MSHSML Meet 3, Event D Study Guide

3D Exponents and Logarithms

Use of fractional, negative exponents Simplifying expressions involving radicals Solving equations involving radicals Use of logarithms; identities involving logarithms Solving logarithmic equations Relationships between logarithms to different base

1 Contents

1	Contents	.1
2	Use of Fractional, Negative Exponents	.1
3	Simplifying Expressions Involving Radicals	.2
4	Solving Equations Involving Radicals	.2
5	Use of Logarithms; Identities Involving Logarithms	.4
6	Solving Logarithmic Equations	.5
7	Relationships Between Logarithms to Different Bases	.5

2 Use of Fractional, Negative Exponents

Rules for Exponents

(1)	$a^b \cdot a^c = a^{b+c}$	$3^2 \cdot 3^4 = 3^{2+4} = 3^6$
(2)	$(a^b)^c = a^{b \cdot c}$	$(3^2)^4 = 3^{2 \cdot 4} = 3^8$

(3)	$\frac{a^b}{a^c} = a^{b-c}$	$\frac{3^7}{3^2} = 3^{7-2} = 3^5$	
(4)	$a^{-b} = \frac{1}{a^b}$	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$	
(5)	$a^0 = 1$ for all values of a except $a = 0$.	$3^0 = 1$	
(6)	$a^{1/n} = \sqrt[n]{a}$	$3^{1/2} = \sqrt[2]{3}$	
(7)	$a^{m/n} = \left(\sqrt[n]{a}\right)^m$	$3^{5/2} = (\sqrt[2]{3})^5$	
(8)	$(a \cdot b)^c = a^c \cdot b^c$	$(3x)^2 = 3^2 \cdot x^2 = 9x^2$	
(9)	$\left(\frac{a}{b}\right)^c = \frac{a^c}{b^c}$	$\left(\frac{x}{2}\right)^4 = \frac{x^4}{2^4} = \frac{x^4}{16}$	
(10)	$(a+b)^c \neq a^c + b^c$	Don't make this <u>very</u> common mistake.	
(11)	$(\boldsymbol{a}-\boldsymbol{b})^c \neq \boldsymbol{a}^c - \boldsymbol{b}^c$	Don't make this <u>very</u> common mistake.	

3 Simplifying Expressions Involving Radicals

4 Solving Equations Involving Radicals

1. Solve for x if
$$7 \cdot 3^{(x+1)} - 3^{(1-x)} = 2$$
.

Solution

-

$$7(3^{x+1}) - (3^{1-x}) = 2$$
$$7(3^x)(3^1) - (3^1) \cdot (3^{-x}) = 2$$

$$21 \cdot (3^x) - 3 \cdot \left(\frac{1}{3^x}\right) = 2$$

Let $y = 3^x$.

$$21y - \frac{3}{y} = 2$$

We can multiply both sides by y and simplify to get a quadratic equation.

$$21y^{2} - 2y - 3 = 0$$
$$(7y - 3)(3y + 1) = 0$$

7y - 3 = 0	3y + 1 = 0
$7y = 3 \Longrightarrow y = \frac{3}{7} \Longrightarrow 3^{x} = \frac{3}{7} \Longrightarrow 3^{x-1} = \frac{1}{7}$	$3y = -1 \Longrightarrow y = -1/3 \Longrightarrow 3^x = -\frac{1}{3}$
$\Rightarrow x - 1 = \log_3\left(\frac{1}{7}\right) = -\log_3(7)$	But this is impossible because $3^x \ge 0$ for all real values of x .
$\implies x = 1 - \log_3(7).$	

So $x = 1 - \log_3(7)$ is the only solution. But we still need to check if this solution actually satisfies the original equation.

$$7(3^{(1-\log_3(7))+1}) - (3^{1-(1-\log_3(7))}) \stackrel{?}{=} 2$$

$$7(3^{2-\log_3(7)}) - 3^{\log_3(7)} \stackrel{?}{=} 2$$

$$\frac{7 \cdot 3^2}{3^{\log_3(7)}} - 3^{\log_3(7)} \stackrel{?}{=} 2$$

$$3^2 - 7 \stackrel{?}{=} 2$$

$$2 \stackrel{\checkmark}{=} 2$$

So $x = 1 - \log_3(7)$ is the unique solution.

