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1 Ordered Rules on Simplifying  
 
These rules are listed with the intention that they are followed in the order stated.  That is, for 
example, I would rationalize denominators (Rule 5) before putting terms over a common 
denominator (Rule 6), etc. 
 
But to be clear, at best, these rules offer a starting point.  There are exceptions to every rule for 
the best approach to simplifying.  But these are the rules I use unless some clues are offered to 
take a different direction. 
 
Rule 1. Simplify from the inside and work outward.  
Rule 2. Bring all functions of the variable(s) to the same side of the equation.  
Rule 3. Combine terms of like powers or with like denominators.  
Rule 4. Factor an expression when you can.  
Rule 5. Rationalize denominators.  
Rule 6. Put terms over a common denominator.  
Rule 7. Put your final answer in “simplest form” as defined by the MSHSML rules which they 
 define through the following table. 
 
 

Examples of MSHSML “simplest form”: 

Unacceptable Acceptable Reason 

6

4
 

3

2
 quotient of two relatively prime integers 

5 + 2 7 simple arithmetic 

34 81 arithmetic with numerical exponents 

√8
3

 2 arithmetic with numerical roots 

sin 30° 
1

2
 

commonly known “unit circle” trigonometric values 

5

√12
 

5√3

6
 

“rationalized” radical form 
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5

1 + 2𝑖
 1 − 2𝑖 𝑎 + 𝑏𝑖 format for complex numbers 

1

1
𝑥 + 𝑥

 𝑥

1 + 𝑥2
 complex fractions are not allowed 

𝑥 − 1

𝑥2 − 1
 

1

𝑥 + 1
 quotient of two polynomials should have no common factors  

 

In cases where there is a question as to what form is “simplest”, alternate answers may be 

accepted. For example, 
3

2
, 1

1

2
 , 1.5, and 1.500 would all be acceptable. 

 
 

Examples 

 

1. 
4A161 

Simplify the expression (√6 + √24)
2
. 

 
Solution 

Simplify inside the parentheses first (if possible) before squaring.  Notice that 
  

√24 = √4 ⋅ 6 = 2√6. 
Then  

(√6 + √24)
2

= (√6 + 2√6)
2

= (3√6)
2

= 32(√6)
2

= 9 ⋅ 6 = 54. 

∎ 

 

2. 4A162 
The solution set of  

1

√𝑥
−

1

√2
< √8 

 
can be written in the form 𝑥 > 𝑎.  Determine 𝑎 exactly. 

 
Solution 
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The constants 
1

√2
 and √8 are “like power terms”.  (If we express them in the form then 

1

√2
𝑥0 

and √8𝑥0 we can see they are both zeroth power terms of 𝑥.)  So, I would start by combining 

them. 

1

√2
+ √8 =

√2

2
+ 2√2 =

5√2

2
. 

Therefore, 

1

√𝑥
−

1

√2
< √8 ⟺

1

√𝑥
<

5√2

2
 

⟺ √𝑥 >
2

5√2
 

⟺ 𝑥 > (
2

5√2
)

2

=
4

50
=

2

25
. 

So 𝑎 = 2/25. 
∎ 

 

3. 
4A154 
Determine exactly the value of  

1

√2 + √1
+

1

√3 + √2
+ ⋯ +

1

√400 + √399
. 

 
Solution 
 

Per my suggested “rules for simplifying”, I would rationalize the denominators before getting a 

common denominator. 

1

√𝑎 + 1 + √𝑎
= (

1

√𝑎 + 1 + √𝑎
) (

√𝑎 + 1 − √𝑎

√𝑎 + 1 − √𝑎
) =

√𝑎 + 1 − √𝑎

(√𝑎 + 1)
2

− (√𝑎)
2 

=
√𝑎 + 1 − √𝑎

(𝑎 + 1) − 𝑎
= √𝑎 + 1 − √𝑎. 

So, 

1

√2 + √1
+

1

√3 + √2
+ ⋯ +

1

√400 + √399
 

= (√2 − √1) + (√3 − √2) + (√4 − √3) + ⋯ + (√399 − √398) + (√400 − √399) 
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= −√1 + (√2 − √2) + (√3 − √3) + (√4 − 4) + ⋯ + (√399 − √399) + √400 

= −√1 + √400 = −1 + 20 = 19. 

∎ 

 

4. 4A132 
Simplify the expression (𝑥 + 𝑦)−1(𝑥−1 + 𝑦−1) so that it no longer involves any 
addition or negative exponents. 

 
Solution 
 

First recognize that 𝑎−1 =
1

𝑎
 so that 

(𝑥 + 𝑦)−1(𝑥−1 + 𝑦−1) = (
1

𝑥 + 𝑦
) (

1

𝑥
+

1

𝑦
). 

Now establish a common denominator for the two terms in the second set of parentheses.  

1

𝑥
+

1

𝑦
=

𝑥 + 𝑦

𝑥𝑦
. 

Therefore, 

(
1

𝑥 + 𝑦
) (

1

𝑥
+

1

𝑦
) = (

1

𝑥 + 𝑦
) (

1

𝑥
+

1

𝑦
) = (

1

𝑥 + 𝑦
) (

𝑥 + 𝑦

𝑥𝑦
) =

1

𝑥𝑦
. 

∎ 

 

5. 4A163 
Given that 
 

6

𝑥2 − 1
+

𝑏

𝑥 − 1
+

𝑐

𝑥 + 1
=

4

𝑥 + 1
 

 
determine exactly the values of 𝑏 and 𝑐. 

 
Solution 
 

First be sure to note that you are not being asked to solve for 𝑥 where this equation is true.  

You are being asked to find 𝑏 and 𝑐 so that this equation is true for all 𝑥.  That is, to find 𝑏 and 𝑐 

that makes this an identity. 
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I would start by bringing 4/(𝑥 + 1) over to the left-hand side of the equation.  Then I would 

combine the terms 𝑐/(𝑥 + 1) and 4/(𝑥 + 1).  We then have 

6

𝑥2 − 1
+

𝑏

𝑥 − 1
+

𝑐 − 4

𝑥 + 1
= 0. 

Next factor, followed by establishing a common denominator. We see 𝑥2 − 1 = (𝑥 − 1)(𝑥 + 1) 

and so rewriting the problem over a common denominator we have 

6 + 𝑏(𝑥 + 1) + (𝑐 − 4)(𝑥 − 1)

𝑥2 − 1
= 0. 

So the problem has reduced to finding 𝑥 where the numerator equals 0. 

6 + 𝑏𝑥 + 𝑏 + 𝑐𝑥 − 4𝑥 − 𝑐 + 4 = 0 
or 

(𝑏 + 𝑐 − 4)𝑥 + (10 + 𝑏 − 𝑐) = 0. 
 
For this to hold for all 𝑥 we need to “match coefficients” of like powers.  That is, for 

(𝑏 + 𝑐 − 4)𝑥 + (10 + 𝑏 − 𝑐) = 0 = 0𝑥 + 0 

we must have 𝑏 + 𝑐 − 4 = 0 and 10 + 𝑏 − 𝑐 = 0.  Solving for 𝑐 in the second equation and 

plugging this into the first equation we have 

𝑏 + (10 + 𝑏) − 4 = 0 ⟺ 2𝑏 = −6 ⟺ 𝑏 = −3. 

Hence, 𝑐 = 10 + 𝑏 = 10 − 3 = 7.  So (𝑏, 𝑐) = (−3,7). 

∎ 

 

6. 
4A122 
 
Simplify 
 

(𝑥3 − 8)(𝑥2 − 𝑥 − 2)

(𝑥 − 2)(𝑥2 − 4)(𝑥3 + 2𝑥2 + 4𝑥)
. 

 
Solution 
 

Remember, as per MSHSML rules, quotient of two polynomials should have no common factors 

when putting your answer in “simplified” form. 

 

(𝑥3 − 8)(𝑥2 − 𝑥 − 2)

(𝑥 − 2)(𝑥2 − 4)(𝑥3 + 2𝑥2 + 4𝑥)
=

(𝑥 − 2)(𝑥2 + 2𝑥 + 4)(𝑥 − 2)(𝑥 + 1)

(𝑥 − 2)(𝑥 − 2)(𝑥 + 2)𝑥(𝑥2 + 2𝑥 + 4)
=

𝑥 + 1

𝑥2 + 2𝑥
. 
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∎ 

 

7. 
4A102 
 
Determine exactly all solutions to  

2𝑥 + 1

𝑥 + 3
−

5𝑥 + 4

4𝑥 + 12
= 1. 

 
Solution 
 

Factor out the 4 in 4𝑥 + 12 to get 4(𝑥 + 3).  Now get a common denominator on the left-hand 

side. 

2𝑥 + 1

𝑥 + 3
−

5𝑥 + 4

4𝑥 + 12
=

2𝑥 + 1

𝑥 + 3
−

5𝑥 + 4

4(𝑥 + 3)
 

=
4(2𝑥 + 1) − 5𝑥 − 4

4(𝑥 + 3)
=

3𝑥

4(𝑥 + 3)
. 

 

3𝑥 + 8

4(𝑥 + 3)
= 1 ⟺ 3𝑥 = 4𝑥 + 12 ⟺ 𝑥 = −12. 

∎ 

 

2 Equating Coefficients Term by Term 
 

If two polynomials are equal for all 𝒙 then the two polynomials must have exactly the same 

coefficients term by term.  This is called “equating coefficients”.  For example, if we are told 

that 

𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 𝑏5𝑥5 + 𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0 

for all 𝒙 then it must be true that 𝑎5 = 𝑏5, 𝑎4 = 𝑏4, 𝑎3 = 𝑏3,  etc. 

 

Examples 
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8. Given that 

2𝑥3 + 14𝑥2 + 12𝑥

4𝑥 + 4
÷ (𝑚𝑥 + 𝑛) = 𝑥 

determine exactly the values of 𝑚 and 𝑛. 

 
 
Solution 

Rearranging the factors this problem can be written as  

2𝑥3 + 14𝑥2 + 12𝑥 = 𝑥(4𝑥 + 4)(𝑚𝑥 + 𝑛). 

