Exponents and Powers

- 1. Find the value of 9^3 .
- 2. 9^3 can be written as $9 \times 9 \times 9$. But it can also be written as: $a \times a \times a \times a \times a \times a \times a$. Find the value of a.
- 3. Work out the values of: 1^3 , $(-1)^4$, $(-1)^5$. Can you fill in the blanks?
 - a) $1^{any\ number} =$
 - b) $(-1)^{odd \ number} = ____$
 - c) $(-1)^{even\ number} = \underline{\hspace{1cm}}$
- 4. Express the following in exponential form:
 - a) $5 \times 5 \times 7 \times 7 \times 7$
 - b) $2 \times 2 \times a \times a$
- 5. Express the following numbers using exponential notation:
 - a) 343
 - b) 3125
- 6. Identify the greater number:
 - a) $5^3 \text{ or } 3^5$
 - b) $2^8 \text{ or } 8^2$
 - c) $100^2 \text{ or } 2^{100}$
 - d) $9 \times 10^{16} \ or \ 3 \times 10^{17}$
- 7. Express the following numbers as a product of powers of their prime factors:
 - a) 405
 - b) 3600
- 8. Simplify:
 - a) $3^2 \times 10^4$
 - b) $-3 \times (-2)^3$
 - c) $(-3)^2 \times (-10)^3$

Laws of Exponents

Take different values of *a*, *b*, *m* and *n* to verify if the following statements (9 to 12) are true.

- 9. $a^m \times a^n = a^{m+n}$
- 10. $a^m \div a^n = a^{m-n}$
- 11. $(a^m)^n = a^{mn}$
- 12. $a^m \times b^m = (ab)^m$
- 13. Can you suggest a reason why $a^0 = 1$?
- 14. Can you prove that $a^{-m} = \frac{1}{a^m}$?