos(8) = ﬁ and sin(9) = ﬁ.

Note: We can determine which of the four quadrants 8 belongs in according to which

combination of positive and negative cos(8) and sin(8) are.

sin(x) + cos(x) =1-cos(x)+1-sin(x) =a=1,b = 1.

Let 8 be that angle in [0,27] such that

1 1 1 1
cos(f) = ————==—= and sin(f) = ———==—.
©® V12412 V2 ©® V12 +12 V2

Because both sin(8) and cos(8) are positive, we are looking for an angle in the 15¢ quadrant.
By inspection we see that 8 = /4.

Therefore,

sin(x) + cos(x) =+/12 4+ 12 - cos (x — %) = /2 cos (x — %)

In this form we can clearly see that the maximum value of sin(x) + cos(x) is v/2 and this occurs
when x = /4.
]
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3.10 System of Trigonometric Equations

Solve the system sin(x) + sin(y) = 1 and cos(x) + cos(y) = 0 for x and y.

12.
(Source: math.stackexchange.com)

Solution

First a couple notes about steps frequently needed in problem similar to this one. To keep the
notation simple, let A represent some function of x and y (e.g. sin(x) + sin(y) ) and let B
represent some function of x and y and consider solving the system A = a and B = b for x and
y for some constants a and b.

(i) Ifyou replace the equation A = a with A2 = a? you will not lose any solutions but
you may gain some false (extraneous) ones. So, you will need to check all solutions
to see if they really solve the original equations A = aand B = b.

(ii) sometimes it helps to replace the equation A = a with some linear function of 4
and B (e.g. c;A + c,B = c,a + ¢,b,¢c; # 0). This does not change the solution
set. That is, the solution sets to the two systems

{g Z Z} and {clA +c,B =Bc1=al;l- c;b,cq # 0}

are the same because this is an invertible transformation. A typical case is where you
replaceA=awithA—B=a—borA+B=a+b.

We will begin by squaring both equations. This will allow us to take advantage of the
Pythagorean relationship sin?(8) + cos?(8) = 1.

So, we have
sin?(x) + sin?(y) + 2 sin(x) sin(y) = 1

cos?(x) + cos?(y) + 2 cos(x) cos(y) = 0.

Now we will replace the first equation with the sum of these two equations. The sum of these
two equations, after simplification, is sin(x) sin(y) + cos(x) cos(y) = —1/2. But we can
further simplify by applying the angle addition formula

sin(8) sin(B) + cos(8) cos(B) = cos(6 — B).
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We can then rewrite the equation cos(x — y) = —1/2 as cos(x — y) = cos(2m/3) in as much
as cos(2m/3) = —1/2. This rewrite will make it plain how to use our result on the “Equality of
Same Trig Functions” given in the previous table.

Finally, it will be useful to note that
cos(x) + cos(y) = 0 © cos(x) = —cos(y) & cos(x) = cos(m — y).

So, the original system of equations has been transformed to the equivalent (up to potential
extraneous solutions) system:

cos(x —y) = cos (Z?H)

cos(x) = cos(m — y).

The solution to the first equation is

2T 21
x—y=2n1n—? or x—y=2n2n+?

and the solution to the second equation is
x=2nr—(m—y) or x=2n,m+ (m—1y)
where ny,n,,n3; and n, can be any (not necessarily equal) integers.

These leads to four cases:

Case 1 27T Case 2 2T
x=2n1n—?+y x=2n1n—?+y
xX=2nm—m+y X=2nm+m—y

Case 3 2T Case 4 2T
x=2n2n+?+y x=2n2n+?+y
xX=2nm—m+y X =2mm+m—y

Cases 1 and 3 lead to contradictions because the variable y cancels out and we are left with an
equality that is never true.

Case 2 2

=2 -
X nqym 3+y

X=2mm+m—y
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(x,y) = (

21

2nqm — 3 +ty=Z2myn+m—y
5w
Zy = 27‘[(714—711) +?
5w
y=(n4—n1)ﬂ+?

21 5n I8
x=2n1n—?+(n4—n1)n+?= (n4+n1)n+g

51

T
(ny + nym + o (ny —ny)m+ ?) for some integers n, and n,.