Now we could multiply the righthand side out then equate the coefficients of the two 

polynomials.  This will give us two equations in two unknowns. 

Two equations in two unknowns is easy enough but you could save some time by simplifying 

first.  Always be on the lookout to simplify before moving on to a more time-consuming step. 

Clearly  

2𝑥3 + 14𝑥2 + 12𝑥 = 2𝑥(𝑥2 + 7𝑥 + 6) = 2𝑥(𝑥 + 1)(𝑥 + 6) 

and so both we can cancel the common factors 2, 𝑥 and 𝑥 + 1 from both sides of the above 

equation before multiplying it out.  

2𝑥(𝑥 + 1)(𝑥 + 6) = 4𝑥(𝑥 + 1)(𝑚𝑥 + 𝑛) ⟹ 𝑥 + 6 = 2𝑚𝑥 + 2𝑛. 

 
Now if we equate coefficients we can immediately write down that 1𝑥 = 2𝑚𝑥 and 6 = 2𝑛 or 

𝑚 = 1/2 and 𝑛 = 3. 

∎ 

 

9. Given that 

𝑥3 − 8

𝑥 − 2
+

3𝑥3 − 9𝑥2 + 6𝑥

𝑥2 − 3𝑥 + 2
= 𝑥2 + 𝑏𝑥 + 𝑐 

determine exactly the values of 𝑏 and 𝑐. 

 
Solution 

We could blindly approach this by multiplying both sides by the common denominator on the 

left.  We would end up, eventually, with a fourth-degree equation on the left and right.  

Equating coefficients of these two fourth degree polynomials would eventually allow us to solve 

for 𝑏 and 𝑐. 
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But remember to simplify before doing anything else.  Save time! 

 
𝑥3 − 8

𝑥 − 2
=

(𝑥 − 2)(𝑥2 + 2𝑥 + 4)

𝑥 − 2
= 𝑥2 + 2𝑥 + 4 

and 

3𝑥3 − 9𝑥2 + 6𝑥

𝑥2 − 3𝑥 + 2
=

3𝑥(𝑥 − 1)(𝑥 − 2)

(𝑥 − 1)(𝑥 − 2)
= 3𝑥. 

 
So, this “equating coefficients” problem has simplified to 

 

(
𝑥3 − 8

𝑥 − 2
) + (

3𝑥3 − 9𝑥2 + 6𝑥

𝑥2 − 3𝑥 + 2
) = 𝑥2 + 𝑏𝑥 + 𝑐 

(𝑥2 + 2𝑥 + 4) + (3𝑥) = 𝑥2 + 𝑏𝑥 + 𝑐 

𝑥2 + 5𝑥 + 4 = 𝑥2 + 𝑏𝑥 + 𝑐 

Now we can immediately see that 

5𝑥 = 𝑏𝑥 ⟹ 𝑏 = 5 

4 = 𝑐. 

So (𝑏, 𝑐) = (5,4). 

∎ 

 

10. Given that 

6

𝑥2 − 1
+

𝑏

𝑥 − 1
+

𝑐

𝑥 + 1
=

4

𝑥 + 1
 

determine exactly the values of 𝑏 and 𝑐. 

 
Solution 

By getting a common denominator, the left-hand side becomes 

6

𝑥2 − 1
+

𝑏

𝑥 − 1
+

𝑐

𝑥 + 1
=

6 + 𝑏(𝑥 + 1) + 𝑐(𝑥 − 1)

(𝑥 − 1)(𝑥 + 1)
. 

Now multiplying both the left side and right side by this common denominator we get 
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6 + 𝑏(𝑥 + 1) + 𝑐(𝑥 − 1) =
4(𝑥 − 1)(𝑥 + 1)

𝑥 + 1
= 4(𝑥 − 1) 

or 

(𝑏 + 𝑐)𝑥 + (6 + 𝑏 − 𝑐) = 4𝑥 − 4. 

By equating coefficients, we get two equations in two unknowns which we have to solve 

simultaneously. 

𝑏 + 𝑐 = 4 

6 + 𝑏 − 𝑐 = −4. 

The 𝑐’s will cancel if we add these two equations.  By adding we see 

6 + 2𝑏 = 0 ⟹ 𝑏 = −3. 

Now from 𝑏 + 𝑐 = 4 we can see that 𝑐 = 7. 

(𝑏, 𝑐) = (−3,7). 

∎ 

 

11. If 𝑥4 + 2𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is exactly divisible by 𝑥3 + 3𝑥2 − 2𝑥 + 4, find 𝑎 + 𝑏 + 𝑐. 

 
Solution 

 

Therefore, 

𝑥4 + 2𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = (𝑥3 + 3𝑥2 − 2𝑥 + 4)(𝑥 − 1) + (Remainder) 

= (𝑥3 + 3𝑥2 − 2𝑥 + 4)(𝑥 − 1)

+ (−(𝒂 + 𝟓)𝒙𝟐 + (𝒃 − 𝟔)𝒙 + (𝒄 + 𝟒)) 

But the requirement that 𝑥4 + 2𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is exactly divisible by 𝑥3 + 3𝑥2 − 2𝑥 + 4 is 

a requirement that the remainder equals 0 for all 𝑥. 
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That is, for all 𝑥 

−(𝑎 + 5)𝑥2 + (𝑏 − 6)𝑥 + (𝑐 + 4) = 0𝑥2 + 0𝑥 + 0. 

 

Equating coefficients of these two polynomials yields −(𝑎 + 5) = 0 and 𝑏 − 6 = 0 and 𝑐 + 4 =

0.  Thus, (𝑎, 𝑏, 𝑐) = (−5,6, −4) and 𝑎 + 𝑏 + 𝑐 = −5 + 6 − 4 = −3. 

∎ 

3 Change of Variables 
 
Broadly put, “change of variable" is the method of making a substitution that allows for a 

simpler approach to solving a problem which is followed by a translation of this solution in 

terms of the original terms of the problem. 

 

12. If 

𝑓 (
1

𝑥 + 3
) =

1

2 − 5𝑥
 

 
for all 𝑥 > 1, write 𝑓(𝑥) as a rational function with no common factors shared by the 
numerator and denominator. 

 
Solution 

Make the change of variable 𝑦 =
1

𝑥 + 3
.  We note that 𝑥 > 1 ⟺ 0 < 𝑦 <

1

4
. 

𝑦 =
1

𝑥 + 3
⟹ 1 = 𝑦(𝑥 + 3) = 𝑥𝑦 + 3𝑦 ⟹ 𝑥𝑦 = 1 − 3𝑦 ⟹ 𝑥 =

1 − 3𝑦

𝑦
. 

Therefore, 

𝑓 (
1

𝑥 + 3
) = 𝑓(𝑦) =

1

2 − 5 (
1 − 3𝑦

𝑦 )
=

𝑦

2𝑦 − 5 + 15𝑦
=

𝑦

17𝑦 − 5
 

and 

𝑓 (
1

𝑥 + 3
) =

1

2 − 5𝑥
 for all 𝑥 > 1 ⇔ 𝑓(𝑦) =

𝑦

17𝑦 − 5
  for all 0 < 𝑦 <

1

4
. 

 

But the graph of 
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𝑦

17𝑦 − 5
  for all   0 < 𝑦 <

1

4
 

is the same as the graph of 

𝑥

17𝑥 − 5
 for all  0 < 𝑥 <

1

4
. 

That is, 

𝑓(𝑥) =
𝑥

17𝑥 − 5
 for all  0 < 𝑥 <

1

4
. 

∎ 

 

13. 
Determine exactly all solutions to the equation 
 

6 (
1

𝑥
)

2

− 29 (
1

𝑥
) + 35 = 0. 

 
Solution 

Make the change of variable 𝑦 =
1

𝑥
.  Then 

0 = 6 (
1

𝑥
)

2

− 29 (
1

𝑥
) + 35 = 6𝑦2 − 29𝑦 + 35 = (2𝑦 − 5)(3𝑦 − 7) 

⟹ 𝑦 =
5

2
 or 𝑦 =

7

3
 

⟹ 𝑥 =
1

𝑦
=

2

5
 or 𝑥 =

1

𝑦
=

3

7
. 

∎ 

 

14. Determine exactly all the values of 𝑎, 𝑏 and 𝑐 in the following system: 

𝑎𝑏

𝑎 + 𝑏
= 3 

𝑎𝑐

𝑎 + 𝑐
= 4 

𝑏𝑐

𝑏 + 𝑐
= 6. 

 

 
Solution 

Make the change of variables 𝑥 =
1

𝑎
, 𝑦 =

1

𝑏
 and 𝑧 =

1

𝑐
.   
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That this will simplify the problem is not obvious and requires the insight (or prior experience) 

to notice that 

𝑎 + 𝑏

𝑎𝑏
=

1

𝑎
+

1

𝑏
. 

But having noticed this, these change of variables recasts the problem as  

𝑥 + 𝑦 =
1

3
, 𝑥 + 𝑧 =

1

4
, and 𝑦 + 𝑧 =

1

6
 

which is much easier to work with than the problem in its original form. 

𝑥 + 𝑦 = 3 ⟹ 𝑥 =
1

3
− 𝑦 

𝑦 + 𝑧 = 6 ⟹ 𝑧 =
1

6
− 𝑦 

1

4
= 𝑥 + 𝑧 = (

1

3
− 𝑦) + (

1

6
− 𝑦) =

1

2
− 2𝑦 ⟹ 2𝑦 =

1

4
⟹ 𝑦 =

1

8
. 

Therefore, 

𝑥 =
1

3
−

1

8
=

5

24
  and  𝑧 =

1

6
−

1

8
=

1

24
. 

Therefore, 

𝑎 =
1

𝑥
=

24

5
,   𝑏 =

1

𝑦
= 8  and 𝑐 =

1

𝑧
= 24.  

∎ 

 
 

15. Source: MSHSML 4A994 

Find the exact value of 𝑥 which satisfies the equation 

 

√
𝑥

2
+ √

2𝑥

9
+ √

𝑥

8
=

1

12
. 

