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Objectives: This study was conducted in order to design and develop a framework
utilizing deep learning (DL) to differentiate papillary renal cell carcinoma (PRCC) from
chromophobe renal cell carcinoma (ChRCC) using convolutional neural networks (CNNs)
on a small set of computed tomography (CT) images and provide a feasible method that
can be applied to light devices.

Methods: Training and validation datasets were established based on radiological,
clinical, and pathological data exported from the radiology, urology, and pathology
departments. As the gold standard, reports were reviewed to determine the
pathological subtype. Six CNN-based models were trained and validated to differentiate
the two subtypes. A special test dataset generated with six new cases and four cases
from The Cancer Imaging Archive (TCIA) was applied to validate the efficiency of the best
model and of the manual processing by abdominal radiologists. Objective evaluation
indexes [accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve,
and area under the curve (AUC)] were calculated to assess model performance.

Results: The CT image sequences of 70 patients were segmented and validated by two
experienced abdominal radiologists. The best model achieved 96.8640% accuracy
(99.3794% sensitivity and 94.0271% specificity) in the validation set and 100% (case
accuracy) and 93.3333% (image accuracy) in the test set. The manual classification
achieved 85% accuracy (100% sensitivity and 70% specificity) in the test set.
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Conclusions: This framework demonstrates that DL models could help reliably predict
the subtypes of PRCC and ChRCC.
Keywords: CNN—convolutional neural network, PRCC, papillary renal cell carcinoma, ChRCC,·chromophobe-
primary renal cell carcinoma, cancer image classification
INTRODUCTION

With the continuous advancement of imaging technology and
increasing awareness of the public for early cancer screening, the
detection rate of renal masses is increasing (1). In China, most
renal masses are kidney cancer. The incidence of kidney cancer
in the Chinese population continues to increase (2). Existing
methods can meet the need to distinguish clear cell carcinoma
from non-clear cell carcinoma. However, the differentiation
between subtypes of non-clear carcinoma may be difficult
because of the lack of a quantitative evaluation of images,
especially from the early-stage cancers, which usually present
atypically (3). Papillary renal cell carcinoma (PRCC) and
chromophobe renal cell carcinoma (ChRCC) are the most
common types of non-clear cell carcinoma and are
characterized by a unique molecular morphology (4). PRCC is
associated with activating germline mutations in MET (type I)
and activation of the NRF2–ARE pathway (type II) (5). Typical
genetic changes in ChRCC are deletions of chromosomes Y, 1, 2,
6, 10, 13, 17, and 21 (6). The differences in originating factors and
driver genes between the two subtypes lead to different treatment
options and prognoses (7, 8). There is some differentiation
between PRCC and ChRCC in imaging findings: PRCC
presents as cysts, necrosis, and calcification, while ChRCC
presents as central wheel-shape enhancement (9). In low stage
or small size masses, however, these characteristics mentioned
above are atypical, which usually cause a difficult diagnosis. In
addition, according to previous reports (10), the accuracy and
sensitivity of the manual classification of PRCC/ChRCC are
61.8% and 84.5%, respectively, which cannot meet this need.
Therefore, in the clinic, it is difficult to provide a highly accurate
manual subtype differentiation between PRCC and ChRCC, and
this remains to be a challenge.

Recently, with the rapid development of computer hardware
and deep learning (DL) theory, artificial intelligence (AI) has
been widely applied in radiological image processing for
classification and is rapidly developing (11). Notably, the
efficacy of DL-based models for the radiological diagnosis of
several tumors [e.g., breast cancer (12), liver cancer (13), and
lung masses (14)] is superior to that of manual processing
according to previous studies (15). Convolutional neural
networks (CNNs) and improved models have been widely used
for medical image processing (16). DL-based oncological
radiological characterization has shown value in medical fields
(11, 15, 16). CNNs and their improved models are currently one
of the hot spots in the field of medical image processing. Image
processing based on this type of model for assisting in renal
tumor examinations has achieved promising results and suggests
the possibility of solving the challenges associated with the
radiological differentiation of PRCC and ChRCC.
2