5 Use of Logarithms; Identities Involving Logarithms

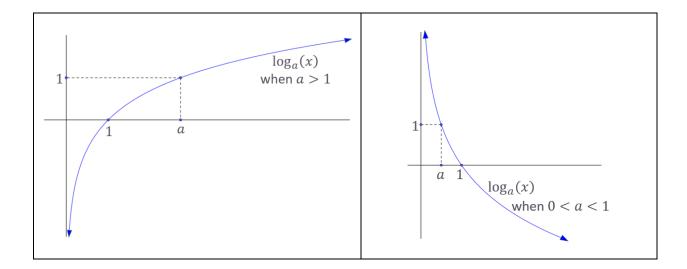
<u>Definition</u>

$\log_a(x) = y \Leftrightarrow a^y = x$, for all $a > 0, a \neq 1$	D1

T

Properties

$\log_a(1) = 0$	P1
$\log_a(a) = 1$	Ρ2
$\log_a(xy) = \log_a(x) + \log_a(y)$	Р3
$\log_a(x/y) = \log_a(x) - \log_a(y)$	Ρ4
$\log_a(x^b) = b \log_a(x)$	Р5
$\log_a(\sqrt[b]{x}) = \log_a(x) / b$	
$\log_a(x) = \log_c(x) / \log_c(a)$ for all $a > 0, a \neq 1, c > 0, c \neq 1$	Р7
$\log_a(b) = 1/\log_b(a)$	P8
$\log_{(a^b)}(c) = \frac{1}{b}\log_a(c)$	Р9
$x = \log_a(a^x)$	P10
$x = a^{\log_a(x)}$	P11
$a^{\log_{\mathcal{C}}(b)} = b^{\log_{\mathcal{C}}(a)}$	



6 Solving Logarithmic Equations

7 Relationships Between Logarithms to Different Bases

2. Express $\log_{(8\sqrt{2})}(1024)$ as a rational number.

<u>Solution</u>

First note that $8\sqrt{2} = 2^3 \cdot 2^{1/2} = 2^{7/2}$ and $1024 = 2^{10}$.

By D1, $\log_{(8\sqrt{2})}(1024) = y$ means that $(2^{7/2})^y = (8\sqrt{2})^y = 1024 = 2^{10}$. That is,

$$(2^{7/2})^y = 2^{7y/2} = 2^{10} \Longrightarrow \frac{7y}{2} = 10 \Longrightarrow y = \frac{20}{7}.$$

Alternatively, by P9

$$\log_{(8\sqrt{2})}(1024) = \log_{(2^{7/2})}(1024) = \frac{2}{7}\log_2(1024)$$

and then by P19

$$\frac{2}{7}\log_2(1024) = \frac{2}{7}\log_2(2^{10}) = \frac{2(10)}{7} = \frac{20}{7}$$

mathcloset.com

3. Express $\log_2(3) \cdot \log_3(4) \cdot \log_4(5) \cdots \log_{511}(512)$ as an intege	
--	--

<u>Solution</u>

First use P7 to express each of these log factors in terms of a common base. It does not matter what common base you pick to work with. I'll pick base 2. Then

$$\log_2(3) \cdot \log_3(4) \cdot \log_4(5) \cdot \log_5(6) \cdots \log_{510}(511) \cdot \log_{511}(512)$$

$$= \log_2(3) \cdot \frac{\log_2(4)}{\log_2(3)} \cdot \frac{\log_2(5)}{\log_2(4)} \cdot \frac{\log_2(6)}{\log_2(5)} \cdots \frac{\log_2(511)}{\log_2(510)} \cdot \frac{\log_2(512)}{\log_2(511)}$$

which simplifies to just $\log_2(512)$ after all the cancelling of like factors in the numerator and denominator. But $512 = 2^9$ and by P10, $\log_2(512) = \log_2(2^9) = 9$.