 

Solution 

 

Let 𝑦 = √2𝑥.  Then we can rewrite the left-hand side of the problem as 
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√
𝑥

2
+ √

2𝑥

9
+ √

𝑥

8
= √

2𝑥

4
+ √

2𝑥

9
+ √

2𝑥

16
 

 

=
𝑦

2
+

𝑦

3
+

𝑦

4
 

 

= (
6 + 4 + 3

12
) 𝑦 =

13

12
𝑦 

 

So, 

√
𝑥

2
+ √

2𝑥

9
+ √

𝑥

8
=

13

12
𝑦 =

1

12
 

 

 

So, 

√2𝑥 = 𝑦 =
1

13
⟹ 𝑥 =

1

2 ⋅ 132
=

1

338
. 

∎ 

 

 

4 Rationalizing the Denominator 
 
The goal of “rationalizing the denominator” is to put a fraction into a mathematical equivalent 

form but a form which has not roots (square roots, cube roots, etc.) in the denominator.  The 

most common application is to remove square roots from the denominator. 

The “Uniform Grading Procedures” for this math contest requires that final answers cannot 

leave roots in the denominator.  So be sure to rationalize all of your answers (or your answer 

will be marked wrong). 

As one particular example, 
5

√12
=

5√3

6
, but only the form 

5√3

6
 will be marked correct. 

 

Removing a Single Square-Root 

1

√𝑎
= (

1

√𝑎
) ⋅ (

√𝑎

√𝑎
) =

√𝑎

𝑎
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Removing the Difference of Two-Square Roots 

1

√𝑎 − √𝑏
= (

1

√𝑎 − √𝑏
) ∙ (

√𝑎 + √𝑏

√𝑎 + √𝑏
) =

√𝑎 + √𝑏

𝑎 − 𝑏
 

 

Removing the Sum of Two-Square Roots 

1

√𝑎 + √𝑏
= (

1

√𝑎 + √𝑏
) ∙ (

√𝑎 − √𝑏

√𝑎 − √𝑏
) =

√𝑎 − √𝑏

𝑎 − 𝑏
 

 

Removing the Sum of Three-Square Roots (requires two rationalizations) 

1

√𝑎 + √𝑏 + √𝑐
  

 = (
1

(√𝑎 + √𝑏) + √𝑐
) ⋅ (

(√𝑎 + √𝑏) − √𝑐

(√𝑎 + √𝑏) − √𝑐
) (Rationalize once.) 

 =
√𝑎 + √𝑏 − √𝑐

(√𝑎 + √𝑏)
2

− 𝑐
  

 =
√𝑎 + √𝑏 − √𝑐

𝑎 + 𝑏 − 𝑐 + 2√𝑎𝑏
  

 = (
√𝑎 + √𝑏 − √𝑐

(𝑎 + 𝑏 − 𝑐) + 2√𝑎𝑏
) ⋅ (

𝑎 + 𝑏 − 𝑐 − 2√𝑎𝑏

(𝑎 + 𝑏 − 𝑐) − 2√𝑎𝑏
) (Rationalize a second time.) 

 =
(√𝑎 + √𝑏 − √𝑐)(𝑎 + 𝑏 − 𝑐 − 2√𝑎𝑏)

(𝑎 + 𝑏 − 𝑐)2 − 4𝑎𝑏
  

 

Removing Mixed Sum and Difference of Three-Square Roots (requires two rationalizations) 

1

√𝑎 + √𝑏 − √𝑐
  

 = (
1

(√𝑎 + √𝑏) − √𝑐
) ⋅ (

(√𝑎 + √𝑏) + √𝑐

(√𝑎 + √𝑏) + √𝑐
) (Rationalize once.) 
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 =
√𝑎 + √𝑏 + √𝑐

(√𝑎 + √𝑏)
2

+ 𝑐
  

 =
√𝑎 + √𝑏 + √𝑐

𝑎 + 𝑏 + 𝑐 + 2√𝑎𝑏
  

 = (
√𝑎 + √𝑏 + √𝑐

(𝑎 + 𝑏 + 𝑐) + 2√𝑎𝑏
) ⋅ (

𝑎 + 𝑏 + 𝑐 − 2√𝑎𝑏

(𝑎 + 𝑏 + 𝑐) − 2√𝑎𝑏
) (Rationalize a second time.) 

 =
(√𝑎 + √𝑏 − √𝑐)(𝑎 + 𝑏 − 𝑐 − 2√𝑎𝑏)

(𝑎 + 𝑏 − 𝑐)2 − 4𝑎𝑏
  

 

Removing the Difference of Two Cube Roots 

1

√𝑎3 − √𝑏
3 = (

1

√𝑎3 − √𝑏
3 ) ∙ (

𝑎2/3 + 𝑎1/3 ∙ 𝑏1/3 + 𝑏2/3

𝑎2/3 + 𝑎1/3 ∙ 𝑏1/3 + 𝑏2/3
) =

𝑎2/3 + 𝑎1/3 ∙ 𝑏1/3 + 𝑏2/3

𝑎 − 𝑏
 

 

Removing the Sum of Two Cube Roots 

1

√𝑎3 + √𝑏
3 = (

1

√𝑎3 + √𝑏
3 ) ∙  (

𝑎2/3 − 𝑎1/3 ∙ 𝑏1/3 + 𝑏2/3

𝑎2/3 − 𝑎1/3 ∙ 𝑏1/3 + 𝑏2/3
) =

𝑎2/3 − 𝑎1/3 ∙ 𝑏1/3 + 𝑏2/3

𝑎 + 𝑏
 

 

Removing the Difference of a Cube Root and a Square Root 

1

√𝑎3 − √𝑏
  

 = (
1

√𝑎3 − √𝑏
) ⋅ (

√𝑎3 + √𝑏

√𝑎3 + √𝑏
) (Rationalize once.) 

 =
√𝑎3 + √𝑏

√𝑎23
− 𝑏

  

 = (
√𝑎3 + √𝑏

√𝑎23
− 𝑏

) (
(𝑎4)1/3 + (𝑎2)1/3 ∙ 𝑏 + 𝑏2

(𝑎4)1/3 + (𝑎2)1/3 ∙ 𝑏 + 𝑏2
) (Rationalize a second time.) 
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 =
(√𝑎3 + √𝑏)((𝑎4)1/3 + (𝑎2)1/3 ∙ 𝑏 + 𝑏2)

𝑎2 − 𝑏 𝑎4/3 + 𝑏𝑎4/3 − 𝑏2𝑎2/3 + 𝑏2𝑎2/3 − 𝑏3 
  

 =
(√𝑎3 + √𝑏)((𝑎4)1/3 + (𝑎2)1/3 ∙ 𝑏 + 𝑏2)

𝑎2 − 𝑏3 
.  

 

 
 

16. Source: MSHSML 4A034 

Rewrite 
1

√5
3

+2
 as a fraction with an integer denominator and a numerator consisting of 

terms involving only integers and cube roots of integers. 

 
Solution 

1

√5
3

+ 2
=

1

√5
3

+ √8
3 = (

1

√5
3

+ √8
3 ) ∙  (

52/3 − 51/3 ∙ 81/3 + 82/3

52/3 − 51/3 ∙ 81/3 + 82/3
) 

= (
1

√5
3

+ 2
) ∙  (

(√5
3

)
2

− 2√5
3

+ 4

(√5
3

)
2

− 2√5
3

+ 4
) 

=
(√5

3
)

2
− 2√5

3
+ 4

√5
3

((√5
3

)
2

− 2√5
3

+ 4) + 2 ((√5
3

)
2

− 2√5
3

+ 4)
 

=
(√5

3
)

2
− 2√5

3
+ 4

((√5
3

)
3

− 2(√5
3

)
2

+ 4√5
3

) + (2(√5
3

)
2

− 4√5
3

+ 8)
 

=
(√5

3
)

2
− 2√5

3
+ 4

5 + 8
=

√25
3

− 2√5
3

+ 4

13
. 

∎ 
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5 Absolute Values 
 
By the definition of absolute value, we know that 

 

|𝑓(𝑥)| = {

𝑓(𝑥) 𝑓(𝑥) > 0

0 𝑓(𝑥) = 0

−𝑓(𝑥) 𝑓(𝑥) < 0.

 

 

Problems involving |𝑓(𝑥)| are usually best handled by splitting the problem into three parts 

according to whether 𝑓(𝑥) is positive, zero or negative.  We illustrate this idea in the following 

examples. 

 

17. Source: MSHSML 4A072 

Find all 𝑥 that satisfy √(𝑥 − 3)2 − 2𝑥 + 1 = 0. 

 
Solution 

A key issue here is recognize that √(𝑥 − 3)2 = |𝑥 − 3| and not just (𝑥 − 3).   

To be clear on this point, when we plug in 𝑥 = 0 into √(𝑥 − 3)2 we get √(0 − 3)2 = √9 = 3 

but when we plug 𝑥 = 3 int (𝑥 − 3) we get (−0 − 3) = −3. 

So, the problem is actually asking us to solve |𝑥 − 3| − 2𝑥 + 1 = 0.  

The presence of this absolute value should automatically get you thinking “cases”.  Remember 

that  

|𝑥 − 3| = {
𝑥 − 3 𝑥 − 3 > 0

0 𝑥 − 3 = 0
−(𝑥 − 3) 𝑥 − 3 < 0.

 

That is, 

|𝑥 − 3| = {
𝑥 − 3 𝑥 > 3

0 𝑥 = 3
3 − 𝑥 𝑥 < 3.

 

So 

|𝑥 − 3| − 2𝑥 + 1 = {

(𝑥 − 3) − 2𝑥 + 1 𝑥 > 3
(0) − 2𝑥 + 1 𝑥 = 3

(3 − 𝑥) − 2𝑥 + 1 𝑥 < 3.
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We must handle each of these three cases as a separate problem. 

Case 𝑥 > 3 Case 𝑥 = 3 Case 𝑥 < 3 

(𝑥 − 3) − 2𝑥 + 1 = 0 
−𝑥 − 2 = 0 

𝑥 = 2 

−2𝑥 + 1 = 0 
𝑥 = 1/2 

(3 − 𝑥) − 2𝑥 + 1 = 0 
−3𝑥 + 4 = 0 

𝑥 = 4/3 

 

So, our solution set consists of the set of all 𝑥 such that 

{(𝑥 ≥ 3 and 𝑥 = 2) or (𝑥 = 3 and 𝑥 = 1/2) or (𝑥 < 3 and 𝑥 =
4

3
)}. 

