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in Random Economies

Abstract

Antràs and Chor (2018) put forth a “puzzling” finding in which the country level upstream-

ness had a strong positive correlation with downstreamness over the period 1995-2011, with

a slope of approximately +1. Where upstreamness and downstreamness respectively mea-

sure the average distance from final consumption and from primary inputs of an industry or

country in global value chains, which can be computed using global Input/Output tables,

e.g. from the World Input Output Database (WIOD). This paper presents a sparse random

model of Input/Output tables, where each element of the table is defined as the product

of a Bernoulli random variable and a Pareto random variable, further extending the model

developed in Bartolucci et al. (2023). It is shown that even for cases of high sparsity in the

random model, the correlation slope approaches +1 as the number of industries (or coun-

tries) increases. Further validating the results in Bartolucci et al. (2023) that the perfectly

positive correlation between upstreamness and downstreamness is rather an inevitable out-

come due to the structural constraints of non-negative entries and substochastic rows of the

matrices used in the definition of upstreamness and downstreamness, which are derived from

Input/Output tables, than a result from the specific structural relationship of Input/Output

tables.

i



Contents

1 Introduction 2

2 Overview of Input-Output Analysis 4

3 Upstreamness & Downstreamness 5

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Rank-1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 The Random Model 12

4.1 Covariance & Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Results 16

5.1 Limit of Large N : p of O( 1
N ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Numerical Simulations 25

7 Discussion 31

8 Conclusion 33

A Report Code 35

1



1 Introduction

Global value chains (GVCs) are an integral process of the global economy, undergoing dramatic

structural change in the past 40 years and even more so recently as the shocks to GVCs caused

by the pandemic are reconciled by the global economy. Hence, it is imperative to understand

the role GVCs have in determining the flows of exchange in both goods and money at different

levels of granularity in the global economy, from industrial sectors to countries. Input/Output

analysis, developed by W. Leontief (Leontief, 1936, 1986), is often used when faced with the

challenge of analysing GVCs at both an intranational and international basis. Furthermore,

the increasing availability of detailed data collected to form Input/Output (I-O) tables of the

global economy at the industrial sector level, such as the World Input Output Database (WIOD)

(Timmer et al., 2015), has facilitated the recent development of measures used to capture key

elements from the complexity of GVCs.

In particular, Antràs and Chor (2012), Miller and Temurshoev (2015), and Fally (2012)

developed measures of upstreamness, which measures the position of an industrial sector or

country along the output supply chain1, and downstreamness, which measures the distance

of an industrial sector or country from primary factors of production (value-added, i.e. raw

materials) along the input supply chain2. In more recent work by Antràs and Chor (2018),

the author’s posited a “puzzling” finding in which there is a strong positive correlation be-

tween upstreamness and downstreamness3 approximately equal to +1 and remains constant

over time. Such a relation is “puzzling” due to the theory of comparative advantage. Partic-

ularly as represented by that of the Heckscher-Ohlin model, in which the theory suggests that

internationally traded goods are indirectly related to the natural endowment of country specific

factors of production, such as land, labour, and capital. Therefore, under such a model, inter-

national trade can be viewed as indirect factor arbitrage (Leamer, 1995). Thus, as proposed by

Antràs and Chor (2018), given this theory of international trade, one would expect that coun-

tries with a comparative advantage in natural resources would have increasingly specialised in

early stage production, which would place them more downstream than upstream, and vice

versa for countries with a comparative advantage in late stage production processes that are

closer to final demand. Therefore, one would expect a weakly positive or negative correlation

between upstreamness and downstreamness that would become less correlated over time. How-

ever, as shown by Antràs and Chor (2018), the actual correlation between upstreamness and

downstreamness for countries is closer to +1 and remains relatively constant over time.

Two explanations of the correlation observed between upstreamness and downstreamness

are given in Antràs and Chor (2018). The first is that increasing trade costs will increase the

positive correlation between upstreamness and downstreamness, because in closed economies

1A relatively upstream sector or country sells a small share of its output as final demand on the output supply
chain.

2A relatively downstream sector or country uses little value-added in its production process relative to inter-
mediate inputs.

3In Antràs and Chor (2018) the author’s often use a simpler definition of upstreamness and downstreamness
of F/GO and V A/GO, respectively, which represent the share of global output going to either final demand (F )
or value-added (V A).
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value-added is equivalent to final consumption, therefore there would be no difference between

upstreamness and downstreamness. The second is the industrial composition, a larger service

sector share would increase the positive correlation between upstreamness and downstreamness

because services tend to have smaller production chains. However, Antràs and Chor (2018)

demonstrate that trade costs have fallen between the years 1995-2011 which suggest this is not

a reason for the strong correlation. Although, they show that the service industries have indeed

risen in output share from 59.5% in 1995 to 65.6% in 2011, which could provide an explanation

for the positive correlation. They further develop a structural model of the international trade

flows, in which they found that the trade costs would have reduced the correlation from 0.868

(1995) to 0.666 (2011) and the change in services share would have increased the correlation to

0.889 (2011), a marginal increase and still below the actual value of 0.912 in 2011. However, the

use of a Cobb-Douglas production function (CDPF) with constant shares is cause for concern, as

shown in Shaikh (1974) when the shares of production are constant the CDPF will necessarily fit

a broad class of production data due to an algebraic relationship not a production relationship

between inputs. Hence, a constant elasticity of substitution or Leontief production function

would be better suited. Moreover, the model does not provide an explanation for the existing

strong correlation, only factors that may have changed the correlation over time.

Recent work by Bartolucci et al. (2023) have demonstrated that such a strongly positive

correlation coefficient may exist purely based on the structure of the matrices used to define

upstreamness and downstreamness, which are derived from I-O tables, that they have non-

negative elements and are row-substochastic. Bartolucci et al. (2023) prove that for a random

I-O table of a closed economy where the elements are independently and identically distributed

(i.i.d.) exponential random variables, and the elements of the final demand vector are also

i.i.d. exponential random variables, then the correlation coefficient between the rank-1 estimate

of upstreamness and downstreamness has a slope of +1 for any N , where no assumptions of

the structure of the I-O table have been made. Bartolucci et al. (2023) further demonstrate

that the findings from the analytic model are confirmed by numerical simulation for a range

of distributions of the I-O matrix and final demand vector. However, they propose extensions

to this work such as analysing the effect of sparsity of I-O tables on the correlation between

upstreamness and downstreamness, and to investigate heterogeneity on random world I-O tables

made of country blocks with different parameter values.

A key assumption in Bartolucci et al. (2023) is the approximation of upstreamness and

downstreamness with the simpler rank-1 estimations. Bartolucci et al. (2020b) show that the

resolvent of a matrix A (i.e. the Leontief inverse) and the corresponding influence of the ith

node is approximated by the rank-1 estimations (Eq. (21)), this has been shown to hold for

a variety of matrices and can then be directly applied to the analysis of upstreamness and

downstreamness because they share a similar functional form. Bartolucci et al. (2020a) used

such analysis on I-O tables in which their universality theorem established a formula for the

average output multipliers for a class of row-substochastic matrices A, those with spectral

radius ρ(A) < 1, which solely depends on the averages of each row. Hence, this theorem

provides an approximation for the output multipliers corresponding to an economic sector if
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the intermediate demand is known, without the requirement of any matrix inversion. The rank-

1 model was tested against empirical data and showed significant accuracy in predicting the

value for the upstreamness multipliers.

This paper intends to extend the analysis in Bartolucci et al. (2023) to that of a sparse model

and for Pareto distributed elements of the I-O table and final demand vector. Making use of

analytic techniques developed in Bartolucci et al. (2023) and using similar numerical simulations

to confirm the results. Moreover, numerical simulation of a heterogeneous block world I-O table

is presented to further corroborate the findings to the applicability at the country level analysis

which is usually seen in the literature.

The structure of the paper is as follows. Section 2 provides an overview of input output

analysis and the key concepts. Section 3 gives a detailed derivation and definition of upstream-

ness and downstreamness, the rank-1 estimations of each measure, and the correlation from

the data of the WIOD. Section 4 provides a definition of the covariance and slope, empirical

analysis of the distribution of the I-O matrix A and final demand vector F , and a definition

of the random model probability density functions. Section 5 derives the analytic model of the

covariance and slope, using numerical approximations to determine the behavior for large N

as the model does not have a closed form solution. Sections 6 displays numerical simulations

of the model to validate the results in Section 5. Section 7 provides a discussion of the paper,

interpreting the results and the consequence in the wider literature, as well as extensions that

could be made to this research. Finally, Section 8 gives conclusive remarks of the paper.

