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1. Central, Inscribed, Tangential, Interior and Exterior Angles 

 
 
If an arc measures 𝑘° then the associated 
central angle also measures 𝑘°.   

 

 
If an arc measures 𝑘° then the associated 
inscribed angle measures (𝑘/2)°.   

 

𝑚∠1 = 𝑘 

∠1 is called a central angle 

𝑂 is the center of the circle 

𝑚∠1 = 𝑘/2 

∠1 is called an inscribed angle 

  
* “𝑚∠1” is standard mathematics notation for the measure or size of angle #1 
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If an arc measures 𝑘° then the associated 
tangent angle measures (𝑘/2)°. 
 

 

 

𝑚∠1 = 𝑘/2  
∠1 is called a tangent angle 

𝑚∠1 =
1

2
(𝑘 + 𝑗) 

 
∠1 is called an interior angle 

  
 

 
 

𝑚∠1 =
1

2
(𝑘 − 𝑗) 

∠1 is called an exterior angle 

𝑚∠1 =
1

2
(𝑘 − 𝑗) 

∠1 is called an exterior angle 
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2. Subtended Angle (Definition) 
 
The angle subtended by an arc, line segment or some other object (for example, a tree) at a 

given point is the angle formed by drawing the line segments from that given point to the 

endpoints of that arc, line segment or some other object. 

  
 

𝜃 is the angle subtended by 

arc 𝐴𝐵⏜  at the origin 𝑂 

𝛽 is the angle subtended by 

arc 𝐴𝐵⏜  at the point 𝐷 

𝛾 is the angle subtended by 
this tree from the vantage 
point of 𝐴 

 

In a situation where the object does not have endpoints (e.g. a circle), then the angle 

subtended by that object at a given point is the smallest angle from that point that fully 

contains that object.  In the case of the circle shown below this would be the angle formed by 

the two tangent lines to the circle from the given point.  The circle is fully contained between 

these two tangent lines. 

 

 

𝛼 is the angle subtended by the above circle at the point 𝐶 
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3. Arcs, Sectors and Segments of a Circle 
 

 

 

Be careful to distinguish between a “segment of a circle” and a “line segment”.  It is 
unfortunate that the same word is used to name two different geometric objects. 

 

Circumference and Area of a Circle  

If a circle has radius of length 𝑟 then 
 

 Length of Circumference = 2𝜋𝑟    

 

 Area of Circle = 𝜋𝑟2.     
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Arc Length 
 

If central angle ∠𝐴𝑂𝐵 has measure 𝜃 radians 
and if the circle has a radius of 𝑟 then 
 

 Arc Length 𝐴𝐵⏜ = 𝑟𝜃.     

 
Be careful to convert 𝜃 from degrees to 
radians (if necessary) before using this 
formula.   

 
 

Area of Sector  

If central angle ∠𝐴𝑂𝐵 has measure 𝜃 radians 
and if the circle has a radius of 𝑟 then  
 

 Area of Sector 𝐴𝑂𝐵 =
𝑟2𝜃

2
.     

 
Be careful to convert 𝜃 from degrees to 
radians (if necessary) before using this 
formula.  

 

Area of Segment  

If central angle ∠𝐴𝑂𝐵 has measure 𝜃 radians 
and if the circle has a radius of 𝑟 then  
 

 Area of Segment 𝐴𝐵 =
𝑟2

2
(𝜃 − sin(𝜃) ).    

 
Be careful to convert 𝜃 from degrees to 
radians (if necessary) before using this 
formula.  
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4. Cylinders, Cones, & Spheres (Volumes and Surface Areas) 
 

Sphere  

If a sphere has radius of length 𝑟 then 
 

 Surface Area of Sphere = 4𝜋𝑟2    

 

 Volume of Sphere =
4

3
𝜋𝑟3    

 
 

 

Cone (General Case)  

 

  Volume of a Cone =
1

3
𝐴𝑏ℎ     

 
 

Remember: This formula is valid for all 
cones, not just circular base cones. 
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Right Circular Cone  
 
If a right circular cone of height ℎ and base 
radius 𝑟 we have 
 

 Volume =
1

3
𝜋𝑟2ℎ   

 

 Lateral Surface Area = 𝜋𝑟√𝑟2 + ℎ2   

 

 Total Surface Area = 𝜋𝑟 (√𝑟2 + ℎ2 + 𝑟)   

 
Note: Lateral means “sides only”.  So the 
lateral surface area does not include the area 
of the base. 

