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Tuesday Morning, 2nd Hour, June 25 

 

Seeing how nice the formulas for a spherical triangle and more generally a spherical 𝑛-gon 

worked out, perhaps there are other regions on a sphere with equally nice formulas. 

There are! And their discovery dates back to the wizard of Syracuse.  

No not Frank Baum of the Wizard of Oz fame who spent much of his life around the corner from 

Syracuse University, but the other wizard of Syracuse, Archimedes, the ancient mathematician, 

engineer, astronomer, physicist and inventor spent his entire life in Syracuse (Sicily).  

 

Amazingly, Archimedes was able to prove that the above two bands have equal areas using 

physical principles of equal weight. His insight allows us to answer the following problems that 

are usually place under the aegis of integral calculus. 

(1) What percentage of the earth’s surface lies between the Tropic of Cancer (latitude 

23.43611°𝑁) and the Tropic of Capricorn (latitude 23.4311°𝑆)? 
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Solution 

Because the angular distance between the Tropic of Cancer and the Equator is 23.43611° we 

know that the associated central angle 𝜃 in the diagram below has angular distance 23.43611°. 

 

 

It follows that the height ℎ of associated right triangle equals 𝑟 sin(𝜃) = 𝑟 sin(23.43611). 

 

ℎ = 𝑟 sin(𝜃) 

Hence the zone between the Tropic of Cancer and Tropic of Capricorn must have height 

2ℎ = 2𝑟 sin(23.43611). 

It follows that this tropical zone makes up 

𝜽 
𝒉 

𝒓 
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Area of spherical zone

Area of entire sphere
⋅ 100% =

2𝜋𝑟(2ℎ)

2𝜋𝑟(2𝑟)
⋅ 100% 

=
ℎ

𝑟
⋅ 100% = sin(23.43611) ⋅ 100% 

= 39.77262159% 

of the Earth’s surface 

∎ 

 

(2) How many square miles of the Earth’s surface can Snoopy see from his flying doghouse if he 

is in orbit 50 miles above the surface?  Take the radius of the Earth as 3,958.8 miles. 

 

The shaded cap is Snoopy’s horizon circle.  He can see all of the Earth inside the horizon circle 

and none of the Earth outside the horizon circle.  A line from Snoopy to a point of the horizon 

circle is therefore tangent to the sphere. 
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Solution 

The value we need to find first is the length of 𝐶𝐷, the height of the spherical zone in this 

problem. 

Note: The result of Archimedes, that 

 

 

these two shaded bands have the same area is true even if we take them to the top of the 

cylinder and sphere. In the case when the band (zone) is at the top of the sphere it becomes a 

cap (that is the term used in solid geometry). 

So we need to find 𝐶𝐷, the height of the cap on the sphere. 
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Because 𝐴𝐵 is tangent to the sphere (by definition of a horizon) we know that 𝑂𝐵 is 

perpendicular to 𝐴𝐵 (radii are necessarily perpendicular to tangents). So Δ𝐴𝑂𝐵 is a right 

(planar) triangle. 

 

We see that 𝑂𝐶 = 3,958.8 because it is a radius of the Earth. And we are given that 𝐴𝐶 = 50.  

Therefore, 𝑂𝐴 = 4008.8 miles. And we know 𝑂𝐵 = 3,958.8 because it is also a radius of the 

Earth.  Using (plane) trigonometry we can determine that 

cos(∠𝐴𝑂𝐵) =
𝑂𝐵

𝑂𝐴
=

3958.8

4008.8
 

and 

∠𝐴𝑂𝐵 = cos−1 (
3958.8

4008.8
) = 9.058741573°. 

 

But we can see that ∠𝐵𝑂𝐸 = 90° − ∠𝐴𝑂𝐵.  Therefore 

cos(∠𝐵𝑂𝐸) = cos(90° − 9.058741573°) =
𝑂𝐸

𝑂𝐵
 

and 

𝑂𝐸 = 𝑂𝐵 ⋅ cos(90° − 9.058741573°) = 3958.8 ⋅ (0.1574469941) = 623.3011602. 
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Therefore 𝐷𝐵 = 𝑂𝐸 = 623.3011602.  Finally, we can see that 

  

∠𝐴𝐵𝐷 = 90° − ∠𝐷𝐴𝐵 = ∠90° − (90° − ∠𝐴𝑂𝐵) = ∠𝐴𝑂𝐵 = 9.058741573°. 