Case 4

2r
x=2n2n+?+y

xX=2mm+mw—y

X

(x,y) = ((m +ny)m +

2T
2n2n+?+y=2n47t+7t—y

21
2y=2n(n4—n2)+n—?
T
y= (n4—n2)n+g
2m T S5m
=2n2n+?+ (n4—n2)n+g =(n4+n2)n+?

5w

s
6 (ny, — ny)m + E) for some integers n, and n,.

Are any of these solutions extraneous? Fortunately, we don’t have to plug each solution back
into the original equations. Looking at Case 2, the only relevant question is whether (n, + n,),
(ng —ny), (n, +ny) and (n, — n,) are even or odd. All cases where n; and n, have the same
parity (i.e. are both even or both odd) reduce to (x,y) = (57/6,7/6). All cases where n, and
n, have different parity reduce to (x,y) = (11m/6,7m/6). So in fact there are just two cases to
check. It turns out that (x,y) = (117/6,7m/6) does not satisfy the equation sin(x) +

sin(y) = 1. The same analysis holds for the solutions that arise from Case 4.

In summary all valid (non-extraneous) solutions will have the form
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S5n s )
(x,y) = (Znn +—,2mm + —) for some integers n and m

6 6
or
T 5w
(x,y) = (Znn + o 2mm + ?) for some integers n and m.
]
13 Determine all values of 4, if cosA — cos B = —sin80°and A + B = 60°, where
' 0° < A <180°. (Source: MSHSML 3C154)
Solution

Because B = 60° — 4 we have

cosA — cosB = cos A — cos(60° — A)
= cos A — (cos 60°cos A + sin 60°sin A)
= cosA (1 — cos60°) —sin 60°sin 4

= cosA (1 — %) —?sinA

= sin30° cos A — cos 30°sin 4
= sin(30° — A)

= —sin(4 — 30°).

Note: In the above argument we have used the following two Subtraction Identities
cos(x —y) = cosxcosy + sinxsiny
sin(x —y) = sinxcosy — cosxsiny
and the Even-Odd Identity
sin(—x) = —sinx

as stated in the Study Guide for Meet 2, Event C.

Therefore,

—sin(4 — 30°) = —sin(80°).
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Now recall the general equivalence result (stated in radians) stated earlier in this study guide
that

sin(x) = sin(y) & x = 2nw + (m — y) or x = 2nmw + y for some integer n.

From this result (after translating into degrees) it follows that for some integer n
A —30° = 2n(180°) + (180° — 80°)
or
A — 30° = 2n(180°) + 80°.
Simplifying, we have
A =110°+360°n or A =130°+ 360°n
for some integer n.

But recall that the statement of the problem requires that 0° < A < 180°. Therefore, the only
possible values of A are 110° and 130°.

How many solutions to sin 8 = — cos 6 exist on the interval 0 < § < 2m?

14. (Source: MSHSML 3C101)

Solution

sin@ —cos@

sinf@=-cosf = = tan@ =-1, which occurs twice on the unit circle.

cos@ cos@

Find the solution of the equation cosx —sinx = O where mw < x < 3m/2.

15 (Source: MSHSML 3C081)

Solution

mathcloset.com 73



Adding sin x to both sides yields cos x = sin x.

This certainly occurs at x = % but this 1s not

in the desired domain. Reflect across the origin.

[
\

)
/

/
-
]
Find all solutions to the equation sec? 8 — 3 sec@ — 2 = 0 on the interval
16. 0 <6 < 2m. (Source: MSHSML 3C082)
Solution
Let y=secO. Then y* -3y—2=0. By the Quadratic Formula,
y €{-0.56155, 3.56155}. Since sec® must be <1 or 1, we
exclude -0.56155. secf ~ 3.56155 = cosf =~ 0.28078 .
6 {1.286, 4.997}
]
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The obtuse angle in a triangle has a sine of 3/5. What is the tangent of this angle?

17 (Source: MSHSML 3C051)
Solution
3 g &
=

4 De Moivre’s Theorem and the Roots of Unity

Complex Number

A complex number is any number that can be written in the form
a + bi, where a and b are real numbers and i is the imaginary unit
(i2 = —1). aiis called the real part, and b is called the imaginary
part.

