
Tuesday Afternoon, 1st Hour 

 

Angle Between Adjacent Faces in a Regular Convex Polyhedron (i.e. Platonic solids) 

The goal of this lecture is to find a formula for the angle between adjacent faces in a regular 

convex polyhedron.  That is, the angle 𝐼 in the figure below. 

 

 

Theorem 

Let 𝑃 be a regular convex polyhedral where each face has 𝑚 sides and each vertex is formed by 

the intersection of 𝑛 planes. 

(In the above figure we can see that each face is a pentagon and hence 𝑚 = 5. We can also see 

that 𝑛 = 3 faces meet at each vertex.) 

Let 𝐼 be the interior measure of the angle between any two adjacent faces of the polyhedron.  

Then 

sin (
𝐼

2
) =

cos (
𝜋
𝑛)

sin (
𝜋
𝑚)

. 

 

 



The standard approach for deriving this result involves spherical trigonometry. 

Proof 

We need to put in some additional edges and vertices.  

(i) Let 𝐵𝐴 be an edge between two adjacent faces in the polyhedron. 

(ii) Let 𝐶 and 𝐷 be the center points of the two faces that share edge 𝐵𝐴. 

(iii) Let 𝐸 be the midpoint of edge 𝐵𝐴. 

(iv) Draw edges 𝐶𝐸 and 𝐷𝐸. 

(v) Draw edges 𝐵𝐷, 𝐴𝐷, 𝐵𝐶 and 𝐶𝐴. 

(vi) Label the angle ∠𝐶𝐸𝐷 as 𝐼. 

 

 

 

(vi) 

Let 𝒫 be the plane going through the three points 𝐶, 𝐷 and 𝐸.   
Draw the line in plane 𝒫 that is perpendicular to 𝐶𝐸. 
Draw the line in plane 𝒫 that is perpendicular to 𝐷𝐸. 
Let 𝑂 be the intersection point of these two new perpendicular lines in 𝒫. 

 



In the above diagram I’ve just draw in the segments 𝐶𝑂 and 𝐷𝑂 on these two new 

perpendicular lines. (It just gets too messy if I put the entire lines in.) 

Also, I did not include the label 𝐼 for ∠𝐶𝐸𝐷 for the same reason. 

 

(viii) 
Now create a sphere with center point 𝑂 whose radius is less than 𝑂𝐶.  
(The length of the radius does not matter except that it needs to be less 
than 𝑂𝐶.) 

(ix) 
Let 𝑐, 𝑎, 𝑒 be the points where 𝐶𝑂, 𝐴𝑂 and 𝐸𝑂 respectively intersect this 
sphere. 

(x) Draw the spherical triangle Δ𝑐𝑎𝑒. 

 

 



(xi) 

𝐶𝐸 and 𝐷𝐸 are perpendicular to 𝐴𝐵  (It is a standard result in high school 
geometry that a line drawn from a vertex (𝐶) of an isosceles triangle 

(Δ𝐶𝐴𝐵) that bisects the opposite side (𝐵𝐴) is perpendicular to the 
bisected side.) 
 

That is to say, 𝐶𝐸 ⊥ 𝐴𝐵 and 𝐷𝐸 ⊥ 𝐴𝐵.  (The symbol ⊥ is called the “perp” 
symbol in geometry and is used between two lines to indicate that those 
two lines are perpendicular.) 

(xii) 

𝐴𝐵 is perpendicular to the plane containing the points 𝐶, 𝐸 and 𝐷. 
 
To say that a line 𝑙 not in plane 𝒫 is perpendicular to plane 𝒫 means, by 
definition, that line 𝑙 is perpendicular to every line in plane 𝒫. 
 
A sufficient condition to establish that line 𝑙 is perpendicular to a plane is 
that 𝑙 is perpendicular to both of two intersecting lines in that plane at the 
point of intersection. For example, in the figure below, line 𝑙 not in 𝒫 is 
perpendicular to 𝒫 because 𝑙 is perpendicular to both of two intersecting 
lines 𝑎 and 𝑏 at their point of intersection 𝑂. 
 

 
 

(xiii) 

By construction 𝑂 is a point in the plane containing the three points 𝐶, 𝐷 

and 𝐸.  Hence 𝐸𝑂 is a line in that plane. Hence 𝐴𝐵 ⊥ 𝐸𝑂 by the result in 
(xii). 
 
That is, ∠𝐴𝐸𝑂 = 90°. 



(xiv) 

𝑂𝐶 is perpendicular to the face (plane) of the polyhedra that has center 

point 𝐶. We know by construction that 𝑂𝐶 ⊥ 𝐶𝐸 and we could start the 

whole process over with a different edge (other than 𝐵𝐴) of that same face 

to establish that 𝑂𝐶 is perpendicular to a second line going from 𝐶 to the 
midpoint of this different edge. Hence by the same reasoning as in the 

previous step, 𝑂𝐶 is perpendicular to every line in the face of the 
polyhedral that has center point 𝐶. 
 