Clearly the only 𝑥 that belongs to this set is 𝑥 = 4/3. 

∎ 

 
 

18. Find all pairs (𝑥, 𝑦) that simultaneously satisfy 

|𝑥| + 𝑦 = 5 

|𝑥|𝑦 − 𝑥2 = 0. 

 
Solution 

Remember that 

|𝑥| = {
𝑥 𝑥 > 0
0 𝑥 = 0

−𝑥 𝑥 < 0.
 

 

Solve each case as a separate problem. 

 

Case 𝑥 > 0 Case 𝑥 = 0 Case 𝑥 < 0 

(𝑥) + 𝑦 = 5 
(𝑥)𝑦 − (𝑥)2 = 0 

 
The second equation 
simplifies to 𝑥(𝑦 − 𝑥) = 0 
but we are in a case where 
𝑥 ≠ 0 so 𝑥(𝑦 − 𝑥) = 0 ⟺
𝑦 − 𝑥 = 0.  Therefore in this 

(0) + 𝑦 = 5 
(0)𝑦 − (0)2 = 0. 

 
The second equation 
simplifies to 0 = 0. 
Therefore, this case reduces 
to 
 

(−𝑥) + 𝑦 = 5 
(−𝑥)𝑦 − (−𝑥)2 = 0 

 
The second equation 
simplifies to (−𝑥)(𝑦 + 𝑥) =
0 but we are in a case where 
𝑥 ≠ 0 so (−𝑥)(𝑦 + 𝑥) =
0 ⟺ 𝑦 + 𝑥 = 0. Therefore in 
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case the problem simplifies 
to solving 
 

𝑥 + 𝑦 = 5 
𝑦 − 𝑥 = 0. 

 
𝑦 = 𝑥 

2𝑦 = 5 ⟹ 𝑦 = 5/2. 
 

(𝑥, 𝑦) = (
5

2
,
5

2
). 

 

(𝑥, 𝑦) = (0,5). 
 

this case the problem 
simplifies to solving 
 

−𝑥 + 𝑦 = 5 
𝑦 + 𝑥 = 0 

 
𝑦 = −𝑥 

−𝑥 − 𝑥 = 5 ⟹ −2𝑥 = 5 
𝑥 = −5/2 

 

(𝑥, 𝑦) = (−
5

2
,
5

2
). 

 

 

So, there are three (𝑥, 𝑦) pairs that solve this system.  (𝑥, 𝑦) = (5/2,5/2), (𝑥, 𝑦) = (0,5) and 

(𝑥, 𝑦) = (−5/2,5/2). 

∎ 

6 Useful Factoring Formulas 
 

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 

(𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2 

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3  

(𝑎 − 𝑏)3 = 𝑎3 − 3𝑎2𝑏 + 3𝑎𝑏2 − 𝑏3  

𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏) 

𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2) 

𝑎3 + 𝑏3 = (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2) 

𝑎𝑛 − 𝑏𝑛 = (𝑎 − 𝑏)(𝑎𝑛−1 + 𝑎𝑛−2𝑏 + ⋯ + 𝑎𝑏𝑛−2 + 𝑏𝑛−1) 

𝑎𝑛 − 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + ⋯ + 𝑎𝑏𝑛−2 − 𝑏𝑛−1)  for even values of 𝑛 

𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + ⋯ − 𝑎𝑏𝑛−2 + 𝑏𝑛−1)  for odd values of 𝑛. 
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19. Source: MSHSML 4A174 

Determine exactly the value of 
1

√4
3

+ √6
3

+ √9
3 . 

 

Clarification:  What this question means by “determine exactly” is to simplify this expression “as 

much as possible”.  But that is clearly too vague.  So, let me add that you should simplify this 

expression into the form 𝑐 √𝑑
3

+ 𝑒√𝑓3  for some integers 𝑐, 𝑑, 𝑒 and 𝑓. 

 

Solution 

 

Look for clues!  Notice that 

 

√4
3

+ √6
3

+ √9
3

= √2 ⋅ 2 
3

+ √2 ⋅ 3 
3

+ √3 ⋅ 3 
3

. 

 

Is this a way to use this symmetry?  Let’s take a couple more steps. 

 

√2 ⋅ 2 
3

+ √2 ⋅ 3 
3

+ √3 ⋅ 3 
3

= √2
3

⋅ √2
3

+ √2
3

⋅ √2
3

+ √3
3

⋅ √3
3

 

= (√2
3

)
2

+ (√2
3

)(√3
3

) + (√3
3

)
2
 

 

Look at the form of this last expression:  𝑎2 + 𝑎𝑏 + 𝑏2, with 𝑎 = √2
3

  and 𝑏 = √3
3

. 

 

Where have we seen this before?  Remember that 

 

𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2). 

 

which implies 

𝑎2 + 𝑎𝑏 + 𝑏2 =
𝑎3 − 𝑏3

𝑎 − 𝑏
. 

 

 

This shows again the need to memorize the special case factoring formulas listed above.  You 

need to recognize certain forms by inspection. 

 

Thus, 
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(√2
3

)
2

+ (√2
3

)(√3
3

) + (√3
3

)
2

=
(√2

3
)

3
− (√3

3
)

3

(√2
3

) − (√3
3

)
=

2 − 3

(√2
3

) − (√3
3

)
. 

 

Therefore, 

 
1

√4
3

+ √6
3

+ √9
3 =

1

(
2 − 3

(√2
3

) − (√3
3

)
)

= (−1)(√2
3

− √3
3

) = √3
3

− √2
3

. 

∎ 

 

 

7 Functional Equations 
 
If 𝑔(𝑥) is a continuous∗ function, then the following results are true for all real 𝑥.  These results 

are collectively known as Cauchy’s functional equations. 

 

(1) 
If 𝑔(𝑎𝑏) = 𝑔(𝑎) ⋅ 𝑔(𝑏) for all real numbers 𝑎 and 𝑏, then 𝑔(𝑥) = 𝑥𝑐 
for some 𝑐. 

(2) 
If 𝑔(𝑎𝑏) = 𝑔(𝑎) ⋅ 𝑔(𝑏) for all real numbers 𝑎 and 𝑏 and 𝑔(0) ≠ 0, 
then 𝑔(𝑥) = 1. 

(3) 
If 𝑔(𝑎𝑏) = 𝑔(𝑎) + 𝑔(𝑏) for all real numbers 𝑎 and 𝑏, then 𝑔(𝑥) =
𝑐 ln(𝑥) for some 𝑐. 

(4) 
If 𝑔(𝑎 + 𝑏) = 𝑔(𝑎) ⋅ 𝑔(𝑏) for all real numbers 𝑎 and 𝑏, then 𝑔(𝑥) =
𝑒𝑐𝑥 for some 𝑐. 

(5) 
If 𝑔(𝑎 + 𝑏) = 𝑔(𝑎) + 𝑔(𝑏) for all real numbers 𝑎 and 𝑏, then 𝑔(𝑥) =
𝑐𝑥 for some 𝑐. 

 

 ∗Continuity is a sufficient but not a necessary condition for these results to hold. 

 

Example 

20. 4A134 
For all real numbers 𝑎 and 𝑏, the function 𝑔 satisfies the equation 𝑔(𝑎𝑏) = 𝑔(𝑎) ⋅
𝑔(𝑏).  If 𝑔(0) ≠ 0, determine exactly the value of 𝑔(2013) + 𝑔(2014). 
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Solution 

From Result (2) above, 𝑔(𝑥) = 1 for all 𝑥.  Therefore, 𝑔(2013) + 𝑔(2014) = 1 + 1 = 2.   

To see why Result (2) is true, consider taking 𝑎 = 0 and 𝑏 = 𝑥 in the result 𝑔(𝑎𝑏) = 𝑔(𝑎)𝑔(𝑏).  

We find 𝑔(0 ⋅ 𝑥) = 𝑔(0) ⋅ 𝑔(𝑥), which implies 𝑔(0) = 𝑔(0) ⋅ 𝑔(𝑥).  As the problem stipulates 

that 𝑔(0) ≠ 0, we can divide both sides of this last equation by 𝑔(0) to see that 𝑔(𝑥) = 1.  As 

this derivation holds for all 𝑥 we have established that 𝑔(𝑥) = 1 for all 𝑥. 

∎ 

 

 

8 Partial Fraction Decomposition 
 

21. Find constants 𝐴, 𝐵 and 𝐶 such that 
 

2𝑥2 + 3

𝑥(𝑥 − 1)2
=

𝐴

𝑥
+

𝐵

𝑥 − 1
+

𝐶

(𝑥 − 1)2
 

for all 𝑥. 

 

Solution 

For now. let’s take it for granted that there exists a unique set of constants 𝐴, 𝐵 and 𝐶 such that 

this expression is true for all 𝑥.  Now multiply both sides of this identity by 𝑥(𝑥 − 1)2.  After 

simplification, we will have the identity 

2𝑥2 + 3 = 𝐴(𝑥 − 1)2 + 𝐵𝑥(𝑥 − 1) + 𝐶𝑥. 

If we plug in three different values for 𝑥, say 𝑥0, 𝑥1 and 𝑥2 then we get three equations that will 

allow us to solve for the three unknowns 𝐴, 𝐵 and 𝐶.   

2𝑥0
2 + 3 = 𝐴(𝑥0 − 1)2 + 𝐵𝑥0(𝑥0 − 1) + 𝐶𝑥0 

2𝑥1
2 + 3 = 𝐴(𝑥1 − 1)2 + 𝐵𝑥1(𝑥1 − 1) + 𝐶𝑥1 

2𝑥2
2 + 3 = 𝐴(𝑥2 − 1)2 + 𝐵𝑥2(𝑥2 − 1) + 𝐶𝑥2. 

And assuming that 𝐴, 𝐵 and 𝐶 are unique we will get the same values for these three unknowns 

no matter what values we picked for 𝑥0, 𝑥1 and 𝑥2. 