ſ		Simplify
	4.	$\log_b(\tan(1^\circ)) + \log_b(\tan(2^\circ)) + \log_b(\tan(3^\circ)) + \dots + \log_b(\tan(89^\circ))$
		where $b > 0, b \neq 1$.

Solution

First, remember the trig identities

$$\tan(k^{\circ}) = \cot(90^{\circ} - k^{\circ}) = \frac{1}{\tan(90^{\circ} - k^{\circ})}.$$

Then

$$log_{b}(tan(1^{\circ})) + log_{b}(tan(2^{\circ})) + log_{b}(tan(3^{\circ})) + \dots + log_{b}(tan(89^{\circ})))$$
$$= \left(log_{b}(tan(1^{\circ})) + \dots + log_{b}(tan(44^{\circ}))) \right) + log_{b}(tan(45^{\circ})))$$
$$+ \left(log_{b}(tan(46^{\circ})) + \dots + log_{b}(tan(89^{\circ}))) \right)$$

$$= \left(\log_b(\tan(1^\circ)) + \dots + \log_b(\tan(44^\circ)) \right) + \log_b(\tan(45^\circ)) + \left(\log_b\left(\frac{1}{\tan(90^\circ - 46^\circ)}\right) + \dots + \log_b\left(\frac{1}{\tan(90^\circ - 89^\circ)}\right) \right).$$

But by P4 and then P1

$$\log_b\left(\frac{1}{\tan(90^\circ - k^\circ)}\right) = \log_b(1) - \log_b\left(\tan(90^\circ - k^\circ)\right) = \log_b\left(\tan(90^\circ - k^\circ)\right)$$

So, for example,

$$\log_b \left(\frac{1}{\tan(90^\circ - 46^\circ)} \right) = -\log_b \left(\tan(90^\circ - 46^\circ) \right) = -\log_b \left(\tan(44^\circ) \right)$$

and

$$\log_b\left(\frac{1}{\tan(90^\circ - 89^\circ)}\right) = -\log_b\left(\tan(90^\circ - 89^\circ)\right) = -\log_b\left(\tan(1^\circ)\right).$$

Thus,

$$\begin{pmatrix} \log_{b}(\tan(1^{\circ})) + \dots + \log_{b}(\tan(44^{\circ})) \end{pmatrix} + \log_{b}(\tan(45^{\circ})) \\ + \left(\log_{b} \left(\frac{1}{\tan(90^{\circ} - 46^{\circ})} \right) + \dots + \log_{b} \left(\frac{1}{\tan(90^{\circ} - 89^{\circ})} \right) \right) \\ = \left(\log_{b}(\tan(1^{\circ})) + \dots + \log_{b}(\tan(44^{\circ})) \right) + \log_{b}(\tan(45^{\circ})) \\ + \left(- \log_{b}(\tan(44^{\circ})) - \log_{b}(\tan(43^{\circ})) - \dots - \log_{b}(\tan(1^{\circ})) \right) \\ = \log_{b}(\tan(45^{\circ})) \\ = \log_{b}(1) = 0.$$

	Solve the system
5.	$5\left(\log_x(y) + \log_y(x)\right) = 26$
	xy = 64

<u>Solution</u>

First, we need to get both logs in terms of the same base. By P8,

$$\log_{y}(x) = \frac{1}{\log_{x}(y)}$$

Thus,

$$26 = 5(\log_x(y) + \log_y(x)) = 5\log_x(y) + \frac{5}{\log_x(y)} = \frac{5(\log_x(y))^2 + 5}{\log_x(y)}$$

or

$$5(\log_x(y))^2 - 26(\log_x(y)) + 5 = 0.$$

Factoring the left-hand side we have

$$(5\log_x(y) - 1)(\log_x(y) - 5) = 0.$$

Now

$$5\log_x(y) - 1 = 0 \Longrightarrow \log_x(y) = \frac{1}{5} \Longrightarrow y = x^{1/5}$$

and

$$\log_x(y) - 5 = 0 \Longrightarrow \log_x(y) = 5 \Longrightarrow y = x^5$$

So, there are actually two systems to solve.