 

 
 

Frustum of a Cone (General Case) 

 

 
 

  



mathcloset.com   9 

 

Frustum of a Right Circular Cone 

  

 

 

If a frustum of a right circular cone has a 

bottom radius of 𝑅, a top radius of 𝑟, a height 

of ℎ and a slant height of 𝑠, then 

 

 

 

 
 

Right Cylinders  
 
If a right cylinder has an upper and lower 

base with area 𝐵 and perimeter 𝑝 and a 

height of ℎ then  
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Right Circular Cylinder 
 
If a cylinder of height ℎ has a circular base 
with radius 𝑟 and if the height is 
perpendicular to the base then 
 

 Volume = 𝜋𝑟2ℎ   

 

 Lateral Surface Area = 2𝜋𝑟ℎ   

 

 Total Surface Area = 2𝜋𝑟ℎ + 2𝜋𝑟2  

 
Note 1: Lateral means “sides only”.  So lateral 
surface area does not include the area of 
either the upper or lower base. 

 
 
 

 

4.1 Oblique Circular Cylinder 
 

The oblique circular cylinder shown below is formed by tilting a right circular cylinder of height 

ℎ and base radius 𝑟 in such a way that the base of the right cylinder does not move, the circular 

cross sections remain circular and the height is not altered.  

 

 

 

The line segment of length 𝑙 of the oblique cylinder is called an element of the cylinder.  (It can 

also be called the slant height of the cylinder.)  
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4.1.1 Volume of an Oblique Circular Cylinder 
 

(𝑥′, 𝑦′) defines an orthogonal (at right angles) coordinate system for the oblique cylinder 

shown below. 

 

 

Plane 𝑃 cuts the axis 𝑦′ at a right angle.  The cross section, highlighted in bright green, of the 

cylinder on plane 𝑃 is an ellipse (see for example, Projective Geometry, C. V. Durell, pages 24-

25).  This ellipse is a right section because plane 𝑃 is orthogonal to axis 𝑦′. 

Now imagine shearing off the top of this cylinder and sliding this top piece up under the bottom 

as shown in Steps 1 and 2 below and then rotating as in Step 3. 
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The cut and pasted cylinder shown in Step 3 is a right cylinder with elliptical cross sections.  

Furthermore, the cutting and pasting has not changed the volume of the cylinder.  That is, the 

volume of the right cylinder in Step 3 is the same as the volume of the original oblique cylinder.  

But by definition, the volume of a right cylinder equals its cross-sectional area times its height.  

Therefore,  

Volume(oblique cylinder) = Area(ellipse) ⋅ 𝑙. 
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The equation of the ellipse in Step 3 is   

𝑥2

𝑟2
+

𝑦2

(𝑟 sin(𝜃))2
= 1. 

 

(Projective Geometry, C. V. Durell, pages 24-25) 

 

The area of this ellipse is 𝜋(𝑟)(𝑟 sin(𝜃)).  Also, we see from the initial diagram of the oblique 

cylinder that sin(𝜃) = ℎ/𝑙 or 𝑙 = ℎ/ sin(𝜃).  Hence 

 

Volume(oblique cylinder) = Area(ellipse) ⋅ Length(element) 

= (𝜋𝑟2 sin(𝜃)) ⋅ (
ℎ

sin(𝜃)
) 

= 𝜋𝑟2ℎ 

which we recognize as the volume of a right circular cylinder with height ℎ and radius 𝑟. 

 

 

It is not just a coincidence that the volume of the oblique circular cylinder equals the volume of 

a right circular cylinder. 

In fact, this equivalence (which extends beyond just cylinders) is known as Cavalieri's principle, 

which we first introduced in the Study Guide for Meet 2, Event B.  We will repeat the definition 

here. 
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Cavalieri’s Principle 
 
Two solids with the same height and equal cross-sectional area at all values of that height will 
have equal volumes. 

 

For example, it follows from Cavalieri’s principle that the volume of an oblique cone can be 

found by comparing it to a right cone. 

 

 

 

4.1.2 Surface Area of an Oblique Cylinder 
 

Can we use Cavalieri’s Principle to find the surface area of an oblique cylinder? 
 

 
 
Unfortunately, this the answer is no.  It is a common misconception that these two cylinders 
will have same surface area.  It is a natural mistake to make, especially if you have only seen 
Cavalieri’s Principle introduced as an “intuitive” result. 
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The following simple example of two boards stacked to form a lean-to shows how blindly 
applying Cavalieri’s Principle can go badly wrong.  Obviously, the cross-sectional width equals 𝑤 
for both the blue and red rectangular boards at all points along the common height ℎ.  But it is 
just as obvious that these two boards do not have the same area or the same perimeter.  (This 
example is taken from https://sites.math.washington.edu/~nwmi/materials/Cavalieri.pptx.pdf). 
 
 

 
The bottom line is that Cavalieri’s Principle applies to solids with the same height and equal 
cross-sectional at all values of that height. 