2 Overview of Input-Output Analysis

Input-output analysis is method of economic analysis developed by W. Leontief in which the

economy can be viewed as a system of interconnected balance sheets. This method was de-

vised to formalise François Quesnay’s Tableau Économique with empirical data, where Leontief

(1936) created the first I-O table for the United States using data from the 1919 census. Of

particular interest is the revenue accounts of economic agents, due to the nature of economic

transactions such information can be represented by a matrix which captures the flow of goods

from one economic agent to another. Hence, I-O analysis makes possible the reconstruction of

an economy’s complex network. Figure 1 displays a schematic overview of a world input output

table (WIOT), which shows a global economic system of M countries and N sectors. This can

be represented as two matrices for intermediary use (left) and final demand (right). Hence, the

size of the intermediary use matrix is MN ×MN and the final demand matrix is M ×MN .

Assuming an I-O table for a single country with N industries, the I-O coefficient matrix

A can be defined by dividing each entry for the intermediary input by the total output of the

sector, given by the vector Y . Hence, the entry of matrix A is defined as aij = dij/Yi, where dij

is the dollar (or unit) amount of intermediary input from sector j to sector i. Thus, the entry

aij of matrix A represents the amount of sector i’s product that sector j must use to produce

a single product. Then, given the vector of final demand F , the expression of the economic
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Figure 1: Schematic Outline of a World Input–Output Table (WIOT) with M countries and N indus-
tries (Timmer et al., 2015).

systems becomes:

Y = AY + F . (1)

Hence, the solution to this system of linear equations is given by:

Y = [IN −A]−1 F , (2)

where IN is the identity matrix of size N ×N and [IN −A]−1 is called the Leontief inverse of

matrix A. If the spectral radius of matrix A is less than one, ρ(A) < 1, then the Leontief inverse

can be expanded as an infinite power series of A (Bartolucci et al., 2020a):

[IN −A]−1 = IN +A+A2 + · · · =
∞∑
n=0

An. (3)

Considering a positive shock to final demand, the first contribution to the Leontief inverse

represents the direct increase in final output of all sectors needed to meet the increase in demand.

Then, the second contribution represents the amount of extra output needed to meet the increase

in inputs from the first contribution, and so on. In the kth contribution, this represents the

kth increase in output needed to meet the chain of all prior increments. Therefore, the Leontief

inverse captures the technology interdependence of the economy (Bartolucci et al., 2020a).

3 Upstreamness & Downstreamness

3.1 Definition

This subsection will follow closely the definition of upstreamness and downstreamness as pre-

sented in Bartolucci et al. (2023). The definition of upstreamness and downstreamness as given

in Antràs and Chor (2012) starts by considering a closed economy composed of N industrial

sectors with no inventories. Then, for each sector i ∈ {1, 2, ..., N}, gross output Yi is defined by

the sum of its use as a final good Fi and intermediary input Zi, where Zi is the sum of each
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sector j’s use of industry i’s product (aij):

Yi = Fi + Zi = Fi +

N∑
j=1

aij , (4)

where aij = dijYj , for which dij is the dollar amount of sector i’s product needed to produce

one dollars worth of sector j’s output. Then by substituting the expression of aij into Eq. (4)

and iterating this identity, an infinite series is obtained that reflects the use of sector i’s product

in the value chain of this hypothetical economy:

Yi = Fi +
N∑
j=1

dijFj +
N∑
j=1

N∑
k=1

dijdikFj + . . . , (5)

where the terms in the first sum is the direct use of i as an input and contributions beyond the

first sum are the indirect uses of i as an input (Antràs and Chor, 2012, pp. 2160). Defining

(D)ij = dij as the matrix of dollar values and using the infinite power series representation of

the matrix inverse:
∞∑
n=0

Dn = [IN −D]−1 , (6)

where IN is once again the N ×N identity matrix, then Eq. (5) in matrix form is:

Y = [IN −D]−1 F , (7)

where Y is the output vector and F is the final demand column vector. Hence, this is the same

as Eq. (2) defined in Section 2.

To define the measure of upstreamness for the ith industry U1i Antràs and Chor (2012)

multiply Eq. (5) by the distance from final use and normalise by the output of sector i:

U1i =1× Fi

Yi
+ 2×

∑N
j=1 dijFj

Yi
+ 3×

∑N
j=1

∑N
k=1 dijdikFj

Yi
+ . . .

=

(
[IN −D]−2 F

)
i

Yi
.

(8)

Then, using the definition of Y in Eq. (7) and substituting this into the definition of upstream-

ness, one obtains the upstreamness vector as:

U1 = [IN −AU ]
−1 1, (9)

where 1 is the column vector of ones and

AU = Y −1A =


a11
Y1

. . . a1N
Y1

...
. . .

...
aN1
YN

. . . aNN
YN

 , (10)

where Y = diag(Y ) is the diagonal matrix of the output vector. Substituting the definition of
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aij into AU gives (AU )ij = dijYj/Yi, which corresponds to the share of sector i’s gross output

purchased as an input to sector j. Thus, the matrix AU has non-negative elements and is

row-substochastic, meaning

N∑
j=1

(AU )ij ≤ 1, ∀ i ∈ {1, . . . , N}. (11)

From this definition of upstreamness, the further a sector’s position up the value chain the

greater the weight it has, the sector’s output goes through many production stages before being

used as final demand. Hence, a sector that sells primarily to final demand, will have a smaller

measure of upstreamness compared to a sector that sells its output primarily as an input to

other sectors. Therefore, by construction, the upstreamness of sector i (U1)i ≥ 1, when it is

exactly equal to one, then no output of industry i is purchased as an input to any other industry,

hence, it’s output is only used in final demand.

Fally (2012) independently proposed a measure of distance from final demand, where a

recursive definition of upstreamness was given:

U2i = 1 +

N∑
j=1

dijYj
Yi

U2j . (12)

This recursive relationship implies that sectors which sell a large share of their output as inputs

to relatively upstream sectors, will also make that sector relatively upstream. As shown in

Antràs et al. (2012), this definition is equivalent to the one in Antràs and Chor (2012). Using

the fact that dijYj = aij , the U2 measure of upstreamness is also given by:

U2 = [IN −AU ]1. (13)

Miller and Temurshoev (2015) were first to introduce the measure of downstreamness, which

defines the average distance of sector i from its providers of primary inputs. By using the

accounting identity from the input demand side, that the output of sector i Yi must be equal

to the value of its primary inputs Vi (value-added) and its intermediary input purchases from

all other sectors, thus:

Yi = Vi + Zi = Vi +

N∑
j=1

aij = Vi +

N∑
j=1

dijYj , (14)

which in matrix form can be represented as:

Y =
[
IN −DT

]−1
V . (15)
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Hence, the downstreamness measure for sector i is defined as:

D1i =1× Vi

Yi
+ 2×

∑N
j=1 djiVj

Yi
+ 3×

∑N
j=1

∑N
k=1 djidkiVj

Yi
+ . . .

=

( [
IN −DT

]−2
V
)
i

Yi
.

(16)

Then, using Eq. (15), the downstreamness vector can be written in matrix form as:

D1 = [IN −AD]1, (17)

where the matrix AD is given by:

AD = (AY −1)T =


a11
Y1

. . . aN1
Y1

...
. . .

...
a1N
YN

. . . aNN
YN

 , (18)

where Y is again the same diagonal matrix of the output vector, Y = diag(Y ). Hence, as with

matrix AU , matrix AD has non-negative elements and is row-substochastic, such that:

N∑
j=1

(AD)ij ≤ 1, ∀ i ∈ {1, . . . , N}. (19)

Furthermore, it is evident from the construction of AU and AD that they share the same diagonal

elements (AU )ii = aii/Yi = (AD)ii.

As with the measure of upstreamness, Fally (2012) introduced an equivalent recursive defi-

nition of downstreamness:

D2i = 1 +

N∑
j=1

djiD2j , (20)

which can be expression as Eq. (17) by using the fact that aji = djiYi.

3.2 Rank-1 Estimation

To perform the analysis in Section 4 it is first necessary to define simpler measures for up-

streamness and downstreamness, which currently involve a matrix inversion which makes it

a non-trivial task to evaluate the random model. By using the results from Bartolucci et al.