In particular, it will relevant later that ∠𝑂𝐶𝐴 = 90°.  

(xiv) 

Let 𝒬 be the plane containing the points 𝐴, 𝐸 and 𝑂.   
 
We can see that ∠𝐴𝐸𝑂 = 90° is the angle between the planes 𝒫 
(containing the points 𝐷, 𝐸, 𝐶 and 𝑂) and 𝒬. [Remember the term for an 
angle between two planes is a dihedral angle.] 
 
And we can also see that great arc 𝑐𝑒⏜  is in 𝒫 and that great arc 𝑒𝑎⏜ is in 𝒬. 
 
But the dihedral angle between two planes each containing one of two 
intersecting great arcs is another way of defining the spherical angle 
between those great arcs. 
 
That is, the spherical angle between 𝑐𝑒⏜  and 𝑒𝑎⏜ is the same as the dihedral 
angle between 𝒫 and 𝒬 which equals ∠𝐴𝐸𝑂 = 90°. 
 
That is spherical ∢𝑎𝑒𝑐 = 90° and thus Δ𝑎𝑒𝑐 is a right spherical triangle.  

(xv) 

Now let 𝒲 be the plane containing the points 𝐴, 𝐶 and 𝑂. 
 
By the same reasoning as in (xiv) the spherical angle ∢𝑎𝑐𝑒 equals ∠𝐴𝐶𝐸, 
the dihedral angle between planes 𝒲 and 𝒫. 
 
But from symmetry we can establish that ∠𝐴𝐶𝐸 = 𝜋/𝑚 where 𝑚 is the 
number of sides in each face.  (See the argument below.) 
 
This shows  

∢𝑎𝑐𝑒 = ∠𝐴𝐶𝐸 = 𝜋/𝑚. 

(xvi) 

What can we say about ∢𝑐𝑎𝑒?  We will make another visual argument 
similar to the one that follows next for finding ∢𝑎𝑐𝑒 that will show that 
 

∢𝑐𝑎𝑒 = ∠𝐶𝐴𝐸 = 𝜋/𝑚. 

 

 



Visual Argument for Find ∠𝑨𝑪𝑬 (and hence ∢𝒂𝒄𝒆) 

Notice that in the dodecahedron below that ∠𝐴𝐶𝐸 will be one of 10 equal angles going round 

the point 𝐶 making up a complete circle. 

 

That is, in the case of the dodecahedron, 10 ⋅ ∠𝐴𝐶𝐸 = 2𝜋.  The number 10 comes from the fact 

that there are 5 sides in that face and there were two angles for each side. 

For general, when there are 𝑚 sides to each face we would have 

2𝑚 ⋅ ∠𝐴𝐶𝐸 = 2𝜋 

and thus 

∠𝐴𝐶𝐸 =
𝜋

𝑚
. 

 

 

  



Visual Argument to Find ∠𝑪𝑨𝑬 (and hence ∢𝒄𝒂𝒆) 

 

  
 

The goal is to find ∠𝐶𝐴𝐸 but for better visualization I will find ∠𝐶𝐵𝐸, which is equal because 

these are base angles of the isosceles triangle Δ𝐶𝐵𝐴. 

Again, for better visualization I got rid of the unnecessary center line 𝐶𝐸 and accordingly 

switched notation so ∠𝐶𝐵𝐸 became ∠𝐶𝐵𝐴. 

 

Next, we can see by symmetry that 

∠𝐶𝐵𝐴 =
1

2
∠𝐶𝐵𝐷. 



Note that the diagram above distorts the perspective some and make it look like ∠𝐶𝐵𝐷, ∠𝐶𝐵𝐹 

and ∠𝐹𝐵𝐷 are angles of a plane, but of course the vertex 𝐵 is elevated (in a sense) from 

vertices 𝐶, 𝐹, 𝐷.  So, we cannot just immediate conclude that 

∠𝐶𝐵𝐷 + ∠𝐶𝐵𝐹 + ∠𝐹𝐵𝐷 = 2𝜋. 

 

This turns out to be true, but we have to show why. 

 

To start, we have already made the argument why ∠𝐶𝐴𝐸 = ∢𝑐𝑎𝑒. 

 

 

 

 

If we had the patience for it, we could draw in the spherical angles ∢𝑐𝑏𝑒, ∢𝑐𝑏𝑑, ∢𝑐𝑏𝑓 and ∢𝑓𝑏𝑑 

and repeat the same arguments to establish that  

∠𝐶𝐵𝐸 = ∢𝑐𝑏𝑒,  ∠𝐶𝐵𝐷 = ∢𝑐𝑏𝑑,  ∠𝐶𝐵𝐹 = ∢𝑐𝑏𝑓 and ∠𝐹𝐵𝐷 = ∢𝑓𝑏𝑑. 