$$y = x^{1/5}$$
 and $xy = 64 \Longrightarrow x^{6/5} = 64 \Longrightarrow x = (64^{1/6})^5 = 32, y = 2$

and

$$y = x^5$$
 and $xy = 64 \Longrightarrow x^6 = 64 \Longrightarrow x = 2, y = 32$

So, the two solutions are (x, y) = (32,2) and (x, y) = (2,32).

mathcloset.com

	Solve the equation
6.	$\log_{1/3}\left(\cos(x) + \frac{\sqrt{5}}{6}\right) + \log_{1/3}\left(\cos(x) - \frac{\sqrt{5}}{6}\right) = 2.$

<u>Solution</u>

By P3 the right-hand side simplifies to

$$2 = \log_{1/3} \left(\left(\cos(x) + \frac{\sqrt{5}}{6} \right) \left(\cos(x) - \frac{\sqrt{5}}{6} \right) \right)$$
$$= \log_{1/3} \left(\cos^2(x) - \frac{5}{36} \right)$$

By D1 this means

$$\left(\frac{1}{3}\right)^2 = \cos^2(x) - \frac{5}{36}$$

or

$$\cos^2(x) = \frac{1}{9} + \frac{5}{36} = \frac{9}{36} \Longrightarrow \cos(x) = \pm \frac{1}{2}.$$

But $\cos(x) = -1/2$ is impossible because

$$x = -\frac{1}{2} - \frac{\sqrt{5}}{6} < 0$$

and $\log_a(x)$ is undefined for all $x \le 0$. Therefore, $\cos(x) = 1/2$ and

$$\cos(x) = \frac{1}{2} \Longrightarrow x = 2n\pi \pm \frac{\pi}{3}$$
 for all integers *n*.

1		
ł		

7.

For what x value will $4 \log_3(x) = 4$?

<u>Solution</u>

$$4\log_3(x) = 4 \Longrightarrow \log_3(x) = 1 \Longrightarrow x = 3^1 = 3.$$

8. If x > 2y > 0 and $2 \log_b(x - 2y) = \log_b(x) + \log_b(y)$, determine x/y exactly.

<u>Solution</u>

$$2\log_b(x - 2y) = \log_b((x - 2y)^2)$$
$$\log_b(x) + \log_b(y) = \log_b(xy)$$

Therefore,

$$\log_b((x-2y)^2) = \log_b(xy)$$

Therefore,

$$(x - 2y)^{2} = xy$$
$$x^{2} - 2xy + 4y^{2} = xy$$
$$x^{2} - 3xy + 4y^{2} = 0$$
$$(x - 4y)(x + y) = 0$$

But notice that x > 2y > 0 means that $x + y \neq 0$. Therefore, it is necessary that x - 4y = 0. Hence,

$$x = 4y$$
 and $\frac{x}{y} = 4$.

9. The solution set of all x values for which $\log_4(x) - \log_4(2) + \log_4(x-4) \le 2$ can be written as $a < x \le b$. Determine exactly the values of a and b.

<u>Solution</u>

First note that

$$\log_4(x) - \log_4(2) + \log_4(x-4) = \log_4\left(\frac{x(x-4)}{2}\right).$$

mathcloset.com

Hence,

$$\log_4(x) - \log_4(2) + \log_4(x-4) \le 2 \Leftrightarrow \log_4\left(\frac{x(x-4)}{2}\right) \le 2.$$