(2020b), which show that the rank-1 estimation of the full interaction matrix accurately approx-

imates the measures of centrality on the network, for which Bartolucci et al. (2020a) further

demonstrate that this result is applicable to the measures of upstreamness and downstreamness.

One can define the simpler rank-1 estimators for upstreamness (Ũi) and downstreamness (D̃i)

as:
Ũi = 1 +

ri

1− 1
N

∑N
j=1 rj

D̃i = 1 +
r′i

1− 1
N

∑N
j=1 r

′
j

,
(21)
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where ri =
∑N

j=1(AU )ij is the row sum of the matrix AU and r′i =
∑N

j=1(AD)ij is the row sum

of the matrix AD.
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Ũ
i
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(d) Downstreamness vs. Rank-1 Estimation (1995).
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(e) Upstreamness vs. Rank-1 Estimation (2011).
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Figure 2: Correlation of upstreamness (U1)i and downstreamness (D1)i vs. the rank-1 estimations Ũi

and D̃i respectively. In panels (a) and (b), the data was generated from a Pareto distributed random
model with parameters N = 500 (number of points), p = 1, α = 2.5, αF = 1.5, m = 1, and mF = 100,
see Section 4 for details of the model. Whereas, in panels (c) and (d), and (e) and (f) data from the
WIOD was used for the years 1995 and 2011 respectively, using country level measures of upstreamness,
downstreamness, and the rank-1 estimations.

From Figure 2 it is evident that the rank-1 estimations of upstreamness and downstreamness

map with sufficient accuracy to the original definition of both measures. In Sub-Figures 2a

and 2b the correlation between the original measures of upstreamness and downstreamness vs.
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the rank-1 estimations is shown. Where the data has been modelled with Pareto distributed

disorder of the random matrices AU and AD used to define upstreamness and downstreamness

(see Section 4 for more details of the random model) which clearly demonstrates a strong

correlation to the rank-1 estimations. Furthermore, Sub-Figures 2c-2f show the correlation of

the rank-1 estimations for country level measures of upstreamness and downstreamness for the

years 1995 and 2011, which also show a strong positive correlation.

Furthermore, in Table 1 it is evident that for each year from 1995-2011 the rank-1 estima-

tions of upstreamness and downstreamness have a strong positive correlation with the original

measures, all above 0.9 and statistically significant at the 1% level. Therefore, we can confi-

dently use this rank-1 approximations as a substitute for the more complex original definitions

of upstreamness and downstreamness. Although, as proposed by Bartolucci et al. (2020b), this

correlation to the original matrix inversion measure may break down in the presence of high

sparsity of the interaction matrix, which will need further investigation on our model.

Correlation: Corr((U1)i, Ũi) Corr((D1)i, D̃i)

1995 0.982*** 0.985***

1996 0.981*** 0.985***

1997 0.983*** 0.984***

1998 0.982*** 0.982***

1999 0.984*** 0.983***

2000 0.986*** 0.984***

2001 0.986*** 0.984***

2002 0.985*** 0.984***

2003 0.984*** 0.982***

2004 0.985*** 0.983***

2005 0.983*** 0.981***

2006 0.980*** 0.978***

2007 0.977*** 0.975***

2008 0.955*** 0.950***

2009 0.952*** 0.945***

2010 0.955*** 0.948***

2011 0.958*** 0.950***

Table 1: Pearson correlation coefficients of the rank-1 estimations of upstreamness and downstreamness
over time, rounded to 3 decimal points. Where ***, **, and * denote significance at the 1%, 5%, and
10% levels respectively.

3.3 Correlation

To demonstrate this “puzzling” correlation between upstreamness and downstreamness, data

from the WIOD 2013 Release (Timmer et al., 2015) has been used to analyse this relationship

for the years 1995 and 2011 as in Antràs and Chor (2018). In Figure 3 it is clear that there

exists over time an almost perfect correlation between upstreamness and downstreamness, where

points for each country in the (U1, D1) plane are clustered around the line with slope +1 in
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both 1995 and 2011. Additionally, the rank-1 estimations display a similar correlation, which is

expected due to the strong correlation with the original measures. Hence, the findings suggest

that this relationship is robust over time.
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(b) Correlation of rank-1 estimates in 1995.
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(c) Correlation in 2011.
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(d) Correlation of rank-1 estimates in 2011.

Figure 3: Country level correlation of upstreamness (U1) and downstreamness (D1) from WIOD. Each
point is a country’s position in the (U1, D1) or (Ũi, D̃i) plane, where the black line has a slope of
+1. Panels (a) and (b) show the correlation in 1995 of both the original measures of upstreamness and
downstreamness and the rank-1 estimations, respectively. Panels (c) and (c) show the correlation in
2011 of both the original measures of upstreamness and downstreamness and the rank-1 estimations,
respectively.

To further analyse the correlation of upstreamness and downstreamness over time, the Pear-

son correlation coefficient for the years 1995-2011 have been computed in Table 2, in which the

correlation has remained strongly positive over this period and in each year is significant at

the 1% level for both the original measures and the rank-1 estimations. This suggests that the

correlation may not be due to economic factors, but rather the structural constraints of the I-O

table as proposed by Bartolucci et al. (2023), due to the insignificant change in the correlation

over time and the persistence of this relationship.
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Correlation: Corr(D1, U1) Corr(D̃i, Ũi)

1995 0.864*** 0.825***

1996 0.874*** 0.843***

1997 0.895*** 0.876***

1998 0.895*** 0.879***

1999 0.867*** 0.854***

2000 0.844*** 0.841***

2001 0.869*** 0.868***

2002 0.859*** 0.856***

2003 0.870*** 0.871***

2004 0.876*** 0.882***

2005 0.883*** 0.888***

2006 0.889*** 0.891***

2007 0.899*** 0.902***

2008 0.920*** 0.939***

2009 0.935*** 0.952***

2010 0.929*** 0.951***

2011 0.928*** 0.951***

Table 2: Pearson correlation coefficients of GVC measures over time rounded to 3 decimal points.
Where ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively.

4 The Random Model

As in Bartolucci et al. (2023) the random model considered is that of a closed economy with N

sectors. The N×N matrices AU and AD used to define upstreamness and downstreamness (Eqs.

(10) and (18), respectively) are assumed to be generated from a random N ×N Input/Output

(interaction) matrix A between sectors and the final demand vector F is also drawn from a

random model. Thus, no underlying assumptions regarding the structural relationship between

sectors has been made, the only conditions on AU and AD is that their elements are non-negative

and that they are row-substochastic.

4.1 Covariance & Slope

Given the assumption that the underlying dynamics of the I-O matrix A and the final demand

vector F are modelled randomly, one can define the covariance between upstreamness and

downstreamness of the ith industry as:

Cov((U1)i, (D1)i) = E[(U1)i(D1)i]−E[(U1)i]E[(D1)i], (22)

where the expectation E[·] is taken with respect to the joint probability density function (PDF)

of the entries of A. Because upstreamness and downstreamness are defined by a complicated

matrix inversion (Eqs. (9) and (17), respectively), computing the covariance in Eq. (22) is a

12



non-trivial task. Therefore, making use of the rank-1 estimations from Bartolucci et al. (2020a)

and Bartolucci et al. (2020b), as described in Section 3.2 in Eq. (21), which are correlated

with the more complicated actual definitions of upstreamness and downstreamness. Thus, it

is sufficient to compute the covariance between the simpler rank-1 estimations of upstreamness

and downstreamness:

Cov(Ũi, D̃i) = E[Ũi, D̃i]−E[Ũi]E[D̃i]. (23)

Moreover, as in Bartolucci et al. (2023) we make the further simplification that due to the Law

of Large Numbers (LLN), the values of (1/N)
∑N

i=j rj and (1/N)
∑N

i=j r
′
j from the Eq. (21) will

quickly converge to their non-fluctuating averages, E[r] and E[r′] respectively. Additionally,

by removing the ith dependence of r and r′, because every sector is statistically equivalent in

the random model, thus, they can be considered as the sum of the first row of AU and AD

respectively. Therefore, the covariance of interest is given by:

CN =
E[rr′]−E[r]E[r′]

(1−E[r])(1−E[r′])
. (24)

Figure 2 in Section 3.2 shows that there is an almost perfect correlation between the upstream-

ness and downstreamness and the rank-1 estimations for numerical simulations of the random

model.