Equality of Two
Complex Numbers

a+bi=c+die=a=cAND b=d
i.e. the real parts must be equal and the imaginary parts must
be equal.

Addition and
Subtraction of Complex
Numbers

Combine like terms.
(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)—(c+di)=(a—c)+ (b —-4d)i

Multiplication of
Complex Numbers

Use the definition of i? = —1 and the FOIL method:
(a + bi)(c + di) = (ac — bd) + (ad + bc)i

Multiplication of a
Complex Number by a
Constant

¢ (a+ bi) =ac+ (be)i
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Conjugate of a
Complex Number

The complex conjugate of a + bi is defined to be a — bi.

Notation for a Complex
Number and its
Conjugate

If z is a complex number then we denote the conjugate of z by z.
eg. Ifz=3+4 2i,thenz =3 —2iandifz=—1 — 2i, then
Z=

—1 + 2i. We can also write thisas a + bi = a — bi.

Product of a Complex
Number and its
Conjugate, Part 1.

(a+ bi)(a — bi) = (a? — b(~b)) + (—ab + ab)i = a? + b?

Division of Complex
Numbers

a + bi (a + bi) (c - di) B (ac + bd) + (—ad + bc)i

c+di= c+di)\c—di] c2+d?

Absolute Value (Norm)
of a Complex Number

The absolute value of a complex number is defined by

|la + bi| =+ a? + b2.

Product of a Complex
Number and its
Conjugate, Part 2.

z-7Z=|z|?
Proof: Let z = a + bi. Then
z-Z= (a+ bi)(a— bi) = a®+ b? = |a+ bi|? = |z|?

Multiplicative Inverse
of a Complex Number

z
z|—=) =1, provided |z]2 # 0
|z|

That is, z and Z/|z|? are multiplicative inverses.

Proof: We just proved that z-Z = |z|?. So, on dividing both sides
by |z|?, we have

G

provided |z|? # 0, i.e. provided z # 0 + 0i.
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Absolute Value of a
Product

|z1 - z5| = 24| - |25

Proof: Let z; = a + bi andlet z, = ¢ + di. Then

z, -z, = (a+ bi)(c + di) = (ac — bd) + (ad + bc)i
Therefore,

|z, - 2,12 = (ac — bd)? + (ad + bc)?
= a?c? — 2abcd + b%*d? + a?d? + 2abcd + b%c?
= a?c? + b*d? + a*d? + b?c?
= a?(c? +d?) + b*(c?* + d?)
= (a? + b?)(c? + d?)
= |z|? - |z,|%.
Taking square roots of both sides gives us the final result

|Z1 ) Zz| = |Z1| ) |Z2|-

Absolute Value of a
Power

|z™| = |z|™ for any positive integer n.

Absolute Value of a
Ratio

Z1| |24 |

B |z, |

Zy

Absolute Value of a
Conjugate

|z| = |z|

Proof: Let z = a + biand Z = a — bi. Then

Conjugate of Sum,
Difference, Product
and Ratio

|z| = |a — bi| = +/a% + (=b)?2 =+ a? + b% = |a + bi| = |z|.

z1+tz, =2z,+7,

(Zl> 2
Zy Zy

Conjugate of a Power

z™ = (z)" forany positive integer n.
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Powers of i

j4mtk — jk and j~4m+k = ik for any integer m

=1 i©=i*=i8=i12 =1 = ... = {* foranyinteger k
il=i=+—1 it=i>=i%=i% = ... = {***1 foranyinteger k
2 2 6 10 14 __ <4k+2

i-=-1 ic=i°=i%"=i%*=-.=i for any integer k

i3=—i i3=i7 =i =i¥ =... = {**3 foranyinteger k

iTl=—i 3=i1=i%=i{%={1 =...={"**3 foranyintegerk
i?2=-1 i2=i2=i0={10 =714 =..=[%*2 foranyinteger k
i3 =i il=i3=i7=i"1"=i{1=..=i** foranyinteger k
iTt=1 i0=i*=i8=i{12 =716 =...=i"* foranyintegerk

127 i4-(6)+3 — i3 —

i —1

i_27 — i—4-(7)+1 — il =i

All of the notes from Test 1D concerning complex roots of quadratic equations are relevant for
Test 3C and are reproduced here.