Therefore,  

𝐴𝐷 = tan(∠𝐴𝐵𝐷) ⋅ 𝐵𝐷 

= tan(9.058741573°) ⋅ 623.3011602 

= 99.37637194 miles. 

So, 

𝐶𝐷 = 𝐴𝐷 − 𝐶𝐴 = 99.37637194 − 50 = 49.37637194 miles. 

 

Plugging this into the result from Archimedes, we have that the area that Snoopy can see is 

2𝜋𝑟 ⋅ ℎ = 2𝜋(3958.8)(49.37637194) 

= 1,228,181.654 square miles. 

 

I wonder if the lyric “I can see for miles and miles and miles and miles and miles” is playing in 

Snoopy’s head (like it is mine)? 

Does anybody knno Who sang that? 

 

To give this result some perspective, what percentage of the Earth’s surface would Snoopy be 

able to see? 

1228181.654

4𝜋(3958.8)2
⋅ 100 ≈ 0.6 %. 

Don’t let the diagram fool you.  It is not drawn to scale. If it was drawn to scale then Snoopy’s 

50 mile altitude would be negligible off the surface of the Earth. 

I guess Snoopy will have to go much higher if we wants to see more of the world. 

∎ 
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This begs the question, how much higher? So, here’s the next question.  

 

Suppose you want to place a satellite into orbit so that it can see 100 ⋅ 𝑝 % of Earth. How many 

miles high would the satellite have to be? 

Solution 

Archimede’s formula for the area of a spherical cap is 2𝜋𝑟ℎ𝑡 where 𝑟 is the radius of Earth and 

ℎ𝑡 is the vertical height of the cap when the satellite is 𝑡 miles above the surface. 

[We are adding the subscript to ℎ making it ℎ𝑡 to make it clear that ℎ is a function of 𝑡.] 

We will continue with the notation from the last problem only leaving 𝑡 general (instead of 50 

miles as in the last problem).  

cos(∠𝐴𝑂𝐵) =
𝑂𝐵

𝑂𝐴
=

𝑟

𝑟 + 𝑡
(1) 

∠𝐴𝑂𝐵 = cos−1 (
𝑟

𝑟 + 𝑡
) (2) 

𝑂𝐸

𝑂𝐵
= cos(∠𝐵𝑂𝐸) = cos(90° − ∠𝐴𝑂𝐵) = sin(∠𝐴𝑂𝐵) (3) 

= sin (cos−1 (
𝑟

𝑟 + 𝑡
) ) = √1 − (

𝑟

𝑟 + 𝑡
)

2

. 

 

[Remember that in general, sin(𝑐𝑜𝑠−1(𝜃)) = √1 − 𝜃2.] 

 

𝑂𝐸 = 𝑂𝐵 ⋅ cos(∠𝐵𝑂𝐸) = 𝑟√1 − (
𝑟

𝑟 + 𝑡
)

2

(4) 

=
𝑟

𝑟 + 𝑡
√(𝑟 + 𝑡)2 − 𝑟2 

 

𝐷𝐵 = 𝑂𝐸 =
𝑟

𝑟 + 𝑡
√(𝑟 + 𝑡)2 − 𝑟2 (5) 

 

∠𝐴𝐵𝐷 = ∠𝐴𝑂𝐵 = cos−1 (
𝑟

𝑟 + 𝑡
) (6) 
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𝐴𝐷 = tan (cos−1 (
𝑟

𝑟 + 𝑡
)) ⋅ (

𝑟

𝑟 + 𝑡
) ⋅ √(𝑟 + 𝑡)2 − 𝑟2 (7) 

=
√(𝑟 + 𝑡)2 − 𝑟2

𝑟
⋅ (

𝑟

𝑟 + 𝑡
) √(𝑟 + 𝑡)2 − 𝑟2 

=
(𝑟 + 𝑡)2 − 𝑟2

𝑟 + 𝑡
 

 

ℎ𝑡 = 𝐶𝐷 = 𝐴𝐷 − 𝐶𝐴 =
(𝑟 + 𝑡)2 − 𝑟2

𝑟 + 𝑡
− 𝑡 (8) 

=
(𝑟 + 𝑡)2 − 𝑟2 − 𝑡(𝑟 + 𝑡)

𝑟 + 𝑡
 

=
𝑟𝑡

𝑟 + 𝑡
. 