The slope between D̃i and Ũi can be determined using Eq. (23) by assuming that there is

a linear relationship with no intercept and a slope of S between D̃i and Ũi:

Ũi = SD̃i. (25)

Then, substituting Eq. (25) into the form for the covariance from Eq. (23), we get:

Cov(Ũi, D̃i) = S
(
E[Ũ2

i ]−E[Ũi]
2
)
. (26)

Finally, solving for the slope S gives the expression:

S =
Cov(Ũi, D̃i)

Var(Ũi)
, (27)

where Var(Ũi) = E[Ũ2
i ]−E[Ũi]

2 is the variance of Ũi. Again, from the LLN, this can be further

simplified by making the assumption that (1/N)
∑N

j=1 rj can be replaced by the non-fluctuating

average E[r]. Hence, the expression for the slope S can be further simplified in terms of the

covariance in Eq. (24) of the non-fluctuating averages of E[r] and E[r′]:

S =
CN (1−E[r])2

E[r2]−E[r]2
. (28)

Therefore, the slope will have a value of +1 if E[rr′] is equal to E[r2] and E[r′] is equal to E[r].

13



4.2 Empirical Analysis

To determine the probability distribution of the random model, empirical analysis has been

performed on the data from theWIOD (Timmer et al., 2015) for the country level I-O matrix and

final demand vector for the years 1995 and 2011. The complementary cumulative distribution

function (CCDF) of both the I-O matrix A and final demand vector F have been analysed in

Figure 4, where CCDFs have been plotted on a log-log scale, the optimal values of the Pareto

distribution are shown by the solid red line and the dashed line is the minimum cut-off value

of the distribution. From Figure 4 the Pareto distribution fits the tails of the data in each

year 1995 and 2011. However, the CCDF of the matrix A has a less pronounced fit than the

final demand vector F , particularly for small a (the elements of A), in which the CCDF may

be better represented by a log-normal or exponential distribution. However, due to the large

tail behaviour this will be best captured using the Pareto distribution because the tail values

will dominate the behaviour of the distribution which will be particular critical when using the

rank-1 approximation of the Leontief inverse matrix for upstreamness and downstreamness.

10 2 100 102 104 106

10 3

10 2

10 1

100

CCDF
Power-Law Fit
m = 1013

a

P
>
(a
)

(a) CCDF of A in 1995.

100 101 102 103 104 105 106 107

10 3

10 2

10 1

100

CCDF
Power-Law Fit
m = 15813

a

P
>
(a
)

(b) CCDF of A in 2011.
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(d) CCDF of F in 2011.

Figure 4: Country level analysis of complementary cumulative distribution function.

Therefore, the random model that will be developed will use a Pareto distribution for both

the matrix A and vector F , and will be further extended to include a sparsity parameter

to control the sparsity of A as a Pareto distributed random variable is greater than zero by

definition.
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4.3 Model Definition

We first consider a simple random model in which the entries of the interaction matrix (A)ij =

aij are independently and identically distributed (i.i.d.) from a Pareto distribution with PDF:

p(aij) =

ca
−(α+1)
ij if aij ≥ m

0 if aij < m,
(29)

where m = amin > 0 is the minimum value of aij and c = αmα is the normalisation constant.

Hence, the entries of A are strictly positive and contain no underlying economic structure.

Moreover, the entries of the final demand vector F are also assumed to be i.i.d. according to a

Pareto distribution with PDF:

pF (Fi) =

cFF
−(αF+1)
i if Fj ≥ mF

0 if Fi < mF ,
(30)

where mF = Fmin > 0 is the minimum value of Fi and cF = αFm
αF
F is the normalisation

constant.

We then consider a more complicated random model (which will be the basis of analysis in

this paper) that has a parameter p ∈ (0, 1] which can increase (p → 1) or decrease (p → 0)

the sparsity of the interaction matrix A. Let X ∼ Pareto(α) and Y ∼ Bernoulli(p) be i.i.d.

random matrices of size N × N , then define the interaction matrix as the Hadamard product

(element-wise product) A = Y ◦X, therefore the entries of A are given by aij = yijxij . Thus,

the PDF of aij is given by:

p(aij) = (1− p)δ(aij) + pca
−(α+1)
ij θ(aij −m), (31)

where δ(aij) is the Dirac delta function, θ(aij−m) is the Heaviside step function, m = xmin > 0

is the minimum value of xij and c = αmα (from normalisation). Therefore, setting p = 1

recovers the first simple random model for the PDF of element aij in Eq. 29. Furthermore, the

PDF of the elements of the final demand function remains the same as in the simple model,

given in Eq. (30).

The interaction matrix A is used to define the matrices AU and AD, hence, from Eqs. (10)

and (18), then using the definition of Yi in Eq. (4) and the accounting identity
∑

j aij + Fi =∑
j aij + Vi, the elements of AU and AD are given by:

(AU )ij =
aij∑

j aij + Fi
, (32)

(AD)ij =
aji∑

j aij + Fi
. (33)

Which, for appropriately chosen parameter values, particularly small αF and large mF relative

to α andm, the elements of AU and AD will be non-negative and their rows will be substochastic

as desired.
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From Eqs. (24) and (28) the expressions of interest is to compute the covariance and slope

relative to the rank-1 estimations of the first row of AU and AD, r and r′ respectively. Thus,

by definition, they are given by:

r =
∑
j

(AU )1j =

∑
j a1j∑

j a1j + F1
, (34)

r′ =
∑
j

(AD)1j =

∑
j aj1∑

j a1j + F1
. (35)

Therefore, this is sufficient to compute the pairwise covariance and slope that is of interest.

5 Results

The results for the sparse random model described in Section 4 are presented below. A closed

form solution for the model did not exist, therefore the analysis depends on numerical approx-

imations of the equations, which is further shown to fit numerical simulations of the random

model.

Given the definition of the row-substochastic sums of AU and AD, r and r′ in Eqs. (34)

and (35) respectively. To compute the covariance and slope functions of the rank-1 estimations,

Eqs. (24) and (28) respectively, it is necessary to compute the expectations E[r], E[r′], E[rr′]

and E[r2]. Denoting a1j = aj and F1 = F , then using the PDFs for aj and F described in Eqs.

(31) and (30) respectively, the expectation of r is given by:

E[r] =

∫ ∞

0

N∏
i=1

daip(ai)

∫ ∞

mF

dFpF (F )

∑
k ak∑

k ak + F
. (36)

Using the identity:
1

ξ
=

∫ ∞

0
ds e−ξs (37)

for ξ > 0, then:

E[r] =

∫ ∞

0
ds

∫ ∞

0

N∏
i=1

dai

∫ ∞

mF

dF
[
(1− p)δ(ai) + pca

−(α+1)
i θ(ai −m)

]
cFF

−(αF+1)

× e−s(
∑

k ak+F )
∑
k

ak.

(38)
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Each ai is i.i.d., hence:

E[r] = cFN

∫ ∞

0
ds

(∫ ∞

0
da
[
(1− p)e−saδ(a) + pca−(α+1)e−saθ(a−m)

])N−1

×
∫ ∞

0
dy
[
(1− p)ye−syδ(y) + pcy−αe−syθ(y −m)

] ∫ ∞

mF

dF F−(αF+1)e−sF

= cFN

∫ ∞

0
ds

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N−1

×
(
(1− p)

∫ ∞

0
dy ye−syδ(y) + pc

∫ ∞

m
dy y−αe−sy

)∫ ∞

mF

dF F−(αF+1)e−sF

= pccFN

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α−1Γ(−αF ,mF s)Γ(1− α,ms),

(39)

where Γ(z, x) =
∫∞
x tz−1e−tdt is the upper incomplete gamma function.

Similarly, the expectation of r′ is given by:

E[r′] =

∫ ∞

0

N∏
i=1

daip(ai)
N∏
j=2

dbjp(bj)

∫ ∞

mF

dFpF (F )
a1 +

∑
k≥2 bk∑

k ak + F
, (40)

where bj = aj1 for j = 2, ..., N . Again, using the identity in Eq. (37), the expression for the

expectation becomes:

E[r′] =

∫ ∞

0
ds

∫ ∞

0

N∏
i=1

dai

N∏
j=2

dbj

∫ ∞

mF

dF
[
(1− p)δ(ai) + pca

−(α+1)
i θ(ai −m)

]
×
[
(1− p)δ(bj) + pcb

−(α+1)
j θ(bj −m)

]
cFF

−(αF+1)e−s(
∑

k ak+F )

×

a1 +
∑
k≥2

bk

 .