 
 
In our oblique circular cylinder situation, we can (correctly) argue that the surface area of the 
original oblique cylinder equals the surface area of the right cylinder whose cross section is 
given by the ellipse  

𝑥2

𝑟2
+

𝑦2

(𝑟 sin(𝜃))2
= 1. 

  
(see diagrams below) 

https://sites.math.washington.edu/~nwmi/materials/Cavalieri.pptx.pdf
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It follows that 
 

Surface Area(oblique cylinder) = Perimeter(ellipse) ⋅ Length(element). 
 
Unfortunately, it is well known that the perimeter of an ellipse does not have a closed form 
(this is the term used in mathematics to mean “no simple expression exists”). 
 
When you take calculus 2 you will learn a general formula for arc length which will allow you to 
write 
 

Perimeter(ellipse) = 𝑟 ∫ √cos2(𝑥) + sin2(𝜃) sin2(𝑥)

2𝜋

0

𝑑𝑥 

for the ellipse  
𝑥2

𝑟2
+

𝑦2

(𝑟 sin(𝜃))2
= 1. 

 
And you can use a computer package (such as Wolfram Alpha) to approximate this integral with 
as much precision as you like. 
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Surface Area 

= Perimeter(Ellipse) ⋅ 𝑙 

= Perimeter(Ellipse) ⋅ ℎ/ sin(𝜃) 

Surface Area 

= Perimeter(Circle) ⋅ ℎ 

= 2𝜋𝑟 ⋅ ℎ 

 

 
How substantial is the difference between these two formulas?   
 
We used the online (free) program Wolfram Alpha to evaluate the integral for the perimeter of 
an ellipse to construct the following table. 
 

 
Surface Area Oblique 

Cylinder with 𝒓 = 𝟏, 𝒉 = 𝟑 
Surface Area Right Cylinder 

with 𝒓 = 𝟏, 𝒉 = 𝟑 

𝜃 = 90° 6𝜋 6𝜋 ≈ 18.8496 

𝜃 = 60° 20.3338 18.8496 

𝜃 = 45° 22.9212 18.8496 

𝜃 = 30° 29.0653 18.8496 

𝜃 = 15° 49.9069 18.8496 

 
 
Obviously, the error grows quickly as 𝜃 moves away from 90° (i.e. the amount of “tilt” 
increases). 
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5. Spherical Caps and Sectors 

 

Surface Area of Spherical Cap 

 

 

ℎ = height of spherical cap 

𝑅 = radius of sphere 

Surface Area of Hemisphere = 2𝜋𝑅2  

 

ℎ

𝑅
=

Surface Area Cap

Surface Area Hemisphere
 

 

Therefore, 

Surface Area of Spherical Cap with height ℎ = (
ℎ

𝑅
) (2𝜋𝑅2) = 2𝜋𝑅ℎ 

 

  

ℎ 

𝑅 
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Volume of Spherical Sector 

 

ℎ = height of spherical sector 

𝑅 = radius of sphere 

Volume of Hemisphere =
2

3
𝜋𝑅3 

 

ℎ

𝑅
=

Volume Spherical Sector

Volume Hemisphere
 

 

Therefore, 

Volume of Spherical Sector with height ℎ = (
ℎ

𝑅
) (

2

3
𝜋𝑅3) = (

2

3
) 𝜋𝑅2ℎ 
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Volume of Spherical Cap 

 

The key step is to recognize that 

 

We have already found the volume of the spherical sector.  Now we need to find the volume of 

the cone.  This cone has height 𝑅 − ℎ and slant height 𝑅.  If we let 𝑟 equal the radius of this 

cone, then it follows from the Pythagorean Theorem that 

𝑟2 + (𝑅 − ℎ)2 = 𝑅2. 

ℎ 

𝑅 
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This means that 

𝑟2 = 𝑅2 − (𝑅 − ℎ)2 = 2𝑅ℎ − ℎ2. 

 

The formula for the volume of a cone with height 𝑅 − ℎ and radius 𝑟 is 

1

3
𝜋 ∙ 𝑟2 ∙ (𝑅 − ℎ) =

1

3
𝜋 ∙ (2𝑅ℎ − ℎ2) ∙ (𝑅 − ℎ) 

 

Therefore, by subtraction, the volume of the spherical cap is 

2

3
𝜋𝑅2ℎ −

1

3
𝜋 ∙ (2𝑅ℎ − ℎ2) ∙ (𝑅 − ℎ) 

=
1

3
𝜋ℎ2(3𝑅 − ℎ) 

after simplification. 

 

Sometimes it is convenient to express this formula in terms of 𝑟 (the radius of the base circle of 

the spherical cap) and ℎ. 