So obviously we should pick three values 𝑥0, 𝑥1 and 𝑥2 that will make the process of solving for 

𝐴, 𝐵 and 𝐶 as simple as possible. 
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Notice that if you take 𝑥0 = 1 the terms 𝐴(1 − 1)2 and 𝐵(1)(1 − 1) will both equal 0 and 

leaves you with the equation 

2(12) + 3 = 𝐴(1 − 1)2 + 𝐵(1)(1 − 1) + 𝐶(1) = 𝐶. 

Therefore, 𝐶 = 5.  If you take 𝑥1 = 0 the terms 𝐵(0)(0 − 1) and 𝐶(0) will both equal 0 leaves 

you with the equation 

2(02) + 3 = 𝐴(0 − 1)2 + 𝐵(0)(0 − 1) + 𝐶(0) = 𝐴. 

Therefore, 𝐴 = 3.  There is no other value of 𝑥 that will make several terms drop out so just 

pick something simple for 𝑥2 such as 𝑥2 = 2.  Then 

2(22) + 3 = (3)(2 − 1)2 + 𝐵(2)(2 − 1) + 5(2) = 2𝐵 + 13. 

Solving for 𝐵 in this last equation we get 𝐵 = −1. 

∎ 

 

This kind of problem is called a partial fraction decomposition of a rational function.  The 

general format starts with a rational function  

𝑓(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
 

where  

• 𝑃(𝑥) and 𝑄(𝑥) are polynomials with real valued coefficients 

• 𝑃(𝑥) and 𝑄(𝑥) have no common factors (i.e. relatively prime) 

• the degree of 𝑃(𝑥) is strictly less than the degree of 𝑄(𝑥) 

• 𝑄(𝑥) is completely factored into its linear and irreducible quadratic factors. 

 

Remember that the general quadratic function 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is irreducible over the reals 

(cannot be factored without introducing non-real complex numbers) if the discriminant 𝑏2 −

4𝑎𝑐 is negative. 

It is a corollary of Gauss’s Fundamental Theorem of Algebra that every polynomial with real 

valued coefficients can be factored into linear and irreducible quadratic factors.  This theorem 

does not tell us how to find such a factorization but rather it tells us that such a factorization 

necessarily exists. 

Some examples of 𝑓(𝑥) would be: 

𝑓(𝑥) =
𝑥2 + 1

(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)
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𝑓(𝑥) =
−2𝑥 + 4

(𝑥 − 1)(𝑥 − 1)(𝑥2 + 1)
=

−2𝑥 + 4

(𝑥 − 1)2(𝑥2 + 1)
 

and 

𝑓(𝑥) =
3𝑥4 + 𝑥3 + 20𝑥2 + 3𝑥 + 31

(𝑥 + 1)(𝑥2 + 4)(𝑥2 + 4)
=

3𝑥4 + 𝑥3 + 20𝑥2 + 3𝑥 + 31

(𝑥 + 1)(𝑥2 + 4)2
. 

 

Notice that in each of these examples the denominator 𝑄(𝑥) (if we multiplied all the factors) 

would be a polynomial whose degree is strictly larger than the degree of its numerator 

polynomial 𝑃(𝑥).  

Take the last example.  If we multiplied out the denominator (𝑥 + 1)(𝑥2 + 4)2 we would get 

(𝑥 + 1)(𝑥2 + 4)2 = 𝑥5 + 𝑥4 + 8𝑥3 + 8𝑥2 + 16𝑥 + 16 

which is a fifth-degree polynomial which is strictly larger than its fourth-degree numerator. 

Notice that the problem we just finished solving 

𝑓(𝑥) =
2𝑥2 + 3

𝑥(𝑥 − 1)(𝑥 − 1)
=

2𝑥2 + 3

𝑥(𝑥 − 1)2
 

has this form.  In the language of partial fractions a denominator 𝑄(𝑥) of the form 

𝑄(𝑥) = (2𝑥 − 3)(𝑥 − 2)3(2𝑥2 + 5)2 

is said to have three distinct factors with the linear factor (𝑥 − 2) repeated three times and the 

irreducible quadratic factor repeated twice. 

 

Look back at the problem we just solved where we showed 

2𝑥2 + 3

𝑥(𝑥 − 1)2
=

3

𝑥
+

−1

𝑥 − 1
+

5

(𝑥 − 1)2
 

for all 𝑥. 

We broke up (decomposed) a complicated fraction (rational function) on the left-hand side of 

the equation into several smaller (partial) fractions on the right-hand side. 

A key step in partial fraction problems is knowing how to set up the denominators on the right-

hand side of the equation in a way where there will necessarily exist constants that make this 

equation an identity (true for all 𝑥.) 
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Partial Fraction Decomposition Theorem 

Let the rational function 𝑓(𝑥) = 𝑃(𝑥)/𝑄(𝑥) be such that 𝑃 and 𝑄 meet the four conditions set 

our above. 

Suppose that for every distinct factor (𝑎𝑥 + 𝑏)𝑘  in 𝑄(𝑥) we put the terms  

𝐶1

𝑎𝑥 + 𝑏
+

𝐶2

(𝑎𝑥 + 𝑏)2
+ ⋯ +

𝐶𝑘

(𝑎𝑥 + 𝑏)𝑘
 

in the decomposition where 𝐶1, 𝐶2, … , 𝐶𝑘 are a set of unknown constants and for every distinct 

factor (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑘 in 𝑄(𝑥) we put the terms 

  
𝐷1𝑥 + 𝐸1

𝑎𝑥2 + 𝑏𝑥 + 𝑐
+

𝐷2𝑥 + 𝐸2

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)2
+ ⋯ +

𝐷𝑘𝑥 + 𝐸𝑘

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑘
 

in the decomposition where 𝐷1, 𝐷2, … , 𝐷𝑘 and 𝐸1, 𝐸2, … , 𝐸𝑘  are a set of unknown constants.   

Then there exists unique values for all these unspecified constants that will make this 

decomposition an identity. 

 

Look back at the three examples we listed for 𝑓(𝑥).  The Partial Fraction Decomposition 

Theorem tells us there will exists constants to make each of the following an equations an 

identity: 

𝑥2 + 1

(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)
=

𝐴

𝑥 − 1
+

𝐵

𝑥 − 2
+

𝐶

𝑥 − 3
 

 

−2𝑥 + 4

(𝑥 − 1)2(𝑥2 + 1)
= (

𝐴

𝑥 − 1
+

𝐵

(𝑥 − 1)2
) +

𝐶𝑥 + 𝐷

𝑥2 + 1
 

and 

3𝑥4 + 𝑥3 + 20𝑥2 + 3𝑥 + 31

(𝑥 + 1)(𝑥2 + 4)2
=

𝐴

𝑥 + 1
+ (

𝐵𝑥 + 𝐶

𝑥2 + 4
+

𝐷𝑥 + 𝐸

(𝑥2 + 4)2
). 
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22. Source: MSHSML 4A124 

Express 
 

2𝑥 − 1

(𝑥2 + 𝑥 + 1)(𝑥 + 1)
 

 

as the sum of two simplified rational expressions. 

 

Solution 

According to the Partial Fraction Decomposition Theorem there will exist constants 𝐴, 𝐵 and 𝐶 

such that for all 𝑥 

𝑃(𝑥)

𝑄(𝑥)
=

2𝑥 − 1

(𝑥2 + 𝑥 + 1)(𝑥 + 1)
=

𝐴𝑥 + 𝐵

𝑥2 + 𝑥 + 1
+

𝐶

𝑥 + 1
. 

Multiplying both sides by 𝑄(𝑥) and simplifying we have 

2𝑥 − 1 = (𝑥 + 1)(𝐴𝑥 + 𝐵) + (𝑥2 + 𝑥 + 1)𝐶. 

Because we have three unknown constants we need to form three equations by picking (any) 

three values of 𝑥 and plugging them into this equation.  Plugging in 𝑥 = −1 is certainly a good 

choice because it will “zero out” the term (−1 + 1)(𝐴(−1) + 𝐵).  Plugging in 𝑥 = 0 is also a 

good choice because that will eliminate the unknown 𝐴 in the term (0 + 1)(𝐴(0) + 𝐵). 

After that just pick any other values of 𝑥.  Picking the 𝑥 values −1, 0 and 1 we have the three 

equations 

2(−1) − 1 = (−1 + 1)(𝐴(−1) + 𝐵) + ((−1)2 + (−1) + 1)𝐶 

2(0) − 1 = (0 + 1)(𝐴(0) + 𝐵) + (02 + 0 + 1)𝐶 

2(1) − 1 = (1 + 1)(𝐴(1) + 𝐵) + (12 + 1 + 1)𝐶. 

From the top equation we have −3 = 0 + 𝐶 which immediately gives us 𝐶 = −3.  From the 

second and third equations we have 

−1 = 𝐵 + 𝐶 = 𝐵 − 3 ⟹ 𝐵 = 2. 

1 = 2(𝐴 + 𝐵) + 3𝐶 = 2𝐴 + 2𝐵 + 3𝐶 = 2𝐴 + 2(2) + 3(−3) ⟹ 2𝐴 = 6 ⟹ 𝐴 = 3. 

Therefore, 

2𝑥 − 1

(𝑥2 + 𝑥 + 1)(𝑥 + 1)
=

3𝑥 + 2

𝑥2 + 𝑥 + 1
+

−3

𝑥 + 1
. 

∎ 
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The Partial Fraction Decomposition Theorem states there will always exist constants that will 

decompose the rational function 𝑃(𝑥)/𝑄(𝑥) into the partial fractions of the exact form as 

indicated by the theorem. 

However, it does not say there cannot be other ways to decompose 𝑃(𝑥)/𝑄(𝑥).  If you come to 

a problem where you are asked to decompose 𝑃(𝑥)/𝑄(𝑥) in a way that isn’t the form specified 

in the PFDT, then just assume that it will be possible (or they would not have asked the 

questions) and take the same approach to find it. 