(41)

Each ai and bj is i.i.d., hence:

E[r′] = cF

(∫ ∞

0
db
[
(1− p)δ(b) + pcb−(α+1)θ(b−m)

])N−1

×
∫ ∞

o
ds

(∫ ∞

0
da
[
(1− p)e−saδ(a) + pca−(α+1)e−saθ(a−m)

])N−1

×
∫ ∞

0
dy
[
(1− p)ye−syδ(y) + pcy−αe−syθ(y −m)

] ∫ ∞

mF

dF F−(αF+1)e−sF

+ cF (N − 1)

(∫ ∞

0
db
[
(1− p)δ(b) + pcb−(α+1)θ(b−m)

])N−2

×
∫ ∞

o
ds

(∫ ∞

0
da
[
(1− p)e−saδ(a) + pca−(α+1)e−saθ(a−m)

])N

×
∫ ∞

0
dz
[
(1− p)zδ(z) + pcz−αθ(z −m)

] ∫ ∞

mF

dF F−(αF+1)e−sF .

(42)
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By definition:
∫∞
0 db

[
(1− p)δ(b) + pcb−(α+1)θ(b−m)

]
=
∫∞
0 dbp(b) = 1, therefore:

E[r′] = cF

∫ ∞

o
ds

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N−1

×
(
(1− p)

∫ ∞

0
dy ye−syδ(y) + pc

∫ ∞

m
dy y−αe−sy

)∫ ∞

mF

dF F−(αF+1)e−sF

+ cF (N − 1)

(
(1− p)

∫ ∞

0
dz zδ(z) + pc

∫ ∞

m
dz z−α

)
×
∫ ∞

o
ds

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N

×
∫ ∞

mF

dF F−(αF+1)e−sF .

= pccF

[∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α−1Γ(−αF ,mF s)Γ(1− α,ms)

+
m1−α

α− 1
(N − 1)

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N sαFΓ(−αF ,mF s)

]
.

(43)

The expectation of rr′ is given by:

E[rr′] =

∫ ∞

0

N∏
i=1

daip(ai)
N∏
j=2

dbjp(bj)

∫ ∞

mF

dFpF (F )

∑
k ak∑

k ak + F

a1 +
∑

k≥2 bk∑
k ak + F

=

∫ ∞

0

N∏
i=1

daip(ai)

N∏
j=2

dbjp(bj)

∫ ∞

mF

dFpF (F )

×
a21 + a1

∑
k≥2 bk + a1

∑
k ̸=1 ak +

∑
k ̸=1 ak

∑
k≥2 bk

(
∑

k ak + F )2
.

(44)

Using the identity:
1

ξ2
=

∫ ∞

0
ds se−ξs (45)

for ξ > 0, then:

E[rr′] =

∫ ∞

0
ds

∫ ∞

0

N∏
i=1

dai

N∏
j=2

dbj

∫ ∞

mF

dF
[
(1− p)δ(ai) + pca

−(α+1)
i θ(ai −m)

]
×
[
(1− p)δ(bj) + pcb

−(α+1)
j θ(bj −m)

]
cFF

−(αF+1)se−s(
∑

k ak+F )

×

a21 + a1
∑
k≥2

bk + a1
∑
k ̸=1

ak +
∑
k ̸=1

ak
∑
k≥2

bk

 .

(46)

Hence, the expectation can broken into four separate integrals:

E[rr′] = cF [K1 +K2 +K3 +K4] , (47)
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where

K1 =

∫ ∞

0
ds s

∫ ∞

0

N∏
i=1

dai

N∏
j=2

dbj

∫ ∞

mF

dF
[
(1− p)δ(bj) + pcb

−(α+1)
j θ(bj −m)

]
×
[
(1− p)e−saiδ(ai) + pca

−(α+1)
i e−saiθ(ai −m)

]
F−(−αF+1)e−sFa21

=

(∫ ∞

0
dbp(b)

)N−1∫ ∞

0
ds s

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N−1

×
(
(1− p)

∫ ∞

0
dy y2e−syδ(y) + pc

∫ ∞

m
dy y1−αe−sy

)∫ ∞

mF

dF F−(αF+1)e−sF

= pc

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α−1Γ(−αF ,mF s)Γ(2− α,ms),

(48)

K2 =

∫ ∞

0
ds s

∫ ∞

0

N∏
i=1

dai

N∏
j=2

dbj

∫ ∞

mF

dF
[
(1− p)δ(bj) + pcb

−(α+1)
j θ(bj −m)

]
×
[
(1− p)e−saiδ(ai) + pca

−(α+1)
i e−saiθ(ai −m)

]
F−(−αF+1)e−sFa1

∑
k≥2

bk

=(N − 1)

(∫ ∞

0
dbp(b)

)N−2(
(1− p)

∫ ∞

0
dz zδ(z) + pc

∫ ∞

m
dz z−α

)
×
∫ ∞

0
ds s

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N−1

×
(
(1− p)

∫ ∞

0
dy ye−syδ(y) + pc

∫ ∞

m
dy y−αe−sy

)∫ ∞

mF

dF F−(αF+1)e−sF

= p2c2
m1−α

α− 1
(N − 1)

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α

× Γ(−αF ,mF s)Γ(1− α,ms),

(49)

K3 =

∫ ∞

0
ds s

∫ ∞

0

N∏
i=1

dai

N∏
j=2

dbj

∫ ∞

mF

dF
[
(1− p)δ(bj) + pcb

−(α+1)
j θ(bj −m)

]
×
[
(1− p)e−saiδ(ai) + pca

−(α+1)
i e−saiθ(ai −m)

]
F−(−αF+1)e−sFa1

∑
k ̸=1

ak

=(N − 1)

(∫ ∞

0
dbp(b)

)N−1

×
∫ ∞

0
ds s

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N−2

×
(
(1− p)

∫ ∞

0
dy ye−syδ(y) + pc

∫ ∞

m
dy y−αe−sy

)2 ∫ ∞

mF

dF F−(αF+1)e−sF

= p2c2(N − 1)

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+2α−1Γ(−αF ,mF s)

× Γ(1− α,ms)2,

(50)
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K4 =

∫ ∞

0
ds s

∫ ∞

0

N∏
i=1

dai

N∏
j=2

dbj

∫ ∞

mF

dF
[
(1− p)δ(bj) + pcb

−(α+1)
j θ(bj −m)

]
×
[
(1− p)e−saiδ(ai) + pca

−(α+1)
i e−saiθ(ai −m)

]
F−(−αF+1)e−sF

∑
k ̸=1

ak
∑
k≥2

bk

=(N − 1)2
(∫ ∞

0
dbp(b)

)N−2(
(1− p)

∫ ∞

0
dz zδ(z) + pc

∫ ∞

m
dz z−α

)
×
∫ ∞

0
ds s

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(α+1)e−sa

)N−1

×
(
(1− p)

∫ ∞

0
dy ye−syδ(y) + pc

∫ ∞

m
dy y−αe−sy

)∫ ∞

mF

dF F−(αF+1)e−sF

= p2c2
m1−α

α− 1
(N − 1)2

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α

× Γ(−αF ,mF s)Γ(1− α,ms).