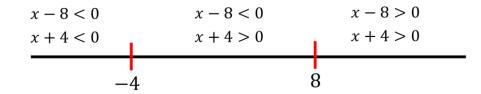
We know that for any increasing function g(x),

$$a \leq b \Leftrightarrow g(a) \leq g(b).$$

Furthermore, $g(x) = 4^x$ is an increasing function for all x. Therefore,

$$\log_4\left(\frac{x(x-4)}{2}\right) \le 2$$
$$\Leftrightarrow 4^{\log_4\left(\frac{x(x-4)}{2}\right)} \le 4^2$$
$$\Leftrightarrow \frac{x(x-4)}{2} \le 16$$
$$\Leftrightarrow x^2 - 4x - 32 \le 0$$
$$\Leftrightarrow (x-8)(x+4) \le 0.$$

Now looking at the number line shown below we can see that (x - 8)(x + 4) < 0 only for -4 < x < 8 and (x - 8)(x + 4) = 0 only for x = -4 and x = 8.



So, $(x-8)(x+4) \le 0 \Leftrightarrow -4 \le x \le 8$.

But there is a problem if x = -4 because in order for $\log_4(x) - \log_4(2) + \log_4(x - 4)$ to be defined we need x > 4. (Otherwise $\log_4(x - 4)$ is undefined.). Therefore,

$$\log_4(x) - \log_4(2) + \log_4(x - 4) \le 2 \Leftrightarrow -4 < x \le 8.$$

Hence, a = 4 and b = 8.

10.

<u>Solution</u>

$$3 = \log_2(x) + \log_2(x - 7) = \log_2(x(x - 7))$$
$$2^3 = x(x - 7)$$
$$x^2 - 7x - 8 = 0$$
$$(x - 8)(x + 1) = 0$$
$$x = 8, x = -1.$$

But $\log_2(x) + \log_2(x - 7)$ is not defined at x = -1 so this is an extraneous root. So x = 8 is the only solution.

	11.	Determine exactly the x value where graphs of $y = \log_3(x)$ and $y = \log_{1/9}(x) + 12$		
		intersect.		

<u>Solution</u>

First note that by the change of base formula we have

$$\log_{1/9}(x) = \frac{\log_3(x)}{\log_3(9^{-1})} = \frac{\log_3(x)}{-\log_3(9)} = \frac{\log_3(x)}{-2}$$

These graphs intersect when

$$\log_3(x) = \log_{1/9}(x) + 12 = -\frac{\log_3(x)}{2} + 12.$$

Simplifying we have

$$\log_3(x)\left(1+\frac{1}{2}\right) = 12$$

or

Therefore, 8^{330} has 299 digits.

13. Express $\log_6(12)$ as a function of a where $a = \log_{12}(54)$.

<u>Solution</u>

$$\log_3(x) = 12\left(\frac{2}{3}\right) = 8.$$

Therefore,

$$x = 3^8 = 6561.$$

12.	How many digits does 8 ³³⁰ have?
12.	Hint: It might be useful to know that $0.90308 < \log_{10}(8) < 0.90309$.

<u>Solution</u>

Let *n* be the integer such that $10^n < 8^{330} < 10^{n+1}$. Then 8^{330} would have n + 1 digits by the definition of logarithms (base 10). We know that $\log_a(x)$ is an increasing function for all

a > 1. Hence $\log_{10}(x)$ is an increasing function. And we also know that for any increasing function g(x),

$$a < b \Leftrightarrow g(a) < g(b).$$

So,

$$\begin{split} 10^n < 8^{330} < 10^{n+1} \Leftrightarrow \log_{10}(10^n) < \log_{10}(8^{330}) < \log_{10}(10^{n+1}) \\ \Leftrightarrow n < 330 \log_{10}(8) < n+1. \end{split}$$

Furthermore,

$$0.90308 < \log_{10}(8) < 0.90309$$

 $\Leftrightarrow 330(0.90308) < 330 \log_{10}(8) < 330(0.90309)$
 $\Leftrightarrow 298.0164 < 330 \log_{10}(8) < 298.0197.$