 

 

23. Source: MSHSML 4T121 

Find integers 𝐴, 𝐵, 𝐶 and 𝐷 such that 
 

𝑃(𝑥)

𝑄(𝑥)
=

𝑥3 + 8𝑥 + 32

(𝑥2 + 4)(𝑥 + 2)2
=

𝐴𝑥 + 𝐵

𝑥2 + 4
+

𝐶𝑥 + 𝐷

(𝑥 + 2)2
 

 

for all 𝑥. 

 

Solution 

The Partial Fraction Decomposition Theorem guarantees there will exist a unique set of 

constants 𝐴, 𝐵, 𝐶 and 𝐷 such that for all 𝑥 

𝑥3 + 8𝑥 + 32

(𝑥2 + 4)(𝑥 + 2)2
=

𝐴𝑥 + 𝐵

𝑥2 + 4
+

𝐶

𝑥 + 2
+

𝐷

(𝑥 + 2)2
. 

The left-hand side of the identity in the problem statement isn’t in this exact form.  But just 

assume that constants will exist to solve the problem or else they wouldn’t have asked the 

question).  So just move forward on faith and use the same methods to find the unknown 

constants. 

Multiplying both sides of the given identity by 𝑄(𝑥) and simplifying we have the new identity 

𝑥3 + 8𝑥 + 32 = (𝑥 + 2)2(𝐴𝑥 + 𝐵) + (𝑥2 + 4)(𝐶𝑥 + 𝐷). 

This equation has four unknowns so we will need to pick four values for 𝑥 to form four 

equations so we can solve for all the unknowns.  Below, I’ve picked the four 𝑥 values −2, −1,0 

and 1. 

(−2)3 + 8(−2) + 32 = (−2 + 2)2(𝐴(−2) + 𝐵) + ((−2)2 + 4)(𝐶(−2) + 𝐷) 
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(−1)3 + 8(−1) + 32 = (−1 + 2)2(𝐴(−1) + 𝐵) + ((−1)2 + 4)(𝐶(−1) + 𝐷) 

03 + 8(0) + 32 = (0 + 2)2(𝐴(0) + 𝐵) + (02 + 4)(𝐶(0) + 𝐷) 

13 + 8(1) + 32 = (1 + 2)2(𝐴(1) + 𝐵) + (12 + 4)(𝐶(1) + 𝐷) 

Remember there are no “wrong” values of 𝑥 to pick.  If you and I pick different values of 𝑥 to 

work with we will necessarily end up with the same values for 𝐴, 𝐵, 𝐶 and 𝐷. 

These equations simplify to 

8 = 02(−2𝐴 + 𝐵) + 8(−2𝐶 + 𝐷) ⟹ 𝐷 − 2𝐶 = 1 

23 = 12(−𝐴 + 𝐵) + 5(−𝐶 + 𝐷) ⟹ −𝐴 + 𝐵 − 5𝐶 + 5𝐷 = 23 

32 = 4𝐵 + 4𝐷 ⟹ 𝐵 + 𝐷 = 8 

41 = 9(𝐴 + 𝐵) + 5(𝐶 + 𝐷) ⟹ 9𝐴 + 9𝐵 + 5𝐶 + 5𝐷 = 41. 

 

From the first equation we get 𝐷 = 2𝐶 + 1.  From the third equation we get 

𝐵 = 8 − 𝐷 = 8 − (2𝐶 + 1) = 7 − 2𝐶. 

Therefore, we can simplify the second equation to 

−𝐴 + (7 − 2𝐶) − 5𝐶 + 5(2𝐶 + 1) = 23 

or 

𝐴 = 7 − 2𝐶 − 5𝐶 + 10𝐶 + 5 − 23 = −11 + 3𝐶. 

At this point we have determined that 

𝐴 = −11 + 3𝐶 

𝐵 = 7 − 2𝐶 

𝐷 = 2𝐶 + 1. 

Substituting these results into the fourth equation we have 

9(−11 + 3𝐶) + 9(7 − 2𝐶) + 5𝐶 + 5(2𝐶 + 1) = 41 

or 

24𝐶 − 31 = 41. 

Therefore, 𝐶 = 3.  Hence 𝐴 = −2, 𝐵 = 1 and 𝐷 = 7.  This establishes the identity 

𝑥3 + 8𝑥 + 32

(𝑥2 + 4)(𝑥 + 2)2
=

−2𝑥 + 1

𝑥2 + 4
+

3𝑥 + 7

(𝑥 + 2)2
. 
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∎ 

8.1 Telescoping Sums 
 

Partial fraction decompositions are often useful in converting a regular sum into a “telescoping” 

sum (one where adjacent terms can cancel each other).  Consider the following problems. 

 

24. Source: MSHSML 4A044 
Express 

∑
1

𝑛(𝑛 + 1)

100

𝑛=1

=
1

2
+

1

6
+

1

12
+ ⋯ +

1

10100
 

as the quotient of two relatively prime integers. 

 

Solution 

Start by finding the partial fraction decomposition of  

1

𝑛(𝑛 + 1)
=

𝐴

𝑛
+

𝐵

𝑛 + 1
. 

Multiplying both sides by 𝑛(𝑛 + 1) we have the identity 

1 = 𝐴(𝑛 + 1) + 𝐵𝑛 

involving two unknowns.  Taking 𝑛 = −1 gives 1 = 𝐴(0) + 𝐵(−1) = −𝐵.  So 𝐵 = −1.  Taking 

𝑥 = 0 gives 1 = 𝐴(0 + 1) + 𝐵(0) = 𝐴.  So 𝐴 = 1. 

That is, we have by partial fractions that for all 𝑥 

1

𝑛(𝑛 + 1)
=

1

𝑛
−

1

𝑛 + 1
. 

Therefore, 

1

1 ⋅ 2
+

1

2 ⋅ 3
+

1

3 ⋅ 4
+ ⋯ +

1

100 ⋅ 101
 

= (
1

1
−

1

2
) + (

1

2
−

1

3
) + (

1

3
−

1

4
) + ⋯ + (

1

99
−

1

100
) + (

1

100
−

1

101
) 

=
1

1
+ (−

1

2
+

1

2
) + (−

1

3
+

1

3
) + (−

1

4
+

1

4
) + ⋯ + (−

1

100
+

1

100
) −

1

101
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=
1

1
−

1

101
=

101 − 1

1(101)
=

100

101
. 

∎ 

 

25. Source: MSHSML SI1211 
Determine exactly the sum 

1

2 ⋅ 3
+

1

3 ⋅ 4
+ ⋯ +

1

2012 ⋅ 2013
. 

 

Solution 

Start by finding the partial fraction decomposition of  

1

𝑥(𝑥 + 1)
=

𝐴

𝑥
+

𝐵

𝑥 + 1
. 

Multiplying both sides by 𝑥(𝑥 + 1) we have the identity 

1 = 𝐴(𝑥 + 1) + 𝐵𝑥 

involving two unknowns.  Taking 𝑥 = −1 gives 1 = 𝐴(0) + 𝐵(−1) = −𝐵.  So 𝐵 = −1.  Taking 

𝑥 = 0 gives 1 = 𝐴(0 + 1) + 𝐵(0) = 𝐴.  So 𝐴 = 1. 

That is, we have by partial fractions that for all 𝑥 

1

𝑥(𝑥 + 1)
=

1

𝑥
−

1

𝑥 + 1
. 

Therefore, 

1

2 ⋅ 3
+

1

3 ⋅ 4
+ ⋯ +

1

2012 ⋅ 2013
 

= (
1

2
−

1

3
) + (

1

3
−

1

4
) + (

1

4
−

1

5
) + ⋯ + (

1

2011
−

1

2012
) + (

1

2012
−

1

2013
) 

=
1

2
+ (

1

3
−

1

3
) + (

1

4
−

1

4
) + (

1

5
−

1

5
) + ⋯ + (

1

2012
−

1

2012
) −

1

2013
 

=
1

2
−

1

2013
=

2013 − 2

2(2013)
=

2011

4026
. 

∎ 
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9 Nested Roots 
 

The expression √𝑎 + 𝑏√𝑐   is called a “nested” square root because it involves a square root 

inside another square root. 

The identity  

√𝑎 ± 𝑏√𝑐  = √𝑎 + √𝑎2 − 𝑏2𝑐

2
  ± √𝑎 − √𝑎2 − 𝑏2𝑐

2
  (∗) 

 

is valid for all nonnegative 𝑐 and if 𝑎2 − 𝑏2𝑐 is a perfect square then we will be able to use this 

identity to “denest” these radicals.   

It can be shown that the case of 𝑎2 − 𝑏2𝑐 a perfect square is the only situation when we can 

“denest” an expression of this form. 

 
 

26. Source: MSHSML 4A173 

√6 − 2√5  can be written in the form 𝑎 + 𝑏√𝑐, where 𝑎, 𝑏, and 𝑐 are integers and 𝑐 

has no square factors.  Determine the ordered triple (𝑎, 𝑏, 𝑐). 

 

Solution 

 

Use the above identity (∗) to denest this nested root. 

√6 − 2√5 = √𝑎 ± 𝑏√𝑐  

 

for 𝑎 = 6, 𝑏 = 2 and 𝑐 = 5.  Notice that 𝑎2 − 𝑏2𝑐 = 62 − 22 ⋅ 5 = 22, which is a perfect 

square.  So, the above identity will work to denest the left-hand side.  Applying this identity we 

see that 

 

√6 − 2√5  = √6 + √62 − 22 ⋅ 5

2
  − √6 − √62 − 22 ⋅ 5

2
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= √
6 + 4

2
  − √

6 − 4

2
   

= √5 − 1 

= −1 + 1 ⋅ √5. 

That is, √6 − 2√5 = 𝑎 + 𝑏√𝑐 = −1 + 1 ⋅ √5.  So (𝑎, 𝑏, 𝑐) = (−1,1,5). 

∎ 

 

 
 

27. Source: MSHSML 4T852 

Write √6 − 3√3  as an expression without nested square roots. 

 

Solution 

 

Again use the above identity (∗) to denest this nested root.  