(51)

Therefore, the total expression is given by:

E[rr′] = pccF

[∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α−1Γ(−αF ,mF s)Γ(2− α,ms)

+ pc
m1−α

α− 1
(N − 1)

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α

× Γ(−αF ,mF s)Γ(1− α,ms)

+ pc(N − 1)

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+2α−1

× Γ(−αF ,mF s)Γ(1− α,ms)2

+ pc
m1−α

α− 1
(N − 1)2

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α

× Γ(−αF ,mF s)Γ(1− α,ms)

]

(52)

Finally, to compute the slope, the expectation of r2 is required, given by:

E[r2] =

∫ ∞

0

N∏
i=1

daip(ai)

∫ ∞

mF

dFpF (F )

( ∑
k ak∑

k ak + F

)2

. (53)
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Again, using the identity is Eq. (45):

E[r2] =

∫ ∞

0
ds

∫ ∞

0

N∏
i=1

dai

∫ ∞

mF

dF
[
(1− p)δ(ai) + pca

−(α+1)
i θ(ai −m)

]
cFF

−(αF+1)

× se−(
∑

k ak+F )

(∑
k

ak

)2

= cF

[
N

∫ ∞

0
ds s

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(a+1)e−sa

)N−1

×
(
(1− p)

∫ ∞

0
dy y2e−syδ(y) + pc

∫ ∞

m
dy y1−αe−sy

)∫ ∞

mF

dF F−(αF+1)e−sF

+ (N2 −N)

∫ ∞

0
ds s

(
(1− p)

∫ ∞

0
da e−saδ(a) + pc

∫ ∞

m
da a−(a+1)e−sa

)N−2

×
(
(1− p)

∫ ∞

0
dy ye−syδ(y) + pc

∫ ∞

m
dy y−αe−sy

)2 ∫ ∞

mF

dF F−(αF+1)e−sF

]

= pccFN

[∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−1 sαF+α−1Γ(−αF ,mF s)Γ(2− α,ms)

+ pc(N − 1)

∫ ∞

0
ds [(1− p) + pcsαΓ(−α,ms)]N−2 sαF+2α−1Γ(−αF ,mF s)

× Γ(1− α,ms)2

]
.

(54)

To investigate the relationship of the model parameters on the covariance and slope func-

tions, the above integrals have been computed numerically. Figure 5 displays the numerical

approximations of the covariance and slope functions for different parameter values. In Sub-

Figures 5a and 5b is it evident that changing the level of sparsity in the model, by changing the

parameter p, has a significant impact on the value of both the covariance and slope functions.

In which, the more sparse the model the weaker the relationship between N and the covariance

and slope. Hence, the closer p is to 1 (no sparsity) the faster the slope approaches +1 for in-

creasing N , and for p closer to 0 (p = 0.1) the slower the slope approaches +1 for increasing N .

Thus, the slope will approximate +1 for large enough N even when the sparsity of the system

is quite high.

Furthermore, in Sub-Figures 5c and 5d the relationship between the covariance and slope

functions is shown for different values of α. In particular, for higher α the faster the slope ap-

proaches +1 for increasing N , which is consistent with the findings in Bartolucci et al. (2023),

because when α is higher the Pareto probability distribution will behave similarly to an ex-

ponential distribution as the tail becomes smaller. Additionally, for α < 1, the relationship

between N and the slope breaks down, which is expected because the Pareto distribution no

longer has a finite mean when α < 1, hence, the dominant contributions from the final demand

vector are no longer significant.

Conversely, in Sub-Figures 5e and 5f the effect of different values of mF has little impact on

the slope values for different N . Although, the effect on the covariance is larger than the other
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parameters, for lower mF the higher the covariance as N increases.
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(a) Numerical solution of the covariance for different
values of the sparsity parameter p.
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(b) Numerical solution of the slope for different values
of the sparsity parameter p.
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(c) Numerical solution of covariance for different values
of the power-law parameter α.
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(d) Numerical solution of slope for different values of
the power-law parameter α.
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(e) Numerical solution of covariance for different values
of the power-law parameter mF .
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(f) Numerical solution of slope for different values of
the power-law parameter mF .

Figure 5: Numerical solutions of the covariance and slope functions for increasing N for different values
of the model parameters. Parameter values, panels (a) and (b) p = {1, 0.8, 0.1}, α = 2.5, αF = 1.5,
m = 1, and mF = 100; panels (c) and (d) p = 1, α = {10.5, 2.5, 0.9}, αF = 1.5, m = 1, and mF = 100;
panels (e) and (f) p = 1, α = 2.5, αF = 1.5, m = 1, and mF = {10, 100, 1000}.
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5.1 Limit of Large N : p of O( 1
N
)

To investigate the behaviour of these functions for increasing sparsity with the system size N ,

we take the limiting case as N → ∞ for p of O(1/N). Hence, we define p as:

p :=
ν

N
, (55)

where 0 < ν ≤ N , thus keeping p ∈ (0, 1]. Then, substituting this definition of p and taking the

limit as N → ∞ of the covariance function (which in this case can be broken into the limits of

each expectation, because in the limit of large N none of expectations depend on N). Hence,

the expectation of r becomes:

lim
N→∞

E[r] = lim
N→∞

ν

N
ccFN

∫ ∞

0
ds

[
1− ν

N
+

νcsαΓ(−α,ms)

N

]N−1

sαF+α−1

Γ(−αF ,mF s)Γ(1− α,ms)

=νccF

∫ ∞

0
ds lim

N→∞

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+α−1

Γ(−αF ,mF s)Γ(1− α,ms)

=νccF

∫ ∞

0
ds exp [νcsαΓ(−α,ms)− ν] sαF+α−1Γ(−αF ,mF s)Γ(1− α,ms).

(56)

Similarly:

lim
N→∞

E[r′] = lim
N→∞

(
ν

N
ccF

∫ ∞

0

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+α−1Γ(−αF ,mF s)

× Γ(1− α,ms)

+
ν

N
ccF

m1−α

α− 1
(N − 1)

∫ ∞

0

[
1 +

νcsαΓ(−α,ms)− ν

N

]N
sαFΓ(−αF ,mF s)

)

=νccF
m1−α

α− 1

∫ ∞

0
ds exp [νcsαΓ(−α,ms)− ν] sαFΓ(−αF ,mF s),

(57)
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lim
N→∞

E[rr′] = lim
N→∞

(
ν

N
ccF

∫ ∞

0
ds

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+α−1

× Γ(−αF ,mF s)Γ(2− α,ms)

+
ν2

N2
c2cF

m1−α

α− 1
(N − 1)

∫ ∞

0
ds

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+α

× Γ(−αF ,mF s)Γ(1− α,ms)

+
ν2

N2
c2cF (N − 1)

∫ ∞

0
ds

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+2α−1

× Γ(−αF ,mF s)Γ(1− α,ms)2

+
ν2

N2
c2cF

m1−α

α− 1
(N − 1)2

∫ ∞

0
ds

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+α

× Γ(−αF ,mF s)Γ(1− α,ms)

)

=ν2c2cF
m1−α

α− 1

∫ ∞

0
ds exp [νcsαΓ(−α,ms)− ν] sαF+αΓ(−αF ,mF s)

× Γ(1− α,ms),

(58)

lim
N→∞

E[r2] = lim
N→∞

(
ν

N
ccFN

∫ ∞

0
ds

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−1

sαF+α−1

× Γ(−αF ,mF s)Γ(2− α,ms)

+
ν2

N2
c2cFN(N − 1)

∫ ∞

0
ds

[
1 +

νcsαΓ(−α,ms)− ν

N

]N−2

sαF+2α−1

× Γ(−αF ,mF s)× Γ(1− α,ms)2

)

=νccF

∫ ∞

0
ds exp [νcsαΓ(−α,ms)− ν] sαF+α−1Γ(−αF ,mF s)Γ(2− α,ms)

+ ν2c2cF

∫ ∞

0
ds exp [νcsαΓ(−α,ms)− ν] sαF+2α−1Γ(−αF ,mF s)

× Γ(1− α,ms)2.

(59)

Numerical methods have again been used to evaluate these integrals for different parameter

values, because they also do not have a closed form solution. Of particular interest is the effect

of the sparsity parameter ν, which reduces the sparsity for larger ν, on the limiting covariance

and slope functions for different parameter values. As shown in Figure 6, Sub-Figures 6a and 6b

show the relationship for different values of α on the covariance and slope functions. Where a

higher value of α, which reduces the size of the tail, corresponds to lower values of the covariance

and a slope that approaches +1 faster as ν increases. Furthermore, similarly to the base line

model, when α < 1 the relationship between the covariance and slope in terms of ν breaks down

because the contributions from the final demand vector become insignificant.

Furthermore, Sub-Figures 6c and 6d show the relationship between ν and mF on the covari-

ance and slope. In which, a lower value of mF corresponds to a higher value of the covariance

and a slightly higher value for the slope as ν increases.
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Therefore, for p of O(1/N) the limiting slope can be said to be robust against the effects

of sparsity for a given threshold of ν, approximately ν > 100, and will still be approximately

equal +1 even when the sparsity increases with the size of the system.
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(a) Numerical solution of covariance for different values
of the power-law parameter α.
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(b) Numerical solution of slope for different values of
the power-law parameter α.
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(c) Numerical solution of covariance for different values
of the power-law parameter mF .
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(d) Numerical solution of slope for different values of
the power-law parameter mF .