 Then we could note that 

∠𝐶𝐵𝐷 + ∠𝐶𝐵𝐹 + ∠𝐹𝐵𝐷 = ∢𝑐𝑏𝑑 + ∢𝑐𝑏𝑓 + ∢𝑓𝑏𝑑 

and when drawn as spherical angles it can immediately conclude that ∢𝑐𝑏𝑑, ∢𝑐𝑏𝑓 and ∢𝑓𝑏𝑑 

do form a complete circle around the spherical vertex 𝑏 and there sum is immediately 

seen to equal 2𝜋.  



Furthermore, because of the symmetry in a regular convex polyhedral each of these three 

angles must be equal. 

So, we can finally say that  

∠𝐶𝐵𝐷 = ∢𝑐𝑏𝑑 = 2𝜋/3. 

 

What about for the general convex polyhedron where each vertex is formed by the intersection 

of 𝑛 planes? The argument we have made does not depended on the fact that 𝑛 = 3 planes 

intersect at each vertex.  The argument is valid for general 𝑛. 

Retracing our steps from the original question we see that in general 

∠𝐶𝐴𝐸 = ∠𝐶𝐵𝐸 = ∠𝐶𝐵𝐴 =
1

2
∠𝐶𝐵𝐷 =

1

2
(

2𝜋

𝑛
) =

𝜋

𝑛
 

Hence, we also have ∢𝑐𝑎𝑒 = 𝜋/𝑛. 

 

To this point we have established that the right spherical triangle Δ𝑐𝑒𝑎 has ∢𝑎𝑒𝑐 = 𝜋/2, 

∢𝑎𝑐𝑒 = 𝜋/𝑚 and ∢𝑐𝑎𝑒 = 𝜋/𝑛. 

 

Now consider the special case (R8) of the spherical Pythagorean Theorem which in the notation 

of this problem states that 

cos(∢𝑐𝑎𝑒) = sin(∢𝑎𝑐𝑒) ⋅ cos (
𝑐𝑒⏜

𝑟
). 

We have taken 𝑟 = 1 for this problem so this will become 

cos (
𝜋

𝑛
) = sin (

𝜋

𝑚
) ⋅ cos(𝑐𝑒⏜ ) 

 

∠𝐸𝑂𝐶 is the the central angle that corresponds to 𝑐𝑒⏜ . Thus, 𝑐𝑒⏜ = ∠𝐸𝑂𝐶 ⋅ 𝑟 = ∠𝐸𝑂𝐶. 

 

We already have established that Δ𝑂𝐶𝐸 is a right angle.  Therefore  

∠𝑂𝐸𝐶 =
𝜋

2
− ∠𝐶𝐸𝑂. 

cos (
𝜋

𝑛
) = sin (

𝜋

𝑚
) ⋅ cos(𝑐𝑒⏜ ) 



= sin (
𝜋

𝑚
) ⋅ cos(∠𝐸𝑂𝐶) 

= sin (
𝜋

𝑚
) ⋅ cos (

𝜋

2
− ∠𝑂𝐸𝐶) 

 

Now look back to the beginning of this lecture to see how we defined 𝐼, the angle between two 

adjacent faces in our convex regular polyhedral. 

 
 

 

Looking at these two figures sided by side we can see that ∠𝑂𝐸𝐶 =
𝐼
2. 

 

So, we can conclude that 

cos (
𝜋

𝑛
) = sin (

𝜋

𝑚
) ⋅ cos (

𝜋

2
− ∠𝑂𝐸𝐶) 

= sin (
𝜋

𝑚
) ⋅ sin(∠𝑂𝐸𝐶) 

= sin (
𝜋

𝑚
) ⋅ sin (

𝐼

2
) 

or 

sin (
𝐼

2
) =

cos (
𝜋
𝑛)

sin (
𝜋
𝑚)

. 

∎ 



Insphere and Circumsphere 

We can use this last result to find the radius 𝑟 of the insphere (the largest sphere that fits inside) 

of a regular polyhedron and the radius 𝑅 of the circumsphere (the smallest sphere that 

surrounds) of a regular polyhedron. 

Using the notation in our previous diagram, 

 

the radius 𝑟 of the insphere is 𝑂𝐶 and the radius 𝑅 of the circumsphere is 𝑂𝐴. 

 

Finding 𝒓. 

Consider the right triangle Δ𝐶𝐸𝐴 (with right angle at 𝐸). It follows from this triangle that 

𝐶𝐸 = 𝐴𝐸 ⋅ cot(∠𝐴𝐶𝐸) = 𝐴𝐸 ⋅ cot (
180°

𝑚
) 

Now consider the right triangle Δ𝑂𝐶𝐸 (with right angle at 𝐶). It follows from this triangle that 

 

𝑟 = 𝑂𝐶 = 𝐶𝐸 ⋅ tan(∠𝐶𝐸𝑂) = 𝐶𝐸 ⋅ tan (
𝐼

2
) = 𝐴𝐸 ⋅ cot (

180°

𝑚
) ⋅ tan (

𝐼

2
). 

