Surds

Numbers like $\sqrt{4}, \sqrt{7}, \sqrt{5}$ are called surds.
We notice that:

- $\sqrt{4} \times \sqrt{9}=2 \times 3=6$
- $\sqrt{4 \times 9}=\sqrt{36}=6$
- Hence, $\sqrt{4} \times \sqrt{9}=\sqrt{4 \times 9}$
- In general, $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$
- Similarly it can be shown that, $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$

Some other points to note:

- Surds like \sqrt{n} are irrational unless n is a perfect square.
- Similarly, $\sqrt[3]{m}$ is irrational unless m is a perfect cube.

We normally don't express a fraction with a surd in the denominator. So $\frac{a}{\sqrt{b}}$ will normally be expressed as $\frac{a \sqrt{b}}{b}$, because: $\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}$. This process is called 'rationalising the denominator'.

A common mistake occurs when we incorrectly write $\sqrt{4}= \pm 2$.
$\sqrt{4}$ means 'the positive square root of 2 ' and so $\sqrt{4}=2$.
If $x^{2}=4$, we can conclude that $x=+\sqrt{4}$ or $-\sqrt{4}$. Hence $x=+2$ or -2 .

1. Sort the numbers below into four pairs of equal value:

$$
\sqrt{20}, \quad \sqrt{12}, \quad \sqrt{3}, \quad 2 \sqrt{3}, \quad 2, \quad \sqrt{10} \times \sqrt{2}, \quad \frac{\sqrt{20}}{\sqrt{5}}, \quad \frac{\sqrt{15}}{\sqrt{5}}
$$

2. Answer true or false:
a) $\sqrt{28}=2 \sqrt{7}$
b) $\sqrt{4}+\sqrt{4}=\sqrt{8}$
c) If $x^{2}=9, x=3$
d) $\frac{\sqrt{8}}{2}=\sqrt{2}$
e) $(\sqrt{2})^{4}=4$
f) $\sqrt{2}+\sqrt{2}=2 \sqrt{2}$
g) $\sqrt{100}= \pm 10$
h) $(1+\sqrt{3})^{2}=4+2 \sqrt{3}$
3. Simplify:
a) $(1+\sqrt{2})^{2}$
b) $(2-\sqrt{3})^{2}$
c) $(\sqrt{2}+2)^{2}$
d) $(\sqrt{18}-\sqrt{2})^{2}$
e) $\sqrt{8} \times \sqrt{2}$
f) $\sqrt{300}$
g) $\sqrt{18} \times 3$
h) $\sqrt{20}+\sqrt{45}$
i) $\sqrt{75}-\sqrt{48}$
j) $\frac{\sqrt{27}}{\sqrt{12}}$
k) $\frac{\sqrt{125}}{\sqrt{20}}$
l) $\sqrt{5}+4 \sqrt{5}$
4. Rationalise the denominators of these fractions:
a) $\frac{8}{\sqrt{2}}$
b) $\frac{12}{\sqrt{3}}$
c) $\frac{12}{\sqrt{8}}$
d) $\frac{1}{\sqrt{7}}$
5. Rationalise the denominator of $\frac{4}{\sqrt{2}+1}$ by multiplying the numerator and denominator by $(\sqrt{2}-1)$.
6. Use the same approach from Question 5 to simplify:
a) $\frac{4}{(\sqrt{3}+1)}$
b) $\frac{1}{(\sqrt{5}+2)}$
c) $\frac{10}{(\sqrt{7}-2)}$