4.1 Complex Roots of Quadratic Equations

A complex number is any number that can be written in the form
a + bi, where a and b are real numbers and i is the imaginary unit
(i2 = —1). ais called the real part, and b is called the imaginary
part.

a+bi=c+die=a=cAND b=d
i.e. the real parts must be equal and the imaginary parts must
be equal.

Complex Number

Equality of Two
Complex Numbers
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Conjugate of a
Complex Number

The complex conjugate of a + bi is defined to be a — bi.

Notation for a Complex

Number and its e.g. ﬁz
7 =

Conjugate

If z is a complex number then we denote the conjugate of z by z.

=34 2i,thenz =3 —2iandifz = —1 — 2i, then
—1 + 2i. We can also write thisas a + bi = a — bi.

Complex Conjugate Roots Theorem

If p(x) is any polynomial (of any degree) with real coefficients and if a + bi is a complex root
of p(x), then its complex conjugate a — bi is also a root of p(x).

Note: This theorem does not continue to hold true when some or all coefficients of the

polynomial are complex numbers.

Discriminant

b? — 4ac is called the discriminant of the quadratic function f(x) = ax? + bx + c.

If ...
b? —4ac >0 f(x) has two distinct real roots
b? —4ac=0 f (x) has two equal real roots
b2 dgc < 0 f(x) has complex conjugate
roots
Graphing

We can represent a complex number as a point on the Re (Real) and Jm (Imaginary) axes. The

complex number a + bi has real part a and imaginary part b and is located at the coordinates

(a, b) in this coordinate system.
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b (a,b)

Polar Form of a Complex Number

But we can also represent the point (a, b) by specifying its (r, 8) values, where 7 is the absolute
distance this point is from the origin (0,0) and 8 is the angle this point makes with the positive

Re (Real) axis.

Im

We refer to (a, b) as the rectangular form and (r, 8) as the polar form of a complex number.
We can calculate one pair of coordinates from the other.

Given the rectangular coordinates (a, b) we can calculate the polar coordinates (r, 8) through

r =+a? + b?

and
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( b
tan‘1<—> a>0
a
(b
1 + tan (—) a<0
0 =< a
/2 a=0,b>0
3n/2 a=0,b<0.
\

Given the polar coordinates (r, 8) we can calculate the rectangular coordinates (a, b) through
a = rcos(0)
b = rsin(8).

Thatis, a + bi = rcos(9) + i rsin(@) = r(cos(@) + isin(8) ) The number 7 is called the
modulus and the angle 8 is called the argument of the complex number a + bi. In the polar
form the origin is also called the pole.

You might notice that the modulus r for a complex nhumber in polar form r(cos(@) + isin(@))
is equivalent to the norm for a complex number expressed in rectangular form. We note that if

a+ bi = r(cos(@) +i sin(@)) = (r cos(8) ) + i(r sin(B))

then

Jaz+ b? = \/(r cos(8) )2 + (r sin(@) )2 = Jrz(cosz(e) + sinz(ﬁ)) =r2(1) = .

Alternate Notations
The abbreviated notations
cos(8) + isin(8) = cis(8)
and
r(cos(@) + isin(@)) =140

are commonly used so don’t be thrown if you see them used.

Multiplication and Division (in Polar Form)

Let the two complex numbers z; and z, have the polar forms
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Z; =1 (cos(@l) +i sin(@l)) and z, =1, (cos(@z) +i sin(@z))

then
Zy Zy =TTy (cos(01 +6,) +isin(6; + 02))
and
% = :—z(cos(é)l —6,) +isin(6; — 6,) ) , provided z, # 0.