Recall that we just showed that 

𝑟2 = 𝑅2 − (𝑅 − ℎ)2 = 2𝑅ℎ − ℎ2. 

 

This means that 

𝑅ℎ = (
1

2
) (𝑟2 + ℎ2). 

 

So, 

1

3
𝜋ℎ2(3𝑅 − ℎ) =

1

3
𝜋ℎ(3𝑅ℎ − ℎ2) 

=
1

6
𝜋ℎ(3(𝑟2 + ℎ2) − 2ℎ2) 
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=
1

6
𝜋ℎ(3𝑟2 + ℎ2). 

 

6. Power of a Point Theorems 
 

6.1 Secant-Secant Theorem 

 

If two secant lines are drawn through the point 𝑃 taken outside the circle, then 𝑠 ⋅ 𝑒 = 𝑟 ⋅ 𝑐  as 
illustrated in the figure below. 
 

 
 
 

6.2 Secant-Tangent Theorem 

 
If one secant line and one tangent line are drawn through the point 𝑃 taken outside the circle, 

then 𝑠 ⋅ 𝑒 = 𝑟2  as illustrated in the figure below. 
 

 

 

How do these two theorems help us? 
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What the Secant-Secant Theorem tells us is that for the circle ℂ with center 𝑂 and radius 𝑟 and 

for any fixed point 𝑃 taken outside circle ℂ, 

 

 
the product 𝑃𝐴 ⋅ 𝑃𝐵 is the same (a constant) for every secant line 𝑙 of circle ℂ going through the 

fixed point 𝑃.  The constant value of 𝑃𝐴 ⋅ 𝑃𝐵 is called the power of the point 𝑃 taken outside 

the circle ℂ. 

 

 

What the Secant-Tangent Theorem tells us is that if we consider any tangent line 𝑙 to 

this same circle ℂ that goes through the same fixed point 𝑃 (obviously there are exactly two 

such tangent lines 𝑙)  then 𝑃𝐴 ⋅ 𝑃𝐴 = (𝑃𝐴)2 will again equal the same constant “power of the 

point” that we found for point 𝑃 in the Secant-Secant Theorem. 
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Perhaps the reason the Secant-Secant and the Secant-Tangent Theorem are (almost) 

always stated in the form we have given them is that this form makes it clear how to use 

these theorems to solve a typical contest problem such as “find 𝑐 in the figure below” 

 

for some given values of 𝑠, 𝑒 and 𝑟. 

 

6.2.1 Tangent-Tangent Theorem 

 
The Tangent-Tangent Theorem which tells us that 𝑠 = 𝑡 in the figure below where we have 
taken the two tangent lines to the circle ℂ going through the fixed point 𝑃 taken outside the 
circle ℂ, follows as a corollary to the Tangent-Secant Theorem. 

  

 

 

6.3 Intersecting Chords (or the Chord-Chord) Theorem 

 
For any two chords of the circle ℂ going through a fixed point 𝑃 taken inside the circle ℂ,  

𝑠 ⋅ 𝑒 = 𝑟 ⋅ 𝑐. 
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Another way of stating this result is that 𝑃𝐴 ⋅ 𝑃𝐵 is constant for every chord 𝐴𝐵 of the circle ℂ 

going through the point 𝑃 taken inside the circle ℂ. 

 

 
 
The constant product 𝑃𝐴 ⋅ 𝑃𝐵 is called the power of the point 𝑃 taken inside circle ℂ.  

 

7. Alternate Segments Theorem (aka Tangent-Chord Theorem) 
 
The alternate segment theorem (less commonly known as the tangent-chord theorem) states 

that “in any circle, the angle between a chord and a tangent through one of the end points of 

the chord is equal to the angle subtended by the chord in the alternate segment”. 

What does this mean?  It translates to saying that the angles of the same color in the diagram 

below are equal to each other. 
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That is, 𝑚∠𝐶𝐵𝐴 = 𝑚∠𝐷𝐴𝐶 and 𝑚∠𝐴𝐶𝐵 = 𝑚∠𝐵𝐴𝐸. 

Why the name “alternate segment” theorem?  Chord 𝐴𝐵 in the diagram below divides the 

circle into two segments - the tan colored segment and the cyan colored segment. 

 

 

∠𝐴𝐶𝐵 is the angle subtended by chord 𝐴𝐵 and ∠𝐴𝐶𝐵 is in the (tan colored) segment, the 

segment which is on the alternate side (i.e. other side) of chord 𝐴𝐵 than tangent angle ∠𝐵𝐴𝐸 is 

on. 

 

Corollary 
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The measure of the central angle 𝐴𝑂𝐵 has twice the measure of tangent angle 𝐵𝐴𝐸.   