 

  



Finding 𝑹. 

Looking again at our previous figure we can see that the central angle associated with great arc 

𝑎𝑐⏜ is ∠𝐶𝑂𝐴.  Hence, 𝑎𝑐⏜ = (radius of the sphere) ⋅ ∠𝐶𝑂𝐴.  And as we are assuming our sphere 

has radius 1 we have 𝑎𝑐⏜ = ∠𝐶𝑂𝐴. 

 

Thus, 

cos(𝑎𝑐⏜) = cos(∠𝐶𝑂𝐴) =
𝑂𝐶

𝑂𝐴
=

𝑟

𝑅
. 

 

Now look back at the Pythagorean relationship (R10) for right spherical triangles. 

 

(R10) 
 
 

cos (
𝑐

𝑟
) = cot(𝐴) cot(𝐵) 

 
where again we have 𝑟 = 1 in this problem. 

 

 

Applied to the right spherical triangle Δ𝑎𝑒𝑐 with spherical right angle at 𝑒, we find  

cos(𝑐𝑎⏜) = cot(∢𝑐𝑎𝑒) ⋅ cot(∢𝑎𝑐𝑒). 



But we have already established that  

∢𝑐𝑎𝑒 = 180°/𝑛   and   ∢𝑎𝑐𝑒 = 180°/𝑚. 

Therefore, 

cos(𝑐𝑎⏜) = cot (
180°

𝑛
) ⋅ cot (

180°

𝑚
) 

and 

𝑟

𝑅
= cot (

180°

𝑛
) ⋅ cot (

180°

𝑚
). 

 

Solving for 𝑅, we have 

𝑅 = tan (
180°

𝑛
) ⋅ tan (

180°

𝑚
) ⋅ 𝑟 

= tan (
180°

𝑛
) ⋅ tan (

180°

𝑚
) ⋅ 𝐴𝐸 ⋅ cot (

180°

𝑚
) ⋅ tan (

𝐼

2
) 

= 𝐴𝐸 ⋅ tan (
180°

𝑛
) ⋅ tan (

𝐼

2
). 

∎ 

  



Central Angle in a Tetrahedron 

  

 

You might have seen this molecular structure on the right side in your chemistry class, its 

methane, CH4.  What is the bond angle in methane?  

We can take advantage of the work we put into angles and radii of the general regular 

polyhedral to solve this chemistry problem. 

We just determined that the formula for the radius 𝑅 of the circumsphere is 

𝑅 = 𝐴𝐸 ⋅ tan (
180°

𝑛
) ⋅ tan (

𝐼

2
) 

with 

sin (
𝐼

2
) =

cos (
180°

𝑛 )

sin (
180°

𝑚 )
 

 

and where 𝐴𝐸 is half of the length of an edge, 𝑛 is the number of planes that meet at a vertex 

and 𝑚 is the number sides a face has. 

In the case of a tetrahedron we can see by inspection that 𝑛 = 3 and 𝑚 = 3.  Therefore, 



sin (
𝐼

2
) =

cos (
180°

𝑛 )

sin (
180°

𝑚 )
=

cos(60°)

sin(60°)
=

1/2

√3/2
=

1

√3
. 

Hence 

𝐼

2
= cos−1 (

1

√3
). 

Therefore, 

tan (
𝐼

2
) = tan (cos−1 (

1

√3
) ) =

1

√3

√1 − (
1

√3
)

2

=

1

√3

√2

√3

=
1

√2
. 

 

 

So, in the case of a tetrahedron the radius 𝑅 of the circumsphere is 

𝑅 = 𝐴𝐸 ⋅ tan(60°) ⋅
1

√2
= 𝐴𝐸 ⋅

√3

√2
= 𝐴𝐸 ⋅

√6

2
. 

Our updated diagram looks as follows. 

 

  



We can use the (planar) Law of Cosines to solve for this missing angle. 

(2 ⋅ 𝐴𝐸)2 = (𝐴𝐸 ⋅
√6

2
)

2

+ (𝐴𝐸 ⋅
√6

2
)

2

− 2 (𝐴𝐸 ⋅
√6

2
) (𝐴𝐸 ⋅

√6

2
) cos(𝜔) 

 

4 =
6

4
+

6

4
− 2 (

6

4
) cos(𝜔) 

1 = −3 cos(𝜔) 

cos(𝜔) =
1

−3
 

𝜔 = cos−1(−1/3) ≈ 109.4712206°. 

 

Homework 

 

  



 



 

 