4.2 Powers and Roots in Polar Form — DeMoivre’s Theorem

(r(cos(@) + isin(8) )) =7t (cos(n@) +i sin(n@)) (DeMoivre’s Theorem)

and

-n n

(r(cos(@) + isin(8) )) = (%) (cos(n@) — isin(n@))

and

0+ 2km 0+ 2km
n\/r(cos(@) +1i sin(@)) = r@/m (cos( - >+ isin( - )), k=01,..,.n—1

and

pla 0 + 2km 6 + 2km
(T(COS(@) +i Sll’l(@) )) = r(p/q) (COS (pT> + isin (pT) ) , k

=01,..,9-1

for positive integers p, ¢ and n.
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4.3 Exponential Form of Complex Number (Euler’s Formula)

For 8 measured in radians
rel® =r (cos(@) +i sin(@)) (Euler’s Formula)
Therefore,
e® = cos(@) + isin(0)
e~ = cos(—0) + isin(—0) = cos(8) — isin().

It follows that

et 4 o—if
cos(f) = ——
2
and
ol _ o=if
sin(9) = -
21

4.4 Complex Roots of Unity

A root of unity is a complex number z which satisfies z™ = 1 for some positive integer n.
Equivalently, we write z = 1.

Solving for the nt" roots of unity

Since z™ = 1 is a polynomial with complex coefficients and a degree of n, it must have exactly
n complex roots according to the Fundamental Theorem of Algebra. These n complex roots are

the n values of z = %

We will start by finding the rectangular form a + bi of the number 1. As this is a real number
it’s imaginary part b equals 0 and we simply have 1 = a + bi = 1 + 0i.

Now we will convert this to the polar form r(cos(@) + i sin(0) ) We know that r =
Va2 + b2 =+v12+02=1andf =tan"!(b/a) = tan"1(0/1) = tan"1(0) = 0.

That is,

1=1+0i=1 (cos(O) +i sin(O)).
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Now we solve for all the n'"* roots of unit using the formula

0+ 2k 0+ 2k
n\/r(cos(é)) +isin(g)) =r@/m (cos (Tn) + isin (Tn) ) , k=01,..,n—1.

So the nt" roots of unity are

0+ 2k 0+ 2k
T — n\[l (COS(O) + isin(O)) — 1l/n (cos (_ . ”) + isin (_ - ”)), k
=01,..,n—1

2km ~ (2km
= COS (—) + isin (—), k=01,..,n—1.
n n

Using Euler’s formula
e = cos(0) + isin(0)
we can also write the nt" roots of unity as

el@rk/m) | =01,..,n—1.

When the nt" roots of unity are plotted on the complex plane (with the real part [Re] on the
horizontal axis and the imaginary part [Im] on the vertical axis), we can see that they all lie on
the unit circle and form the vertices of a regular polygon with n sides and a circumradius of 1.
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Re

Here we are showing the 8 values of % on the complex plane. That is, the 8" roots of unity.
You might be wondering why the focus on the nt" roots of unity and not the n" roots of 7 or
any other number? It turns out that the roots of unity in particular play a big role in several
fields of mathematics including number theory and combinatorics.

5 Extra Problems

Problem 1.

A map maker wants to determine the distance between boundary markers A and D which are

on opposite sides of the Chippewa River at a location near the confluence of the Chippewa and

the Mississippi.
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The map maker establishes landmarks at points B and C on the same line connecting boundary
markers A and D and finds the distance a between points A and B and the distance b between
points C and D. However, the map maker cannot directly measure the distance between points

B and C.

The map maker uses a landmark F on the far side of the Mississippi to measure the angles «, 8
and y as shown on the map above. Using this information find AD, the distance between

boundary markers A and D.

The data for this problemis a = 2320 ft, b = 3580 ft, « = 24°, f = 14°and y = 30°.

Solution

Let x = BC. Using the Law of Sines we can see that

a

FB

a—+x

FC

p = — an
sina sinA

and

b

FC

b+x

FB

FB

FC

a sin(a + B)

d = _— — =
sin(ed + B) sinA FC a+x sina

b ' sin(B +y)

= d = —_— — =
siny sinD an sin(B+y) sinD FB b+x siny

Hence,
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FB FC _ a sin(a+p) b sin(B+y)
FC FB \a+x sin a b+x siny

or

(a+x)(b+ x)sinasiny = absin(a + B) sin(B + y).

The only unknown in this last equation is the distance x = BC. We can rewrite this last
equation as the quadratic

(sinasiny)x? + (sinasiny)(a+ b)x +c =0
where ¢ = ab(sin a siny — sin(a + £) sin(B + y)).