Why?  We know that 𝑚∠𝐵𝐴𝐸 = 𝑚∠𝐴𝐶𝐵 by the Alternate Segment Theorem. 

But the inscribed angle 𝐴𝐶𝐵 has twice the measure of the central angle 𝐴𝑂𝐵 because 

both angles are subtended by arc 𝐵𝐴.  Therefore, 

𝑚∠𝐴𝑂𝐵 = 2 ⋅ 𝑚∠𝐵𝐴𝐸. 

 

 

Example 2. 

 

Find the value of 𝑥 in the above diagram. 

 

Example 3. 
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Find 𝑋 + 𝑌 in the above diagram. 

 

8. An Assortment of Circle Theorems 
 

Bow Tie Theorem 

 

𝑚∠𝐵𝐴𝐷 = 𝑚∠𝐷𝐶𝐵    (Both angles intercept 𝐵𝐷⏜ ) 

𝑚∠𝐵𝑂𝐴 = 𝑚∠𝐷𝑂𝐶    (Vertical angles) 

𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐶𝐷𝐴    (Both angles intercept 𝐴𝐶⏜ ) 

∴    Δ𝐴𝑂𝐵 ∼ Δ𝐶𝑂𝐷    (AAA criteria) 
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𝑐 = 𝑏 − 𝑎 

 

 

In the same circle or in congruent circles, congruent minor arcs have congruent 
central angles and congruent central angles have congruent arcs.  In reference to the 
above figure, if 𝑘 = 𝑗, then 𝑚∠1 = 𝑚∠2 and if 𝑚∠1 = 𝑚∠2, then 𝑘 = 𝑗. 
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If two inscribed angles intercept the same arc, then the angles are congruent.  In reference to 

the above figure, inscribed angles ∠1 and ∠2 both intercept the same arc 𝐴𝐵⏜ , therefore, 
𝑚∠1 = 𝑚∠2. 

 

Word Usage Note:  We can say ∠1 intercepts arc 𝐴𝐵⏜  and we can say arc 𝐴𝐵⏜  subtends ∠1.   

 

 

 

In the same circle or in congruent circles, congruent arcs have congruent chords and 
congruent chords have congruent arcs.  In reference to the above figure, if 𝑘 = 𝑗, then 
𝑎 = 𝑏 and if 𝑎 = 𝑏, then 𝑘 = 𝑗. 
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In the same circle or in congruent circles, chords equally distant from the center are 
congruent and congruent chords are equally distant from the center.  In reference to 
the above figure, if 𝑐 = 𝑑, then a= 𝑏 and if 𝑎 = 𝑏, then 𝑐 = 𝑑. 

 

 

A diameter that is perpendicular to a chord bisects the chord and its arc.  In reference 
to the above figure, 𝑎 = 𝑏 and 𝑘 = 𝑗. 
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If two inscribed angles intercept the same arc, then the angles are congruent.  In 
reference to the above figure, inscribed angles ∠1 and ∠2 both intercept the same arc 

𝐴𝐵⏜ , therefore, 𝑚∠1 = 𝑚∠2. 

 

Word Usage Note:  We can say ∠1 intercepts arc 𝐴𝐵⏜  and we can say arc 𝐴𝐵⏜  subtends 

∠1.   

 

 

An angle inscribed in a semicircle is a right angle. 
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If a quadrilateral is inscribed in a circle (i.e. a cyclic quadrilateral), then its opposite 
angles are supplementary.  In reference to the above figure, 𝑚∠1 + 𝑚∠3 = 180° and 
𝑚∠2 + 𝑚∠4 = 180°. 

 

 

Ptolemy’s Theorem 

Let 𝑥 and 𝑦 be the lengths of the diagonals in a cyclic quadrilateral with sides 𝑎, 𝑏, 𝑐 
and 𝑑.  Then 
 

𝑥𝑦 = 𝑎𝑐 + 𝑏𝑑. 
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If a circle can be inscribed in quadrilateral 𝐴𝐵𝐶𝐷, then 𝐴𝐵 + 𝐶𝐷 = 𝐵𝐶 + 𝐷𝐴. 
(Part 1 of Pitot’s Theorem) 

 

 

 

If a circle can be inscribed in quadrilateral 𝐴𝐵𝐶𝐷, then  

𝐴𝐵 + 𝐶𝐷 = 𝐵𝐶 + 𝐷𝐴 =
𝐴𝐵 + 𝐵𝐶 + 𝐶𝐷 + 𝐷𝐴

2
. 

(Part 2 of Pitot’s Theorem) 
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If a line is tangent to a circle, then the line is perpendicular to the radius drawn to the 
point of tangency and if a line going through point on a circle is perpendicular to the 
radius drawn to this same point, then this line is tangent to the circle at this point.  In 
reference to the above figure, if 𝑙 is tangent to the circle at 𝐴, then 𝑚∠𝐴 = 90° and if 
𝑚∠𝐴 = 90° then 𝑙 is tangent to the circle.  