 

√𝑎 ± 𝑏√𝑐  = √𝑎 + √𝑎2 − 𝑏2𝑐

2
  ± √𝑎 − √𝑎2 − 𝑏2𝑐

2
   

 

𝑎 = 6, 𝑏 = 3, 𝑐 = 3 

 

√6 + √62 − 32 ⋅ 3

2
− √6 − √62 − 32 ⋅ 3

2
= √

6 + √9

2
− √

6 − √9

2
 

 

= √
6 + 3

2
− √

6 − 3

2
=

3

√2
−

√3

√2
=

3√2 − √6

2
 

∎ 
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10 Extra Practice Problems with Solutions for Test 4A 
 

 

28. Source: MSHSML 4A071 

Find all 𝑥 that satisfy √2𝑥 − 7 = √𝑥 − 1. 

 
Solution 

√2𝑥 − 7 = √𝑥 − 1 

⟹ (√2𝑥 − 7)
2

= (√𝑥 − 1)
2
 

⟹ 2𝑥 − 7 = 𝑥 − 1 

⟹ 𝑥 = 6. 

 

But don’t forget that squaring both sides in the first step above can produce extraneous 

solutions.  Is the above solution 𝑥 = 6 extraneous?  You have to check!  Does 𝑥 = 6 satisfy the 

original equation √2𝑥 − 7 = √𝑥 − 1 ?  Yes.  That is, 

 

√2(6) − 7 = √5  and  √6 − 1 = √5. 

∎ 

 

 

29. Source: MSHSML 4A073 

The roots of 𝑎𝑥2 + 𝑏𝑥 + 1 = 0 are −2 and 3.  What are the roots of 𝑏𝑥2 + 𝑎𝑥 − 1 =

0? 

 

Solution 

 

If the roots of 𝑎𝑥2 + 𝑏𝑥 + 1 = 0 are −2 and 3 then 𝑎𝑥2 + 𝑏𝑥 + 1 = 𝑘(𝑥 − (−2))(𝑥 − 3) for 

some constant 𝑘. 

 

But 

𝑘(𝑥 − (−2))(𝑥 − 3) = 𝑘(𝑥 + 2)(𝑥 − 3) = 𝑘(𝑥2 + 2𝑥 − 3𝑥 − 6) = 𝑘𝑥2 − 𝑘𝑥 − 6𝑘. 

 

So, 

𝑎𝑥2 + 𝑏𝑥 + 1 = 𝑘𝑥2 − 𝑘𝑥 − 6𝑘  for all 𝑥 

 

But remember that the only way that two polynomials can be equal for all 𝑥 is if those two 

polynomials agree coefficient by coefficient. 
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In our above situation, this means that 𝑎, coefficient of 𝑥2 in 𝑎𝑥2 + 𝑏𝑥 + 1 must equal 𝑘, the 

coefficient of 𝑥2 in 𝑘𝑥2 − 𝑘𝑥 − 6𝑘. 

 

And 𝑏 must equal −𝑘.  And 1 must equal −6𝑘. 

 

But 1 = −6𝑘 ⟺ 𝑘 = −1/6.  So 𝑎 = 𝑘 = −1/6 and 𝑏 = −𝑘 = −(−1/6) = 1/6. 

 

Hence,  

𝑏𝑥2 + 𝑎𝑥 − 1 =
1

6
𝑥2 −

1

6
𝑥 − 1 = (

1

6
) (𝑥2 − 𝑥 − 6) = (

1

6
) (𝑥 − 3)(𝑥 + 2). 

 

Therefore, the roots of 𝑏𝑥2 + 𝑎𝑥 − 1 are 𝑥 = 3 and 𝑥 = −2. 

∎ 

 

 

30. 
Source: MSHSML 4A063 

Given that 𝑓(𝑥) =
  𝑥 − 

1

 𝑥 
  

𝑥+1
, find [𝑓(𝑥−1)][𝑓(𝑥)]−1. 

 

Solution 

 

𝑓(𝑥−1) = 𝑓 (
1

𝑥
) =

(
1
𝑥) −

1

(
1
𝑥)

(
1
𝑥) + 1

=
(

1
𝑥) − 𝑥

(
1
𝑥) + 1

=

1 − 𝑥2

𝑥
1 + 𝑥

𝑥

=
1 − 𝑥2

1 + 𝑥
=

(1 − 𝑥)(1 + 𝑥)

1 + 𝑥
= 1 − 𝑥 

 

provided 𝑥 ≠ 0 and 𝑥 ≠ −1.  (We would be dividing by 0 when 𝑥 = 0 and/or 𝑥 = −1.) 

 

 

(𝑓(𝑥))
−1

=
1

𝑓(𝑥)
=

1

(
𝑥 −

1
𝑥

𝑥 + 1
)

=
1

(
𝑥2 − 1

𝑥 )

𝑥 + 1

=
1

(
𝑥2 − 1

𝑥(𝑥 + 1))
 

=
𝑥(𝑥 + 1)

𝑥2 − 1
=

𝑥(𝑥 + 1)

(𝑥 + 1)(𝑥 − 1)
=

𝑥

𝑥 − 1
 

provided 𝑥 ≠ −1.  (We would be dividing by 0 when 𝑥 = −1.) 
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Therefore, 

𝑓(𝑥−1) ⋅ (𝑓(𝑥))
−1

= (1 − 𝑥) ⋅ (
𝑥

𝑥 − 1
) = (−1)(𝑥 − 1) ⋅ (

𝑥

𝑥 − 1
) = −𝑥 

provided 𝑥 ≠ 1.  (We would be dividing by 0 when 𝑥 = 1.) 

 

So, 

 

𝑓(𝑥−1) ⋅ (𝑓(𝑥))
−1

= 𝑥 

 

except for 𝑥 = −1, 𝑥 = 0 or 𝑥 = 1 where this product is undefined. 

∎ 

 

 

31. 
Source: MSHSML 4A064 

Find all lattice points interior to the first quadrant, that is all points (𝑚, 𝑛) where 𝑚 

and 𝑛 are positive integers, that lie of the graph of 𝑥2 + 𝑦2 + 2𝑥𝑦 − 4𝑥 − 4𝑦 − 5 = 0. 

 

Solution 

 

General Rule of Thumb. 

 

If you are trying to find solutions to 𝑓(𝑥) = 0 or to 𝑓(𝑥, 𝑦) = 0 as we have above, always look 

to see if you can factor 𝑓( ).  If, in the problem above, we can write 𝑓(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) ⋅ ℎ(𝑥, 𝑦) 

then solving 𝑓(𝑥, 𝑦) = 0 is equivalent to solving the two simpler problems 𝑔(𝑥, 𝑦) = 0 and 

ℎ(𝑥, 𝑦) = 0. 

 

Unfortunately, there is no formula or algorithm that shows how to factor every expression.  But 

a good starting point for factoring is to look for any clues that the form of your expression 

might offer. 

 

For example, does 𝑥2 + 𝑦2 + 2𝑥𝑦 look familiar?  Of course,  

 

𝑥2 + 2𝑥𝑦 + 𝑦2 = (𝑥 + 𝑦)2. 

 

Now notice that −4𝑥 − 4𝑦 = (−4)(𝑥 + 𝑦).  So, 

 

𝑥2 + 𝑦2 + 2𝑥𝑦 − 4𝑥 − 4𝑦 − 5 = (𝑥 + 𝑦)2 − 4(𝑥 + 𝑦) − 5 = 0. 
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Does this help?  YES!  We can now see that our expression is a quadratic function in the 

expression 𝑥 + 𝑦.  That is, the above expression has the form 𝑧2 − 4𝑧 − 5 with 𝑧 = 𝑥 + 𝑦. 

 

But 𝑧2 − 4𝑧 − 5 = (𝑧 − 5)(𝑧 + 1).  So 

 

𝑥2 + 𝑦2 + 2𝑥𝑦 − 4𝑥 − 4𝑦 − 5 = (𝑥 + 𝑦)2 − 4(𝑥 + 𝑦) − 5 

= ((𝑥 + 𝑦) − 5)((𝑥 + 𝑦) + 1). 

 

Aha!  We have a factorization. 

 

Is this helpful?  For sure.   

 

Finding (𝑥, 𝑦) pairs where 𝑥2 + 𝑦2 + 2𝑥𝑦 − 4𝑥 − 4𝑦 − 5 = 0 is much, much harder than 

finding (𝑥, 𝑦) pairs where (𝑥 + 𝑦) − 5 = 0 or where (𝑥 + 𝑦) + 1 = 0.  

 

In fact, (𝑥 + 𝑦) − 5 = 0 is equivalent to 𝑦 = 5 − 𝑥.  That is, (𝑥 + 𝑦) − 5 = 0 for all (𝑥, 𝑦) on 

the line 𝑦 = 5 − 𝑥. 

 

And (𝑥 + 𝑦) + 1 = 0 is equivalent to 𝑦 = −1 − 𝑥.  But we can easily see that 𝑦 < 0 whenever 

𝑥 > 0 on the line 𝑦 = −1 − 𝑥.  So there are no points interior to the first quadrant (where 𝑥 >

0 and 𝑦 > 0) where 𝑦 = −1 − 𝑥. 

 

So, the problem has reduced to finding all (𝑥, 𝑦) with 𝑥 and 𝑦 both integers (we are instructed 

to find lattice point solutions) interior the first quadrant (i.e. where 𝑥 and 𝑦 are both positive) 

such that 𝑦 = 5 − 𝑥. 

 

While not necessary, it might help to graph these two lines. 
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Clearly the only (𝑥, 𝑦) pairs which are 

 

• interior to the first quadrant (i.e.  𝑥 > 0 and 𝑦 > 0)  

• where 𝑥 and 𝑦 are both integers (i.e. lattice points) 

• where 𝑥 and 𝑦 are on the red line or on the blue line 

 

are the pairs (𝑥, 𝑦) = (1,4), (2,3), (3,2) and (4,1). 
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∎ 

 

 

32. Source: MSHSML 4A023 

Find all the ordered pairs (𝑥, 𝑦) that simultaneously satisfy the two equations 

𝑥3 − 𝑦3 = 35 

𝑥2 + 𝑦2 = 7 − 𝑥𝑦. 