Let $x = \log_2(3)$. Then

$$a = \log_{12}(54) = \log_{12}(2^{1} \cdot 3^{3})$$

= $\log_{12}(2) + 3\log_{12}(3)$
= $\frac{1}{\log_{2}(12)} + \frac{3}{\log_{3}(12)}$
= $\frac{1}{\log_{2}(2^{2} \cdot 3^{1})} + \frac{3}{\log_{3}(2^{2} \cdot 3^{1})}$
= $\frac{1}{2 + \log_{2}(3)} + \frac{3}{1 + 2\log_{3}(2)}$
= $\frac{1}{2 + \log_{2}(3)} + \frac{3}{1 + \frac{2}{\log_{2}(3)}}$
= $\frac{1}{2 + x} + \frac{3}{1 + \frac{2}{x}}$
= $\frac{1}{2 + x} + \frac{3x}{2 + x} = \frac{1 + 3x}{2 + x}.$

Solving for x we have

$$a = \frac{1+3x}{2+x} \Leftrightarrow 2a + ax = 1+3x$$
$$\Leftrightarrow x(3-a) = 2a-1$$
$$\Leftrightarrow x = \frac{2a-1}{3-a}.$$

But

$$log_{6}(12) = log_{6}(2 \cdot 6) = 1 + log_{6}(2)$$
$$= 1 + \frac{1}{log_{2}(6)}$$
$$= 1 + \frac{1}{1 + log_{2}(3)}$$
$$= 1 + \frac{1}{1 + x} = \frac{2 + x}{1 + x}.$$

Therefore,

$$\log_{6}(12) = \frac{2+x}{1+x} = \frac{2 + \left(\frac{2a-1}{3-a}\right)}{1 + \left(\frac{2a-1}{3-a}\right)}$$
$$= \frac{\frac{2(3-a) + (2a-1)}{3-a}}{\frac{(3-a) + (2a-1)}{3-a}}$$
$$= \frac{6-2a+2a-1}{3-a+2a-1} = \frac{5}{2+a}.$$

14.	If $\log_b(a) = c$ and $\log_x(b) = c$, then find $\log_a(x)$ in terms of c .
-----	--

<u>Solution</u>

$$\log_b(a) = c \iff a = b^c$$
$$\log_x(b) = c \iff b = x^c$$

Therefore,

$$a = b^c = (x^c)^c = x^{c^2}$$

Therefore,

$$\log_{a}(a) = \log_{a}(x^{c^{2}})$$
$$\Leftrightarrow 1 = c^{2} \log_{a}(x)$$
$$\Leftrightarrow \log_{a}(x) = \frac{1}{c^{2}}.$$

15.

If $\log_b N = r$, what is $\log_{b^2} N$? (Source: MSHSML 3D051)

Solution

$$N = b^{r} = (b^{2})^{\frac{r}{2}}$$

 $\log_{b^{2}} N = \frac{r}{2}$

16.	Express $\log_8 40$ in the form $\frac{a + \log 4}{b \log 2}$, understanding $\log 4$ and $\log 2$ are written to base
	10. (Source: MSHSML 3D053)

Let
$$\log_8 (40) = r$$

Then $(2^3)^r = 40$
 $r \log 2^3 = \log 4 + \log 10$
 $3r \log 2 = \log 4 + 1$
 $r = \frac{1 + \log 4}{3 \log 2}$

	Given that $0 < M < 1 < N$ and that $4 \log_M N = \log_N M$, what is $\log_N MN$? (Source: MSHSML 3D054)
--	--

Solution

Let
$$\log_{N} M = r$$
 so $N^{r} = M$
 $N = M^{1/r}$ so $\log_{M} N = \frac{1}{r}$
 $\therefore 4 \cdot \frac{1}{r} = r$; $r^{2} = 4$
Case 1 $r = 2$.
Then $N^{2} = M$, contradicting
 $M < 1 < N$.
Case 2 $r = -2$
Then $M = N^{-2}$ so $MN = N^{-1}$
 $\log_{N} MN = -1$

-		_

	18.	Given that $\log_b 35 = r$ and $\log_b 49 = s$, express $\log_b 175$ in terms of r and s .
		Given that $\log_b 35 = r$ and $\log_b 49 = s$, express $\log_b 175$ in terms of r and s . (Source: MSHSML 3D013)