In this study, DL was utilized to classify PRCC and ChRCC
from computed tomography (CT) datasets. The current study
aimed to exploit DL-based models for renal cell carcinoma
subtype classification based on small datasets so that the
classification can be implemented in some scenarios without
high-performance hardware or shortage of rare subtypes cases, to
better promote the accuracy of radiological diagnosis.
METHODS

Institutional review board approval was obtained. The requirement
for written informed patient consent was waived. A retrospective
review of PRCC and ChRCC patients at Fujian Medical University
Union Hospital was performed between 2012 and 2021. Ethical
approval was obtained from the Institutional Ethics Committee of
Fujian Medical University Union Hospital (No. 2021WSJK033).
According to the Helsinki Declaration, all patients (or their legal
clients) provided written informed consent before obtaining their
clinical, radiological, and pathological data. The framework used to
develop an automated method for the differentiation of these two
subtypes was comprised of two phases (Figure 1): 1) CT scan data,
clinical data, and pathological data were gathered and digitized,
followed by tumor lesion segmentation and labeling by experts
in the radiology department (dataset establishment); and 2)
training neural networks; assessing the accuracy, sensitivity, and
specificity of the models; and verifying model efficiency through
comparison with the pathological diagnosis of new cases
(subtype classification).

Phase 1
Dataset Establishment
Patients with a pathological diagnosis obtained by biopsy or
surgical resection were included in this study. In addition, 80
patients with available arterial/cortical/nephrogenic phase CT
image sequences were reviewed (42 with PRCC and 38 with
ChRCC). After randomly selecting 6 cases (3 PRCCs and 3
ChRCCs) for testing sets, the images of 74 tumors (39 PRCCs
and 35 ChRCCs) were used to build the datasets. The CT images
were obtained using various radiology scanners and non-
standard protocols. Arterial phase sequences were preferred
when multiple phases existed. Whole sequences were retrieved
and exported utilizing the hospital radiological database. The
window settings were 40 HU (width) and 400 HU (level). Based
on the clinical and pathological data, ROIs of sequences were
segmented, labeled, and exported with ITK-SNAP by two
abdominal radiologists who have experience of more than 10
years in the diagnosis of urinary system tumor. After cross-
validation, images that were exported in.jpg size included 857
images of ChRCCs and 997 images of PRCCs. Labeling was
November 2021 | Volume 11 | Article 746750
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applied in the non-graphical layer so that each slice filename
contained the case number, gender, age, and histological
subtypes. After resizing, images comprised matrices with 256 *
256 pixels in the axial planes. The dataset was divided into the
training set and validation set (90% for the training set and 10%
for the validation set).

Phase 2
Subtype Classification
Model Training and Validation
Six pop models [MobileNetV2 (17), EfficientNet (18), ShuffleNet
(19), ResNet-34, ResNet-50, and ResNet-101 (20)] were adapted
for dichotomy based on TensorFlow 2.4.12. Preprocessing
involved normalization and augmentation (including Gaussian
blur, rotation, flipping, brighter, and darker) (Figure 2). In
addition to data augmentation, ConvBNReLU (convolution +
batch normalization + ReLU) was applied to avoid overfitting.
The learning rate was initially set as 0.005 and was optimized by
the Adaptive Moment Estimation (ADAM) optimization
algorithm in every training phase. The batch size was set as 24.
For model training, a desktop workstation with an Intel® Xeon®

E5-2678 v3 CPU and an NVIDIA GeForce RTX 2080Ti (11 GB)
GPU was used. A list of model parameters, training results, and
validation/accuracy results is provided in Table 1.

Model Selection and Testing
Based on the results of the training step, MobileNetV2,
ShuffleNet, and ResNet-34 were selected as the testing models.
A special test set of PRCC/ChRCC samples was established in
Frontiers in Oncology | www.frontiersin.org 3
two parts (Table 2): 1) reviewing the new cases in 2021,
including six patients (three with PRCC, three with ChRCC);
and 2) reviewing cases in The Cancer Imaging Archive (TCIA)
datasets, including four patients (two with PRCC from the
TCGA-KIRP dataset, two with ChRCC from the TCGA-KICH
dataset). Slices were processed by abdominal radiologists, and for
each case, three photographs were selected randomly. To assess
efficiency from different views, two accuracy values were
calculated. 1) Case accuracy: if correctly identified photographs
were >2, this case was regarded as correctly identified. Case
accuracy was used to reflect the percentage of correct cases. 2)
Sample accuracy: this was used to show the proportion of correct
images among all images. The accuracy, sensitivity, and
specificity of these models were computed. In order to show
the efficiency of manual processing, two radiologists were invited
to distinguish these cases. Objective measure indexes of manual
prediction were also calculated.
RESULTS