Figure 6: Numerical solutions of the covariance and slope functions for increasing ν for different values
of the model parameters. Parameter values, panels (a) and (b) α = {10.5, 2.5, 0.9}, αF = 1.5, m = 1,
and mF = 100; panels (c) and (d) α = 2.5, αF = 1.5, m = 1, and mF = {10, 100, 1000}.

6 Numerical Simulations

To further corroborate the findings from the numerical approximations of the analytic solution,

we also perform numerical simulations of the random model defined in Section 4 by generat-

ing the N × N random input use matrix A, which is then used to compute the vectors for

upstreamness U1 and downstreamness D1, defined in Eqs. (9) and (17) respectively.

Initially we generate the simple random model where there is no sparsity (p=1), such that

each entry of A is generated according to a Pareto distribution with parameters α and m, where

α is the slope of the power law and m is the cut-off. Furthermore, the entries of the final demand

vector F are also generated according to a Pareto distribution with parameters αF and mF ,

where α > αF and m < mF . Figure 7 shows results of numerical simulations for different values

of α. In Sub-Figure 7a α = 2.5, in which the points are clustered around the line with slope

+1 and is similar to that of the country level scatter plot in Figure 3. In Sub-Figure 7b the

25



points of the scatter plot are almost perfectly on the line with slope +1, this is congruent with

the results of the numerical approximations of the random model which predicted a slope closer

to +1 for higher α. In both cases, the rank-1 estimations map closed to the original values for

upstreamness and downstreamness, with particular accuracy in the high α case.
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(a) Numerical simulation with low α.

1.5 2.0 2.5 3.0 3.5 4.0

1.5

2.0

2.5

3.0

3.5

4.0

D1

U
1

(b) Numerical simulation with high α.

Figure 7: Numerical simulation of the scatter plot (correlation) between upstreamness and downstream-
ness ((U1)i, (D1)i) (blue circles), and the rank-1 estimations (Ũi, D̃i) (red squares), for the simple random
model with different values of α. In panel (a) α = 2.5 and in panel (b) α = 10.5, for both panels N = 500,
αF = 1.5, m = 1, mF = 100, and the thick black line has slope +1.

Similarly, we generate the random matrix A and random vector F for the sparse random

model for different parameter values of p, when p → 1 the sparsity of random matrix A reduces

and when p → 0 the sparsity of the random matrix A increases. Therefore, the probability

density function to generate the random matrix A has the form given in Eq. (31), which is

derived from the product of a Bernoulli random variable with parameter p (the sparsity) and a

Pareto random variable, again with parameters α and m, the distribution of F is kept the same.

Figure 8 displays the effect of the model when the sparsity is changed on the correlation between

upstreamness and downstreamness. In Sub-Figure 8a where p = 0.8, such that the sparsity of

the random matrix A is relatively low, does not correspond to a significant change in the models

behavior compared to the non sparsity case with the same parameters in Sub-Figure 7a. This

result is in line with the numerical approximations of the analytic solution, in which there is an

insignificant change to the slope behavior when p = 0.8 compared to p = 1 as seen in Sub-Figure

5b. However, in Sub-Figure 8b where p = 0.1 the correlation of the model is less pronounced

and has an increased variance around the line with slope +1, again this behaviour was predicted

by the analytic approximations in Sub-Figure 5b, hence, these numerical simulations confirm

the theoretic results obtain from the analytic model.
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(a) Numerical simulation with low sparsity.
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(b) Numerical simulation with high sparsity.

Figure 8: Numerical simulation of the scatter plot (correlation) between upstreamness and down-
streamness ((U1)i, (D1)i) (blue circles), and the rank-1 estimations (Ũi, D̃i) (red squares), for the sparse
random model with different values of p. In panel (a) p = 0.8 and in panel (b) p = 0.1, for both panels
N = 500, α = 2.5, αF = 1.5, m = 1, mF = 100, and the thick black line has slope +1.

To further analyse the numerical simulations, we generate the rank-1 estimations of the

covariance and slope functions, where the expectations in the definition of the rank-1 covariance

and slope have been calculated over a batch of M = 500 simulations for each N . In Figure 9 it

is evident that the theoretic curves are a good fit to the numerical simulations. Sub-Figures 9a

and 9b show the theoretic fit to the numerical simulations in the non-sparse regime where p = 1,

for both the covariance and slope the rank-1 numerical simulations are well approximated by

the theoretic curves. Additionally, Sub-Figures 9c and 9d display that even in the sparse regime

where p = 0.1 the theoretic solutions maintain a good fit to the numerical simulations for the

rank-1 covariance and slope functions.
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(a) Covariance: theoretic vs rank-1 simulation.
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(b) Slope: theoretic vs rank-1 simulation.

0 100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

0.025
Simulation
Theoretic

N

C
ov
ar
ia
n
ce

(c) Sparse covariance: theoretic vs rank-1 simulation.
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(d) Sparse slope: theoretic vs rank-1 simulation.

Figure 9: Numerical simulation of the rank-1 estimations averaged overM = 500 runs for the covariance
and slope functions compared to the analytic approximations. In Sub-Figures (a) and (b) p = 1, in Sub-
Figures (c) and (d) p = 0.1, in all Sub-Figures α = 2.5, αF = 1.5, m = 1, and mF = 100.

Moreover, similar analysis has been carried out for the actual covariance and slope defined

using the ‘true’ measures of upstreamness and downstreamness that involve the full matrix

inversion, as defined in Eqs. (9) and (17) respectively, where the covariance and slope have

been calculated for the first element of U1 and D1 (i = 1). Hence, finding:

Cov((U1)1, (D1)1) = E[(U1)1(D1)1]−E[(U1)1]E[(D1)1], (60)

and

S =
Cov((U1)1, (D1)1)

Var[(U1)1]
, (61)

where the expectations were again found by averaging over M = 500 runs for each N . Figure

10 shows the results of the simulated actual covariance and slope, which again produces a

good fit to the theoretical curves in all cases. In the non-sparse case in Sub-Figures 10a and

10b, where p = 1, the theoretic curves show a good fit to the simulated covariance and slope,

however, the variance seems to be larger than the simulated rank-1 estimations particularly for

the covariance for large N . In the sparse regime in Sub-Figures 10c and 10d, where p = 0.1, the

theoretic curves are still a good fit to the simulated data, hence the theoretic rank-1 estimations

provide an accurate prediction of the covariance and slope even when the matrix A is sparse.
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(a) Covariance: theoretic vs actual simulation.
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(b) Slope: theoretic vs actual simulation.
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(c) Sparse covariance: theoretic vs actual simulation.
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(d) Sparse slope: theoretic vs actual simulation.

Figure 10: Numerical simulation of the actual upstreamness and downstreamness for the covariance and
slope functions compared to the analytic approximations. Calculated for i = 1, such that the covariance
and slope is taken with respect to the first element of U1 and D1, such that Cov((U1)1, (D1)1). In
Sub-Figures (a) and (b) p = 1, in Sub-Figures (c) and (d) p = 0.1, in all Sub-Figures α = 2.5, αF = 1.5,
m = 1, and mF = 100.

To further highlight these deviations of the simulated scenarios from the theoretic curves, a

rolling root mean squared error (RMSE) has been used to give a better understanding of the

accuracy of these measures as N increases. The rolling RMSE with a look-back parameter k

for a given n ∈ {k, . . . , N} is defined as:

RMSE =

√√√√1

k

n∑
i=n−k+1

(Ŷi − Yi)2, (62)

where Ŷi is the predicted value of the theoretic covariance or slope at point at i ∈ {1, . . . , N},
and Yi is the simulated covariance or slope for either actual or rank-1 approximation at point

i ∈ {1, . . . , N}. Figure 11 shows the rolling RMSE for both the actual measures of the covariance

and slope and the rank-1 estimations, in which they both display similar behaviour for increasing

the system sizeN . In particular, Sub-Figure 11a shows that both the actual and rank-1 measures

have an increasing RMSE for the covariance as N increases, thus the dispersion of the simulated

covariance around the theoretic covariance increases and becomes less accurate. Moreover, this

actual measure has a higher RMSE than the rank-1 estimations, suggesting that the actual

measure of the covariance is not as well approximated by the theoretic covariance. Conversely,
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in Sub-Figure 11b for the slope, the actual measure is more accurate throughout the whole

range of N than the rank-1 estimation and both become more accurate for larger N .