 

So, at height 𝑡 the spherical cap for the satellite will have area 

2𝜋𝑟ℎ𝑡 = 2𝜋𝑟 (
𝑟𝑡

𝑟 + 𝑡
). 

and at height 𝑡 the satellite can see 

2𝜋𝑟ℎ𝑡

4𝜋𝑟2
⋅ 100% =

2𝜋𝑟 (
𝑟𝑡

𝑟 + 𝑡)

4𝜋𝑟2
⋅ 100% =

𝑡

2(𝑟 + 𝑡)
⋅ 100% 

of the Earth. 

 

Just as a check we note that all the results from the previous particular case when 𝑡 = 50 

comport with these general results. 

ℎ50 =
3958.8 ⋅ 50

3958.8 + 50
= 49.37637198 

2𝜋𝑟ℎ50 = 2𝜋(3958.8)(49.37637198) = 1228181.655 

100 ⋅
2𝜋𝑟ℎ50

4𝜋𝑟2
= 100 ⋅

ℎ50

2𝑟
= 100 ⋅

49.37637198

2(3958.8)
= 0.6236280183. 
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Euler’s Polyhedral Formula 

Let 𝑃 be a convex polyhedral.  Let 𝑣 be the number of vertices, 𝑒 be the number of edges and 𝑓 

be the number of faces of 𝑃. 

So, for example, 

 

 Name 
Number of 
Vertices, 𝑣 

Number of 
Edges, 𝑒 

Number of 
Faces, 𝑓 

 

Tetrahedron 4 6 4 

 

Hexahedron 
(cube) 

8 12 6 

 

Octohedron 
 

6 12 8 

 

Suppose the edges and faces of a convex polyhedron were stretchable and that you somehow 

could blow air into the polyhedron evenly in all directions so it would stretch but not lose its 

general shape.  What would happen? 
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You would get a sphere that was “tiled” with spherical polygons. But notice that while the 

shape has changed from a polyhedron to a sphere, the number of edges, the number of faces 

and the number of vertices is the same in both shapes. 

For convenience let’s assume the sphere generated has a radius 𝑟 = 1. 

Let 𝑣, 𝑒 and 𝑓 denote the number of vertices, edges and faces of 𝑃 respectively.  Let 

𝑅1, 𝑅2, … , 𝑅𝑓 be the spherical polygons covering the sphere. 

These spherical polygons together make up the entire sphere with no overlapping regions.  

Therefore, 

Area(𝑅1) + Area(𝑅2) + ⋯ + Area(𝑅𝑓) = Area(sphere) 

Let 𝑛𝑖  be the number of edges of 𝑅𝑖 and let 𝛼𝑖𝑗
, 𝑗 = 1,2, … , 𝑛𝑖, be the number of degrees in the 

𝑗𝑡ℎ interior angle of 𝑅𝑖. 

Now think back to our previous example on the area of a spherical penetagon.  Recall how as 

part of that derivation we showed 

Area of Spherical Pentagon = (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 + 𝛽5 − 3𝜋)𝑟2. 

 

 
 

Using that same approach we now have 
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𝐴𝑟𝑒𝑎(𝑅𝑖) = (∑ (𝛼𝑖𝑗
)

𝑛𝑖

𝑗=1

) − (𝑛𝑖 − 2)𝜋 

Therefore, 

Area(sphere) = ∑ Area(𝑅𝑖)

𝑓

𝑖=1

 

= ∑ ((∑ (𝛼𝑖𝑗
)

𝑛𝑖

𝑗=1

) − (𝑛𝑖 − 2)𝜋)

𝑓

𝑖=1

 

= ∑ (∑ (𝛼𝑖𝑗
)

𝑛𝑖

𝑗=1

)

𝑓

𝑖=1

− ∑(𝑛𝑖𝜋)

𝑓

𝑖=1

+ ∑(2𝜋)

𝑓

𝑖=1

. 