 

 

If chords 𝐴𝐵 and 𝐶𝐷 are parallel (which is denoted by 𝐴𝐵 ∥ 𝐶𝐷), then 𝐴𝐶⏜ = 𝐵𝐷⏜ . 

 



mathcloset.com   36 

9. Interior and Exterior Tangents of Two Circles 
 

 

Common internal tangents are equal in length.  In reference to the above diagram, 

𝐴𝐵 = 𝐶𝐷. 

 

 

Common external tangents are equal in length.  In reference to the above diagram, 

𝐴𝐷 = 𝐶𝐵. 
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Δ𝐴𝑂1𝐶 and Δ𝐵𝑂2𝐶 are similar triangles. 

  

Find the length of the common internal tangent of two circles with radii 𝑟1 and 𝑟2 whose 

centers are distance 𝑑 apart. 

Answer 

  √𝑑2 − (𝑟1 + 𝑟2)2   

Solution 

Let 𝐴𝐵 be the common internal tangent of two circles with radii 𝑂1𝐴 = 𝑟1 and 𝑂2𝐵 = 𝑟2 and 

where 𝑂1𝑂2, the distance between the centers, equals 𝑑 as shown in the figure below. 

Because radii 𝑂1𝐴 and 𝑂2𝐵 are parallel because they are both perpendicular to 𝐴𝐵.  Construct 

𝐵𝐶 by extending radius 𝑂2𝐵 by the length of radius 𝑂1𝐴 to form rectangle 𝐴𝑂1𝐶𝐵.  It follows 

that 𝐴𝐵 = 𝑂1𝐶. 



mathcloset.com   38 

 

By the Pythagorean Theorem, 

𝐴𝐵 = 𝑂1𝐶 = √𝑂1𝑂2 − 𝑂2𝐶 = √𝑑2 − (𝑟1 + 𝑟2)2. 

∎ 

 

Find the length of the common external tangent of two circles with radii 𝑟1 and 𝑟2 whose 

centers are distance 𝑑 apart. 

Answer 

  √𝑑2 − (𝑟1 − 𝑟2)2   

Solution 

Let 𝐴𝐵 be the common external tangent of two circles with radii 𝑂1𝐴 = 𝑟1 and 𝑂2𝐵 = 𝑟2 and 

where 𝑂1𝑂2, the distance between the centers, equals 𝑑 as shown in the figure below. 

Because radii 𝑂1𝐴 and 𝑂2𝐵 are parallel because they are both perpendicular to 𝐴𝐵.  Construct 

point 𝐶 on 𝑂1𝐴 so that 𝑂2𝐴 is parallel to 𝐴𝐵 to form rectangle 𝐴𝐶𝑂2𝐵.  It follows that 𝐴𝐵 =

𝑂2𝐶. 



mathcloset.com   39 

 

By the Pythagorean Theorem, 

𝐴𝐵 = 𝑂2𝐶 = √(𝑂1𝑂2)2 − (𝑂1𝐶)2 = √𝑑2 − (𝑟1 − 𝑟2)2. 

∎ 

 

10. Regiomontanus’ Problem 
 

The Regiomontanus problem is to find where a person should stand in order to maximize their 

visual angle when looking up at a painting hung on a wall, a statue on a pedestal or a steeple on 

a church.  

The problem was posed by Johannes Müller (also known as Regiomontanus) in 1471.  Today the 

problem is a standard exercise for first year calculus students.  However in this section we show 

how to find the answer without using calculus (which, by the way, had not been invented in 

Regiomontanus’ time). 

The geometric approach taken here dates back to a note by Ad. Lorsch, “Ueber eine 

Maximumaufgabe,” Zeitschrift für Mathematik und Physik (1878). 
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We will break the problem into two parts.  In the first part we identify conditions for a maximal 

angle.  In the second part we identify distances and heights when the visual angle is at a 

maximum.  These two parts are followed with some applications. 

(Part 1)  Maximum Angle 

Let 𝑆 be that circle that goes through the points 𝐶, 𝐵 and 𝐸 and is tangent to line 𝑡 at the point 

𝐸 (as illustrated in the diagram below).   Assume that lines 𝑙 and 𝑡 are perpendicular.  Let 𝑊 be 

any point on the line 𝑡 other than 𝐸. 

 

 

Then 𝑚∠𝐶𝑊𝐵 < 𝑚∠𝐶𝐸𝐵. 