Using the quadratic formula to solve for x we find

—(a+ b)(sinasiny) + \[((a + b)(sin a sin y))2 — 4(sina siny)(c)

2sinasiny

X =

Evaluating this expression with the given data and knowing that x is necessarily positive, we
find after simplification that x = 1276 ft.

Hence, AD =~ 2320+ 1276 + 3580 = 7176 ft.

Problem 2.

A ship at sea located at point M radios the Coast Guard Station at point F and reports they are
having engine trouble and have dropped anchor at their current location. A Coast Guard rescue
ship is currently at sea at location L. The Coast Guard has observation towers at points C and F
which are known to be d miles apart. Assume both ships are visible from both towers.
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The angles 3, v, § and € are determined by officers at the two towers. Additionally, officers at
C determine that the bearing (measured in degrees clockwise from North) from point C to

point L is a.
From this information determine the bearing from point L to point M and find LM, the distance

between the two ships.
The data for this problemis @ = 67°, f = 33°,y = 45° 6§ = 51°, & = 28°and d = 3 miles.

Solution
We will define the additional angles as shown below.
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From ACLF we can determine thatn =1

sinn  sin(y + B)
= 1
d FL

'
n .
s
4 1
)
e I
s I
4
’ I
4 I
7’
I
7
\\ s 1
~ s ]
N 7
NS I
SN 1
SN
s ~ i
Fd ~ ]
7 ~
, ~ 1
~
' "
~ I
~
~ !

80°— § —y — B and from the Law of Sines,

_dsin(y +p6) dsin(y + )
~ sinp sin(180°—=8—y —B)
sin(y + B)

:d'sin(6+y+ﬁ)

From ACLM we can determine that k = 180° — y — § — € and from the Law of Sines,
dsiny

sink siny
= —
d FM

We can use the Law of Cosines wi
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th AFLM to solve for LM.
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LM? = FL? + FM? —2 -FL -FM - cos .

Thus,

LM =+/FL? + FM? — 2 -FL-FM - cos¢

B dsin(y + B) ? dsiny 2 5 dsin(y + B) dsiny
B (sin(()“ +y+ B)) + (sin(y + 6+ e)) B (sin(& +y+ ,8)> (sin(y +6+ s)) cosée

4 siny +8) \° siny 2 , sin(y + ) siny
a <sin(6 +y+ ﬁ)) + (sin(y +8+ e)) B <sin(6 +y+ ﬁ)) (sin(y + 6+ s)) cosée.

The data for this problemis @ = 67°, = 33°,y = 45° 6§ = 51°, & = 28°and d = 3 miles.

With this data entered into the formula for LM we get that LM = 1.94 miles.

Given the proximity of points C and L we can assume that the north pointing vectors from both

locations are (essentially) parallel. Therefore, the bearing that the ship at L should take to
reachpoint Misa + o = a + (180°—n — 0).
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We have previously determined that
n = 180°

and from the Law of Sines we have

Therefore
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0 = qj -1 .
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. o 3 - sin45°
[ sin(28%) (sin(45° T5°+ 28°))

1.94 ~ 38°.

= sin~

Hence the boat at L should take a bearing of
a+ (180°—n —0) =~ 67°+ (180° — 51° — 38°) = 158°

clockwise from North.

Source: MSHSML 3C013

T
2 tan(—)
24
The expression L[ can be written in the form a + bv/c where a, b and ¢ are integers.
1—tan (ﬁ)
Finda+ b + c.
Solution

This problem tests whether or not you have memorized the necessary trigonometry formulas.
What formulas should you memorize? At a minimum, the various sum and difference formulas
and the exact results for trigonometric functions building on the 30-60-90 and the 45-45-90
triangles. You can derive other needed formulas from this information — but it can be time
consuming. | recommend you memorize more formulas by building yourself a set of flashcards.

In particular, you need the following identities and results in this problem:

Tangent Identities
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2 6
tan(260) = #r;(z()m

tan(6) — tan(B)
1 + tan(0) tan(pB)

tan(6 — B) =

tan(60°) = tan (g) =43

tan(45°) = tan (%) =1.