Т

$$s = \log_{b}(49) = 2\log_{b}(7) \Rightarrow \boxed{\log_{b}(7) = \frac{s}{2}}$$
$$r = \log_{b}(35) = \log_{b}(5) + \log_{b}(7) = \log_{b}(5) + \frac{s}{2} \Rightarrow \boxed{\log_{b}(5) = r - \frac{s}{2}}$$
$$\log_{b}(175) = \log_{b}(5^{2} \cdot 7) = 2\log_{b}(5) + \log_{b}(7) = 2\left(r - \frac{s}{2}\right) + \frac{s}{2} = 2r - \frac{s}{2}.$$

	19.	Given that $\log_2 3 = r$ and $\log_2 b = s$, express $\log_b 48$ in terms of r and s . (Source: MSHSML 3D014)
		MSHSML 3D014)

$$s = \log_2(b) = \frac{\log_b(b)}{\log_b(2)} = \frac{1}{\log_b(2)} \Longrightarrow \boxed{\log_b(2) = \frac{1}{s}}$$
$$r = \log_2(3) = \frac{\log_b(3)}{\log_b(2)} \Longrightarrow \boxed{\log_b(3) = r \cdot \log_2(2) = \frac{r}{s}}$$
$$\log_b(48) = \log_b(2^4 \cdot 3) = 4\log_b(2) + \log_b(3) = 4\left(\frac{1}{s}\right) + \frac{r}{s} = \frac{4+r}{s}.$$

	20.	$\log_{a^2} N = \frac{1}{2}$. Express N in terms of a, paying attention to the possibility that a might
		be negative. (Source: MSHSML 3D001)

Solution

$$\left[a^{2}\right]^{\frac{1}{2}} = N$$
$$N = \sqrt{a^{2}} = |a|$$

21. Given that for some b > 0, $\log_b M = 1.4468$ and $\log_b N = 0.6117$, express $\frac{N^2}{\sqrt{M}}$ as a power of b. (Source: MSHSML 3D002)

Solution

$$log_{b} \int \frac{N^{2}}{\sqrt{M}} = 2log_{b} N - \frac{1}{2}log_{b} M$$

$$\frac{1.2 \ 2.34}{.7 \ 2.34}$$

$$\frac{.7 \ 2.34}{.5 \ 0.00}$$

$$b^{1/2} = \frac{N^{2}}{\sqrt{M}}$$

22	For some $b > 0$, $\log_b 5x^4 = 7$ and $\log_b x^2 = 3$. Find x in exact form. (Source: MSHSML 3D003)
۲۲.	(Source: MSHSML 3D003)

$$5x^{4} = b^{7} \implies 5^{\nu_{7}} x^{4\nu_{7}} = b$$

$$x^{2} = b^{3} \implies x^{2\nu_{3}} = b$$

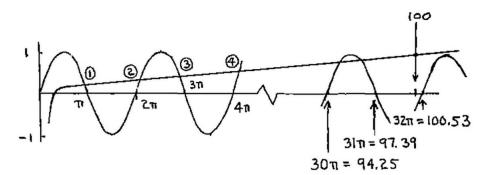
$$x^{2\nu_{3}} = 5^{\nu_{7}} x^{4\nu_{7}}$$

$$x^{\frac{14 - 12}{21}} = 5^{\nu_{7}}$$

$$x^{2\nu_{3}} = 5 ; x = 5^{3\nu_{2}}$$

	23.	For $0 < x < \infty$, find the number of intersections of the graphs of $y = \log_{100} x$ and
		For $0 < x < \infty$, find the number of intersections of the graphs of $y = \log_{100} x$ and $y = \sin x$. (Source: MSHSML 3D004)

Solution



Interval	Intersection s	
[0,21]	1	
[2n,4n]	2)	
[4π, 6π] [30π, 32π]	2 > 15-2 +	• 1