Proof 

Let 𝑈 be the point of intersection of 𝑊𝐶 and circle 𝑆 and draw the auxiliary line 𝑈𝐵. 
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We note that 𝑚∠𝐶𝐸𝐵 = 𝑚∠𝐶𝑈𝐵 because both are inscribed angles subtended by 𝐶𝐵. 

 

Then by the Exterior Angle Theorem for a triangle, 𝑚∠𝐶𝑈𝐵 = 𝑚∠𝑈𝑊𝐵 + 𝑚∠𝑊𝐵𝑈. 

Therefore,  

𝑚∠𝐶𝐸𝐵 = 𝑚∠𝐶𝑈𝐵 = 𝑚∠𝑈𝑊𝐵 + 𝑚∠𝑊𝐵𝑈 > 𝑚∠𝑈𝑊𝐵 = 𝑚∠𝐶𝑊𝐵 

as long as 𝑊 and 𝐸 are different points on 𝑡.  

∎ 

 

(Part 2)  Measurements on a Circle Containing Two Points and Tangent to a Given Line 

Let 𝑆 be that circle with center point 𝐷 that goes through the points 𝐶, 𝐵 and 𝐸 and is tangent 

to line 𝑡 at the point 𝐸 (as illustrated in the diagram below).   Assume that lines 𝑙 and 𝑡 are 

perpendicular and 𝐷𝐸 is the perpendicular bisector of 𝐶𝐵.  Also assume 𝑚∠𝐶𝐸𝐵 = 𝛼 and 𝐸𝐴 =

𝑥. 
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(a) Find 𝑚∠𝐶𝐷𝐹 as a function of 𝛼. 

(b) Find 𝑚∠𝐵𝐸𝐴 as a function of 𝛼. 

(c) Find 𝐴𝐵 as a function of 𝛼 and 𝑥. 

(d) Find 𝐵𝐶 as a function of 𝛼 and 𝑥. 

(e) Find 𝑥 as a function of 𝐴𝐵 and 𝐵𝐶. 

 

Solution 

(a) 𝑚∠𝐶𝐷𝐵 = 2𝛼 because the central angle ∠𝐶𝐷𝐵 has twice the measure of the inscribed 

 angle ∠𝐶𝐸𝐵 subtended by the same arc 𝐶𝐵⏜ . 

 𝐷𝐶 and 𝐷𝐵 are both radii and hence Δ𝐶𝐷𝐵 is an isosceles triangle.  Therefore 𝐷𝐸, the 

 perpendicular bisector of 𝐶𝐵, bisects ∠𝐶𝐷𝐵.  Hence, 𝑚∠𝐶𝐷𝐹 =
1
2

𝑚∠𝐶𝐷𝐵 = 𝛼. 

 

(b) First recognize that 𝑚∠𝐵𝐸𝐴 = 𝑚∠𝐵𝐶𝐸 by the Alternating Segments Theorem (see 

 diagram below).  
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 But 𝑚∠𝐵𝐶𝐸 =
1
2

𝑚∠𝐵𝐷𝐸 because the central angle ∠𝐵𝐷𝐸 has twice the measure of the 

 inscribed angle ∠𝐵𝐶𝐸 subtended by the same arc 𝐵𝐸⏜ . 

 

 Furthermore 𝑚∠𝐹𝐷𝐸 = 90° because ∠𝐷𝐸𝐴, ∠𝐸𝐴𝐹 and ∠𝐴𝐹𝐷 are all right angles in 

 rectangle 𝐷𝐸𝐴𝐹.  Therefore, 

𝑚∠𝐵𝐸𝐴 = 𝑚∠𝐵𝐶𝐸 =
1

2
𝑚∠𝐵𝐷𝐸 =

1

2
(𝑚∠𝐹𝐷𝐸 − 𝑚∠𝐹𝐷𝐵) =

1

2
(𝑚∠𝐹𝐷𝐸 − 𝑚∠𝐹𝐷𝐶) 

 

 But we have already shown that 𝑚∠𝐹𝐷𝐶 = 𝛼 and we can see that 𝑚∠𝐹𝐷𝐸 = 90° because 

 ∠𝐷𝐸𝐴, ∠𝐸𝐴𝐹 and ∠𝐴𝐹𝐷 are all right angles in rectangle ▭𝐷𝐸𝐴𝐹.  Therefore, 

𝑚∠𝐵𝐸𝐴 =
1

2
(𝑚∠𝐹𝐷𝐸 − 𝑚∠𝐹𝐷𝐶) =

1

2
(90° − 𝛼). 

 

(c) In Δ𝐶𝐷𝐹 we have  
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tan(∠𝐶𝐷𝐹) =
𝐶𝐹

𝐷𝐹
. 