Ztan—(Zl‘g) = tan (2 (%)) = tan (5)

1 — tan? (24

an (BT tan (%) — tan (%)

3 4 _1+tan(%)tan(%)

_ V3-1  V3-1
1+ (V3)(1) 1443

_V3-1 <1 - \/§>
1443 \1-+3
V3-1-3++V3 2V3-4
—_— p— p— 2 _— '\/§.
1-3 -2
Finally, we recognize this answer is of the required form a + bv/c witha = 2,b = —1 and

¢ = 3. Therefore,la+b+c=2—-1+3 =4.

Source: MSHSML 3C014
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4. In AABC (Figure 4), use the same inverse trigonometric function to express each of
the three interior angles in terms of an integer. (Two correct answers earn | peiet)
LA=Arc(?)_2? LB=Arc(?7)_2 LC=Are(1)_2
LA= LB= ZC =

C

Figure 4

Solution

The key step is in recognizing the need for an auxiliary line(s) (an extra line(s) need to complete

a proof or solve a geometry or trigonometry problem). Recognizing what extra line(s) are
needed is generally not immediately obvious.

mathcloset.com 94



L

A D B

First consider the right triangle AACD. Using rt. AACD we have

t (A)—C —6—3 A = arctan(3)
— 23— 4= _

an D=3 arctan

Second consider the right triangle ABCD. Using rt. ABCD we have

tan(B) = > = 2 = 2 = B = arctan(2)
= —= = —1 = .
an DB =3 arctan
Finally consider the triangle AACE. Is this a right triangle? Let’s find the lengths of each side
using the distance formula between two points.

diSt((xZJ’z): (x1JY1)) = \/(xz —x1)2+ (O, —y1)?.
The point A has coordinates (0,0)
The point E has coordinates (4,2)

The point C has coordinates (2,6).

AE = dist((4,2),(0,0)) = /(0 —4)2 + (0 — 2)2 = V20 = 2V/5

CE = dist((2,6),(4,2)) = /(4 —2)2 + (2 — 6)2 =20 = 2V5

AC = dist((2,6),(0,0)) = /(0 — 2)2 + (0 — 6)2 = V40 = 2V/10.
Notice that
AE? + CE? = (2v5)" + (2V5)” = 40

AC? = (2V10)" = 40.
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So,

AE? + CE? = AC.

Hence by the converse of the Pythagorean formula, AACE is a right triangle and because the
two legs have the same length (namely, 2v/5), it is a 45-45-90 triangle.

Consider the right triangle AACE. Using rt. AACE we have
AE 245

tan(C) = C_E = ﬁg =1 = C = arctan(1).

So, our final conclusion is that

A = arctan(3)
B = arctan(2)
C = arctan(1).

Incidentally, we know that
A+B+C=m

because these are the three angles of a triangle. So, we can also note that we have just proven
that

arctan(3) + arctan(2) + arctan(1) = 7.

Source: MSHSML 3C002

2. What is the radian measure of the angle ain the third quadrant that satisfies

sin2a+oosa -l?
4

Solution
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[ — oo ol + Coo X =

pl-

Gemtod — f ok -3 =0
(2 oo+ 1 WResox = 3120

. cos X =
Coad X 'L’ ><

(M

)
2

rvjw

:.\5

Source: MSHSML 3C003

3. Given the quadrilateral ABCD in Figure 3 with sides of lengths 3, 4, 5, and 6 and
LC= arccos%, find the length of BD.

D
5
6 c
4
A
3 B
Figure 3

Solution
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A
3 B

Figure 3

ct= 16 +25 -2 (4)5) cos C
= 41 - 40(3) = 36

cC =6

Source: MSHSML 3C004

4. Theice-cream-cone shaped region in Figure 4 is formed by using the base PQ of the
isosceles APQR as the diameter of a semicircle. Let 8 = ZPRQ. If §(8) is the area of

the semi-circle and T(8) is the area of the triangle, find constants a and b such that

@ =atanbf
1(6)

R
Figure 4

Solution
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o .
Sin E = -E cCos % = %
LI
s(8) it 5'“"97'.1 (-i) _ sm%
Ti(e) ia(at sin -?L)('L- cos 2) 2 cos %
=T 1
2 fen(z)e
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