 

Let’s consider each of these three terms separately: 

The first term is summing the degrees of all angles of all spherical polygons. 

The second term can be written as 

∑(𝑛𝑖𝜋)

𝑓

𝑖=1

= 𝜋 ∑ 𝑛𝑖

𝑓

𝑖=1

= 𝜋 ∑(Number of edges in the ith spherical polygon)

𝑓

𝑖=1

 

=
?

𝜋 ⋅ Number of edges in the entire spherical polygon. 

 

But are we double counting here? Yes. Adding the number of edges in each spherical polygon 

double counts the total number of edges because each edge occurs in exactly two polygons. 
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Notice how every edge in the above spherical polygon occurs in exactly one red shaded 

spherical triangle and exactly one yellow shaded spherical triangle. 

So, 

∑(Number of edges in the ith spherical polygon)

𝑓

𝑖=1

 

= 2 ⋅ Total Number of Edges 

= 2𝑒. 

Hence, 

∑(𝑛𝑖𝜋)

𝑓

𝑖=1

= 2𝜋𝑒. 

What about the third term? 

∑(2𝜋)

𝑓

𝑖=1

= 2𝜋 + 2𝜋 + ⋯ + 2𝜋 = 2𝜋𝑓. 

That is, the third term is just adding 𝑓 copies of 2𝜋. 

 

Let’s look again at the first term. We noted that the first term is the sum of the degrees of all 

angles in the entire spherical polygon. 

So somewhere in that global sum we would be including 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4. 

 

But what does this sum equal?  When you combine these spherical angles you are getting one 

entire circle.  That is, 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 2𝜋. 

And if we did this at every single vertex we would always get 2𝜋. 

𝝀𝟏 𝝀𝟐 

𝝀𝟑 𝝀𝟒 
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Hence, 

∑ (∑ (𝛼𝑖𝑗
)

𝑛𝑖

𝑗=1

)

𝑓

𝑖=1

= 

= Sum of the degrees of all spherical angles in the entire spherical polygon 

= 2𝜋 + 2𝜋 + 2𝜋 + ⋯ + 2𝜋 

= 2𝜋 ⋅ (number of vertices in the spherical polygon) 

= 2𝜋𝑣 

 

Bringing this all together, we’ve just concluded that 

Area(sphere) = ∑ (∑ (𝛼𝑖𝑗
)

𝑛𝑖

𝑗=1

)

𝑓

𝑖=1

− ∑(𝑛𝑖𝜋)

𝑓

𝑖=1

+ ∑(2𝜋)

𝑓

𝑖=1

 

= 2𝜋𝑣 − 2𝜋𝑒 + 2𝜋𝑓 

where 𝑣, 𝑒 and 𝑓 denote the number of vertices, edges and faces in the spherical polygon. 

 

But we also know that in general Area(sphere) = 4𝜋𝑟2 and because we have taken 𝑟 = 1 in 

this problem, we have 

4𝜋 = Area(sphere) = 2𝜋𝑣 − 2𝜋𝑒 + 2𝜋𝑓 

or after cancelling where we can we have 

𝑣 − 𝑒 + 𝑓 = 2 

for the sphere covered by spherical polygons. 

 

But what about for the original polyhedron we started with before we “pumped air” into it to 

turn it into a sphere covered with spherical polygons? 

 

Remember we already noticed that the values of 𝑣, 𝑒 and 𝑓 are the same for the polyhedron as 

for the sphere covered with spherical polygons. 

That is, 
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𝑣 − 𝑒 + 𝑓 = 2 

is true for the polyhedron as well as for sphere covered with spherical polygons. 