 So, 

𝐵𝐶 = 2 ⋅ 𝐶𝐹 = 2 ⋅ (𝐷𝐹 ⋅ tan(∠𝐶𝐷𝐹) ) = 2𝑥 tan(𝛼) 

 

 because 𝐷𝐹 = 𝐸𝐴 = 𝑥  (as 𝐸𝐷 and 𝐴𝐹 are parallel). 

 

(d) In Δ𝐵𝐸𝐴 we have 

tan(∠𝐵𝐸𝐴) =
𝐴𝐵

𝐸𝐴
. 

 So, 

𝐴𝐵 = 𝐸𝐴 ⋅ tan(∠𝐵𝐸𝐴) = 𝑥 tan (45° −
𝛼

2
). 

 

(e) The secant-tangent theorem tells us that 

 

𝑥2 = 𝐸𝐴2 = 𝐴𝐵 ⋅ 𝐴𝐶 = 𝐴𝐵(𝐴𝐵 + 𝐵𝐶). 

∎ 
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Problem 1. 

The bronze statue of the Marquis de Lafayette in Lafayette Square in Washington, D.C. is 11 ft 

high and the marble pedestal and granite foundation combined stands 25 ft high. 

 

 (i) How far away from the monument should a bug get in order to have the largest viewing  

  angle of Lafayette’s statue on top? 

 (ii) How far away from the monument should a tourist, whose eyes tourist’s eyes are 5. 6  

  feet above the ground, stand in order to have the largest viewing angle of Lafayette’s  

  statue on top? 

Solution 

(i) 

From Part (1) we know that the point of tangency of the circle which is tangent to the eye level 

of the bug (the ground) and contains the top (point 𝐶) and the bottom (point 𝐵) of the statue 

will determine the maximum viewing angle ∠𝐶𝐸𝐵.  And from Part (2) we know that the point of 

tangency 𝐸 on the tangent line 𝑡 (the ground) which achieves the maximum viewing angle will 

be a distance 𝑥 = √𝑎(𝑎 + 𝑏) from the monument where 𝑎 equals the distance from the bug’s 

eye level to the bottom of the statue and 𝑏 equals the height of the statue. 
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In this problem 𝑎 = 25 feet and 𝑏 = 11 feet.  Therefore, in order to maximize the viewing 

angle ∠𝐶𝐸𝐵, the bug should be a distance 𝑥 = √25(25 + 11) = 30 feet from the monument. 

 

(ii) 

The only parameter that changes is 𝑎.  Now 𝑎 equals the distance from the tourist’s eye level to 

the bottom of the statue.  
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In this situation, 𝑎 = 25 − 5. 6 = 19. 3. Therefore, in order to maximize the viewing angle 

∠𝐶𝐸𝐵, the tourist should stand 𝑥 = √19. 3 ⋅ (19. 3 + 11) ≈ 24.2 feet from the monument. 

∎ 

 

Problem 2. 

Tugboats Theodore and Hank start off positioned together at a point 𝑃 a mile due north of the 

harbormaster’s tower position at point 𝑄.  Then the tugboats take off together from point 𝑃 

traveling due east from the tower.  Theo goes 5 mph and Hank goes 15 mph. 

How long will it take until Theodore and Hank to reach the position where the angle of sight 𝜃 

between the tugboats is at a maximum from the harbormaster’s position in the tower?  What 

will the angle of sight 𝜃 be at that moment? 
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Solution 

Let 𝑎 miles be the distance that Tugboat Theodore has traveled when the angle 𝜃 is maximized.  

It follows that Tugboat Hank will have traveled 3𝑎 miles and the distance between the tugs will 

be 𝑏 = 3𝑎 − 𝑎 = 2𝑎 at that point.  From Part 2 of this section the distance between points 𝑃 

and 𝑄 will be 𝑥 = √𝑎(𝑎 + 𝑏) when 𝜃 is at its maximum value.  So, we can work backwards to 

find 𝑎 and 𝑏 when 𝜃 is at a maximum and 𝑥 = 1. 

1 = √𝑎(𝑎 + 𝑏) = √𝑎(𝑎 + 2𝑎) = √3𝑎2 = √3 ⋅ 𝑎 

or 

𝑎 =
1

√3
  and  𝑏 =

2

√3
. 

So, it will take the tugboats 

1/√3

5
≈ 0.115 hours ≈ 6.9 minutes 

for 𝜃 to reach its maximum value. 
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Let 𝛿 = ∠𝑃𝑄𝑇.  Then 

tan(𝛿) =
1/√3

1
  and tan(𝛿 + 𝜃) =

3/√3

1
⟹ 𝛿 = 30° and 𝛿 + 𝜃 = 60° 

at the moment when the angle of sight 𝜃 is maximized.  Therefore, 𝜃 = 30° is the maximum 

angle of sight. 

 