In the sparse case for the covariance in Sub-Figure 11c the difference between the actual

and rank-1 estimation of the covariance is less pronounced. Furthermore, the RMSE is lower

for both than in the non-sparse case, suggesting that the sparse regime has a more accurate

theoretic curve than the non-sparse regime. Although, for the slope in Sub-Figure 11d the

trend is less clear than in the non-sparse regime, with some gains in accuracy as N increases.

Although, the overall value of the RMSE is higher in the sparse case than the non-sparse case

suggesting that the theoretical slope is less accurate when the sparsity of the model is high.
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(a) Rolling RMSE of the covariance.
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(b) Rolling RMSE of the slope.
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(c) Rolling RMSE of the sparse covariance.
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(d) Rolling RMSE of the sparse slope.

Figure 11: Numerical simulation of the actual upstreamness and downstreamness for the covariance and
slope functions compared to the analytic approximations. Calculated for i = 1, such that the covariance
and slope is taken with respect to the first element of U1 and D1, such that Cov((U1)1, (D1)1). In
Sub-Figures (a) and (b) p = 1, in Sub-Figures (c) and (d) p = 0.1, in all Sub-Figures α = 2.5, αF = 1.5,
m = 1, and mF = 100.

The above analysis pertains to that of a closed economy framework composed of N different

industries, to demonstrate that this random model applies to the wider literature on interna-

tional trade such as in Antràs and Chor (2018), which first displayed this “puzzling” correlation

between upstreamness and downstreamness at the country level. Thus, a block matrix repre-

sentation of the input use matrix A has been developed. The random matrix A is split into M

blocks of size N ×N , where each block represents an independent replica of the closed economy

model, each with a set of i.i.d. randomly distributed parameter values, hence, the matrix A has
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size MN ×MN . Each block is distributed according to the PDF in Eq. (31), where the param-

eters of block i ∈ {1, . . . ,M} are uniformly distributed, pi ∼ U(pmin, pmax), αi ∼ U(αmin, αmax)

and mi ∼ U(mmin,mmax). Furthermore, the final demand vector F is composed of M sec-

tions of size N , hence the total size is MN , where each country section i ∈ {1, . . . ,M} is

Pareto distributed according to the PDF in Eq. (30) with uniformly distributed parameters

αF i ∼ U(αFmin, αFmax) and mF i ∼ U(mFmin,mFmax). The country level I-O matrix AC is

then defined as the block sum of the matrix A, and the country level final demand vector FC

is also defined as the block sum of F .

Numerical simulation of this block random model are shown in Figure 12, where the country

level upstreamness and downstreamness is defined as the aggregate sum of the industrial sectors

for each country block i ∈ {1, . . . ,M} of the input matrix A and final demand vector F . It is

evident from Figure 12 that the industry level correlation is more dispersed than the country

level correlation, which was confirmed using a Pearson correlation coefficient where the industry

correlation was given by 0.812 and the country correlation by 0.878 (both with p value < 0.01).

Hence, the aggregation to the country level increases the correlation between upstreamness and

downstreamness as the effect of outliers is less prominent in the calculation. Therefore, from the

simulation in Figure 12 it can be concluded that the country level aggregation of upstreamness

and downstreamness from a larger I-O matrix A that includes inter-country trade blocks, has

very similar behaviour to that defined in the closed economy framework. This is likely due

to the fact that the constraints of the country level matrix AC are the same as for the single

country matrix A, where each element is non-negative and the matrix is row-substochastic.
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(a) Industry level correlation.
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(b) Country level correlation.

Figure 12: Numerical simulation of the scatter plot (correlation) between upstreamness and down-
streamness ((U1)i, (D1)i) for the block random model. Panel (a) shows the industry level correlation
and panel (b) shows the country level correlation. The parameters are M = 50, N = 50, pmin = 0.01,
pmax = 0.99, αmin = 1.6, αmax = 4.6, αFmin = 1.2, αFmax = 3.2, mmin = 0.001, mmax = 1, mFmin = 100,
mFmax = 1000, and the thick black line has slope +1.

7 Discussion

To summarise, we have developed a random model of Input/Output analysis to analyse the

“puzzling” correlation between upstreamness and downstreamness as presented in Antràs and
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Chor (2018). To accomplish this analysis, we found empirically that the probability distribution

of A and F have power-law tails with a relatively low cut-off value. Hence, we used a Pareto

distribution to construct the random matrix A and random vector F . Furthermore, to extend

the analysis in Bartolucci et al. (2023) we further modified the matrix A such that each element

was distributed as the product of a Bernoulli random variable with parameter p and a Pareto

random variable, this allowed the sparsity of the matrix A to be changed through the parameter

p. Although the random model did not have a closed form solution, it was shown by numerical

approximation of the integrals, that the slope of the model approached +1 as N increased,

increasing the number of sectors in the model for a given range of parameter values. In particu-

lar, the parameter p had the effect of decreasing the rate at which the slope approached +1 for

increasing N . Therefore, this indicates that for large N the result that the slope will approach

+1 when α > αF and m < mF is robust even for a very sparse (p = 0.1) matrix A.

Furthermore, the limiting case of N → ∞ for p of O(1/N) was also investigated using

numerical approximations, which found that for a very sparse regime (approximately ν < 100)

the limiting slope was less than +1. Thus, the effect of sparsity on the slope is only significant

when p << 1 such that the sparsity of the matrix A is very high and increases with system size

N . Additionally, the relative difference between the parameters α and αF had a strong effect

on the behavior of the slope, as the difference increased where α > αF the value of the slope

was closer to +1 for smaller N . This is in line with the results from Bartolucci et al. (2023)

that found for an exponential PDF the slope S = +1 for any N , because as α increases the

behavior of the Pareto distribution becomes more like an exponential distribution as the tail

becomes smaller.

The results of the analytic random model were tested against numerical simulations, which

found that the analytic model accurately captured the behaviour of the covariance and slope for

increasing N , for both the simulated rank-1 estimations, and the actual measures of upstream-

ness and downstreamness defined in terms of the more complex matrix inversion. Therefore,

the results interpreted from the analytic model can be generalised to the actual measures of

the covariance and slope, suggesting that as N increases the correlation between upstreamness

and downstreamness will approach +1 for p of O(1) and O(1/N) for given threshold of sparsity

(approximately ν > 100).

Furthermore, for uniformly distributed parameter values, it was found by numerical simu-

lation that in the case of an open economy international trade model (constructed from inde-

pendent block replicas of the closed economy model on a large input use block matrix A and

final demand vector F ), the aggregation of each country into a country level matrix AC and

final demand vector FC had very similar behaviour for numerical simulations to that of the

closed economy model. This is likely due to the fact that the two constraints on A also applies

to AC , where each element is non-negative and the matrix is row-substochastic. Hence, due to

this similarity in structure and behaviour between the closed economy model and the country

level model, it infers that the results are applicable to the international trade setting considered

in Antràs and Chor (2018) and provides an explanation to this “puzzling” correlation found at

the country level between upstreamness and downstreamness.
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Further extensions to be made in future studies would be to compute analytically the actual

covariance in Eq. (22) of the sparse random model for different probability distributions of the

I-O matrix A. Moreover, it would also be interesting to investigate further the country level

covariance defined from a larger international I-O matrix A and the effects of different types of

heterogeneity in the distribution of the parameters of the model, extending the analysis beyond

uniformly distributed parameters.

8 Conclusion

We have developed a sparse Pareto distributed random model to analyse the correlation between

upstreamness and downstreamness for a closed economy, in which we found that the slope of

the correlation S approaches +1 as the number of sectors N increases for a range of parameter

values, and was robust for high sparsity when N is large. Furthermore, this analysis showed

that, for a sufficiently non-sparse matrix, which increases in sparsity with p of O(1/N), the

slope will also approach +1 in the limiting case N → ∞. These results were also confirmed

using numerical simulations of the random model, where it was further demonstrated that the

results from the closed economy framework can also be applied to the level of international

trade between countries.
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A Report Code

The code for the project was written in Python, which can be found in the GitHub repository

upstreamness-downstreamness by following the link: https://github.com/DylanTerryDoyle/

upstreamness-downstreamness.
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