Conclusion:  

Euler’s Polyhedral Formula. If a convex polyhedron with 𝑣 vertices, 𝑒 edges and 𝑓 faces, it is 
always true that 

𝑣 − 𝑒 + 𝑓 = 2. 

 

If you are paying heed to every word you might have noticed we glossed over the word 

“convex” in a convex polyhedron. 

What is convex? In this context it (roughly) means that none of the faces (sides) of the 

polyhedron are pushed inwards towards the center. 

What goes wrong if some side(s) are pushed inwards?  

For one thing, the idea of “pumping air” into the polyhedron to turn it into a sphere covered 

with spherical polygons does not work.   

The pushed in part(s) don’t get pushed out to form a sphere and the whole argument fails. 

By the way, does Euler’s Polyhedral Formula give the correct result for the three convex 

polyhedron we began the proof with. Namely the tetrahedron, the cube and the octahedron. 

Let’s check. 

 

 Name 
Number of 
Vertices, 𝑣 

Number of 
Edges, 𝑒 

Number of 
Faces, 𝑓 

𝑣 − 𝑒 + 𝑓 

 

Tetrahedron 4 6 4 
4 − 6 + 4
= 𝟐 

 

Hexahedron 
(cube) 

8 12 6 
8 − 12 + 6
= 𝟐 
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Octohedron 6 12 8 
6 − 12 + 8
= 𝟐 

 

Success! 
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Exactly 5 Platonic Solids 

If 𝑉 is the number of vertices in a Platonic solid and 𝐹 is the number of faces, and if each vertex 

has degree 𝑑 and each face has degree 𝑘, then  

 

𝑑𝑉 = 2𝐸 and 𝑘𝐹 = 2𝐸  

 

𝑉 = (
2

𝑑
) 𝐸 and 𝐹 = (

2

𝑘
) 𝐸, and then plug them into Euler's Formula, 𝑉 + 𝐹 − 𝐸 = 2, to get  

 

(
2

𝑑
+

2

𝑘
− 1) 𝐸 = 2 

 

But 𝐸 is positive, and so is 2. Thus (
2

𝑑
+

2

𝑘
− 1) must be positive. That is,  

2

𝑑
+

2

𝑘
> 1. 

Now, you can turn this into 

(𝑑 − 2)(𝑘 − 2) < 4. 

 

A polyhedron cannot have faces with fewer sides than a triangle, so 𝑘 is greater than or equal 

to 3.  

Furthermore, a polyhedron cannot have a vertex of degree 1 or 2.  So 𝑑 is greater than or equal 

to 3.  

If 𝑘 = 3, then 

(𝑑 − 2)(3 − 2) < 4 

𝑑 − 2 < 4 

𝑑 < 6 or 𝑑 ≤ 5. 

 

Similarly, 𝑘 ≤ 5.  So there are only a handful of possible cases for 𝑑 and 𝑘. At this point we have 

3 ≤ 𝑑 ≤ 5 and 3 ≤ 𝑘 ≤ 5. 
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Investigate all nine of these possibilities. It will turn out that only five of these nine actually 

generate a solid. 

For example, the case 𝑑 = 5, 𝑘 = 5 is not possible because in this case 

2

𝑑
+

2

𝑘
≯ 1. 

Similarly, (𝑑 = 5, 𝑘 = 4), (𝑑 = 4, 𝑘 = 5) and (𝑑 = 4, 𝑘 = 4) are not possible. 

 

The remaining five possibilities generate the five Platonic solids. 

∎ 

 

 

 

Anybody play Dungeons and Dragons?  
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P.S. 

If you want a fun summer read that has a mathematical element to it, consider Amir Aczel’s  

Descartes' Secret Notebook : A True Tale of Mathematics, Mysticism, and the 

Quest to Understand the Universe 

Euler’s Polyhedral formula 𝑣 − 𝑒 + 𝑓 = 2 is central to the book. It isn’t often that a result in 

mathematics generates such adventure and intrigue as this result has. 

  

 

Homework 

(1) Find the area in square miles of the Earth’s surface within the Arctic Circle (circle of latitude 

66°32′𝑁). 

(2) How high does a satellite have to be in order to see both Los Angeles and New York City? 