 

Solution 

 

Except for the simplest situation of solving a system of linear equations, there is no “one 

method fits all” approach to solving a system of equations.  And clearly the above has quadratic 

and cubic terms, so it is not linear. 

 

Remember the “Rule of Thumb” I mentioned in a previous problem about the usefulness of 

factoring when trying to solving an equation?  Well the same rule of thumb applies to solving a 

system of equations. 

 

Do you see anything in this system that looks like it has been set up for factoring?  How about 

𝑥3 − 𝑦3?  Look back in the Test 4A Study Guide and turn to the section on “Useful Factoring 

Formulas”.  You should memorize these formulas.  They arise frequently.  We see that 

 

𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2). 

 

Aha!  Notice that the second equation in our system can be written as 𝑥2 + 𝑥𝑦 + 𝑦2 = 7.  And 

we notice that conveniently the expression 𝑥2 + 𝑥𝑦 + 𝑦2 is part of the factorization of 𝑥3 − 𝑦3. 

 

So, 

{
𝑥3 − 𝑦3 = 35

𝑥2 + 𝑦2 = 7 − 𝑥𝑦
} ⟺ {

(𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) = 35

𝑥2 + 𝑦2 = 7 − 𝑥𝑦
} 

⟺ {
(𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) = 35

𝑥2 + 𝑥𝑦 + 𝑦2 = 7
} 

⟺ {
(𝑥 − 𝑦)(7) = 35

𝑥2 + 𝑥𝑦 + 𝑦2 } 

⟺ {
𝑥 − 𝑦 = 5

𝑥2 + 𝑥𝑦 + 𝑦2 = 7
} 
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⟺ {
𝑥 = 𝑦 + 5

𝑥2 + 𝑥𝑦 + 𝑦2 = 7
} 

⟺ {
𝑥 = 𝑦 + 5

(𝑦 + 5)2 + (𝑦 + 5)𝑦 + 𝑦2 − 7 = 0
}. 

Notice that the second equation in our system only involves 𝑦.  So, we can use this second 

equation to solve for 𝑦. 

 

Furthermore, 

 

(𝑦 + 5)2 + (𝑦 + 5)𝑦 + 𝑦2 − 7 = (𝑦2 + 10𝑦 + 25) + (𝑦2 + 5𝑦) + 𝑦2 − 7 

= 3𝑦2 + 15𝑦 + 18 

= 3(𝑦 + 2)(𝑦 + 3). 

So, 

(𝑦 + 5)2 + (𝑦 + 5)𝑦 + 𝑦2 − 7 = 0 ⟺ 3(𝑦 + 2)(𝑦 + 3) = 0 

⟺ 𝑦 = −2  or  𝑦 = −3. 

 

But remember, 𝑥 = 𝑦 + 5.  So the set of all (𝑥, 𝑦) pairs that satisfy the given system of 

equations would be (3, −2) and (2, −3). 

∎ 

 

 

33. Source: MSHSML 4A024 

Factor 6𝑥2 + 𝑥 − 2𝑦2 + 10𝑦 + 𝑥𝑦 − 12 into the product of two first degree terms in 𝑥 

and 𝑦. 

 

Solution 

 

It is often a good idea to group together all the equal power terms and see if the groupings 

factor individually in some way. 

 

By “equal power terms” I mean to say 𝑥𝑎1𝑦𝑎2  and 𝑥𝑏1𝑦𝑏2 are “equal power terms” if 𝑎1 + 𝑎2 =

𝑏1 + 𝑏2. 

 

By this understanding, 𝑥2, 𝑥𝑦 and 𝑦2 are “equal power terms”.  So grouping like this we have 
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6𝑥2 + 𝑥 − 2𝑦2 + 10𝑦 + 𝑥𝑦 − 12 = (6𝑥2 + 𝑥𝑦 − 2𝑦2) + (𝑥 + 10𝑦) − 12. 

 

Notice that 

6𝑥2 + 𝑥𝑦 − 2𝑦2 = (3𝑥 + 2𝑦)(2𝑥 − 𝑦). 

 

What would be really convenient is if the grouping (𝑥 + 10𝑦) could somehow be expressed in 

terms of the factors (3𝑥 + 2𝑦) and (2𝑥 − 𝑦) that occur in the first grouping. 

 

Is it possible to write 

 

𝑥 + 10𝑦 = 𝑎(3𝑥 + 2𝑦) + 𝑏(2𝑥 − 𝑦) 

 

for some constants 𝑎 and 𝑏?  Now remember that two polynomials can only equal each other 

for all 𝑥 and 𝑦 if the coefficients match up term by term. 

 

𝑥 + 10𝑦 = 𝑎(3𝑥 + 2𝑦) + 𝑏(2𝑥 − 𝑦) = (3𝑎 + 2𝑏)𝑥 + (2𝑎 − 𝑏)𝑦. 

 

So if this is going to work (nothing guarantees it will), then we must have  

 

3𝑎 + 2𝑏 = 1   and   2𝑎 − 𝑏 = 10. 

 

From the second equation, 𝑏 = 2𝑎 − 10.  Substituting this into the first equation, we have 

 

3𝑎 + 2(2𝑎 − 10) = 1 

7𝑎 = 21 

𝑎 = 3. 

But 𝑏 = 2𝑎 − 10, so 𝑏 = 2(3) − 10 = −4.  That is, (𝑎, 𝑏) = (3, −4) will work! 

 

𝑥 + 10𝑦 = 3(3𝑥 + 2𝑦) − 4(2𝑥 − 𝑦). 

 

Plugging this back into our problem, we have 

 

 6𝑥2 + 𝑥 − 2𝑦2 + 10𝑦 + 𝑥𝑦 − 12 

  = (6𝑥2 + 𝑥𝑦 − 2𝑦2) + (𝑥 + 10𝑦) − 12 

  = (3𝑥 + 2𝑦)(2𝑥 − 𝑦) + 3(3𝑥 + 2𝑦) − 4(2𝑥 − 𝑦) − 12 

 

Now think about what this looks like.  What do you get when you “foil” (𝑠 + 3)(𝑡 − 4)?  

 

(𝑠 + 3)(𝑡 − 4) = 𝑠𝑡 + 3𝑡 − 4𝑠 − 12. 



mathcloset.com   42 

 

How does this fit into our problem?  Let 𝑠 = 2𝑥 − 𝑦 and let 𝑡 = 3𝑥 + 2𝑦.  Then 

 

𝑠𝑡 + 3𝑡 − 4𝑠 − 12 = (2𝑥 − 𝑦)(3𝑥 + 2𝑦) + 3(3𝑥 + 2𝑦) − 4(2𝑥 − 𝑦) − 12. 

 

Another Aha!  So, 

 

 (2𝑥 − 𝑦)(3𝑥 + 2𝑦) + 3(3𝑥 + 2𝑦) − 4(2𝑥 − 𝑦) − 12 

  = 𝑠𝑡 + 3𝑡 − 4𝑠 − 12 

  = (𝑠 + 3)(𝑡 − 4) 

  = (2𝑥 − 𝑦 + 3)(3𝑥 + 2𝑦 − 4). 

 

And there we have it. 

6𝑥2 + 𝑥 − 2𝑦2 + 10𝑦 + 𝑥𝑦 − 12 = (2𝑥 − 𝑦 + 3)(3𝑥 + 2𝑦 − 4). 

∎ 

 

 

34. Source: MSHSML 4A993 

Find the exact value of 𝑥, different from 1, such that 1 + 2√𝑥 − √𝑥3 − 2√𝑥6 = 0. 

 

Solution 

 

Let 𝑦 = √𝑥6 .  Then 𝑦3 = (√𝑥6 )
3

= 𝑥3/6 = √𝑥 and 𝑦2 = (√𝑥6 )
2

= 𝑥2/6 = √𝑥3 .  Therefore, we 

can rewrite the entire left-hand side as 

 

1 + 2√𝑥 − √𝑥3 − 2√𝑥6 = 1 + 2𝑦3 − 𝑦2 − 2𝑦. 

 

So in terms of 𝑦 the problem becomes, solve 

 

1 + 2𝑦3 − 𝑦2 − 2𝑦 = 0. 

 

Now what?  You guessed it, FACTOR!  How?  Look for clues in the form of the problem.  Do you 

see any way to group the four terms into two groups such that each group has something in 

common? 

 

Notice that 2𝑦3 − 2𝑦 = 2𝑦(𝑦2 − 1) and −𝑦2 + 1 = (−1)(𝑦2 − 1). 
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Aha!  Both of these groupings contain the factor 𝑦2 − 1. 

 

0 = 1 + 2𝑦3 − 𝑦2 − 2𝑦 

= (2𝑦3 − 2𝑦) + (−𝑦2 + 1) 

= 2𝑦(𝑦2 − 1) + (−1)(𝑦2 − 1) 

= (𝑦2 − 1)(2𝑦 − 1) 

= (𝑦 − 1)(𝑦 + 1)(2𝑦 − 1) 

 

We know that 

 

 1 + 2𝑦3 − 𝑦2 − 2𝑦 = (𝑦 − 1)(𝑦 + 1)(2𝑦 − 1) = 0 

 

⟺ 𝑦 − 1 = 0  or  𝑦 + 1 = 0  or  2𝑦 − 1 = 0 

 

⟺ 𝑦2 = 1  or  𝑦 =
1

2
 

 

⟺ 𝑦 = −1  or  𝑦 = 1  or  𝑦 =
1

2
 

 

⟺ √𝑥6 = −1  or  √𝑥6 = 1  or  √𝑥6 =
1

2
 

 

 

⟺ √𝑥6 = −1  or  √𝑥6 = 1  or  √𝑥6 =
1

2
 

 

 

Now there are no real numbers such that √𝑥6 = −1.  Furthermore 

 

√𝑥6 = 1 ⟺ 𝑥 = 1 

and 

√𝑥6 =
1

2
⟺ 𝑥 = (

1

2
)

6

=
1

64
. 

 

So, the only value of 𝑥 (other than 𝑥 = 1) that satisfies the equation 

 

1 + 2√𝑥 − √𝑥3 − 2√𝑥6 = 0 
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is 𝑥 = 1/64. 

 

∎ 

 

 
 

 