The model based on MobileNetV2 (Table 3 and Figure 3)
performed best for tumor subtype diagnosis. The automated
method achieved 96.8640% accuracy in the validation dataset
(99.3794% sensitivity, 94.0271% specificity). Due to all correctly
matching, case accuracy, case sensitivity, and case specificity were all
achieved 100%. For every single photograph, image accuracy
achieved 93.3333% in the testing dataset (88.2353% sensitivity and
86.6667% specificity). The AUC was 0.9489, and the p-value was
FIGURE 1 | Flowchart of automated PRCC/ChRCC classification using computer vision.
November 2021 | Volume 11 | Article 746750
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less than 0.001. Resource occupancy was less while training and
predicting (less than 10 GB of accelerated graphics memory
occupied), which means that this model can be applied to low-
performance hardware. Themanual method achieved 85% accuracy
(100% sensitivity, 70% specificity) in the testing dataset. The results
are provided in Table 2 and Figure 4.
DISCUSSION

Before a clinical treatment strategy is developed, the gold
standard for the differentiation of subtypes is pathological
Frontiers in Oncology | www.frontiersin.org 4
diagnosis by histological biopsy. Nevertheless, this invasive
operation may increase the possibility of needle tract
implantation and the metastasis of malignant tumors, as well
as the risks of bleeding, infection, and damage to surrounding
organs caused by puncture operations. Furthermore, the missed
diagnosis rate is approximately 30% (21). An ideal renal tumor
diagnosis method should avoid unnecessary damage to patients
and potential risks as much as possible while ensuring high
accuracy and a high detection rate, which points to the need to
further improve auxiliary examination image processing
technology to increase sensitivity and accuracy, as it has
great prospects.
TABLE 1 | The results of CNN-based networks for classification task training and validation and the testing results of the models.

Models Parameters Best validation accuracy Testing results (case)

MobileNetV2 Total: 2,261,827
Trainable: 2,226,434

96.8640% Accuracy: 100%
Sensitivity: 100%
Specificity: 100%

ShuffleNet Total: 1,272,859
Trainable: 1,256,679

97.3074% Accuracy: 83.3334%
Sensitivity: 92.3077%
Specificity: 72.7273%

EfficientNet Total: 4,053,414
Trainable: 4,011,391

Cannot converge NA

ResNet-34 Total: 21,829,058
Trainable: 21,812,034

93.6404% Accuracy: 91.6667%
Sensitivity: 84.6154%
Specificity: 100%

ResNet-50 Total: 25,662,403
Trainable: 25,609,283

Cannot converge NA

ResNet-101 Total: 44,706,755
Trainable: 44,601,411

Cannot converge NA
November 2021 | Volu
NA, not available.
FIGURE 2 | An example of data augmentation processing. Based on the geometric transformations (rotation and flipping), the Gaussian blur, brighter, and darker
were applied, which finally achieved 15× amplification.
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TABLE 2 | Information of test sets, comparison result of automated model prediction, and the result of model performance in the validation dataset.

Case Source Subtypes Gender Age Sample Automated prediction Manual prediction

1 Union Hospital of FJMU PRCC Female 60 Matched 1. Matched
2. Matched

2 Union Hospital of FJMU PRCC Male 58 Matched 1. Matched
2. Matched

3 Union Hospital of FJMU PRCC Male 57 Matched 1. Matched
2. Matched

4 Union Hospital of FJMU ChRCC Male 62 Matched 1. Matched
2. Matched

5 Union Hospital of FJMU ChRCC Female 41 Matched 1. Matched
2. Mismatched

6 Union Hospital of FJMU ChRCC Female 62 Matched 1. Matched
2. Matched

7 TCGA-KIRP PRCC – – Matched 1. Matched
2. Matched

8 TCGA-KIRP PRCC – – Matched 1. Matched
2. Matched

9 TCGA-KICH ChRCC – – Matched 1. Matched
2. Mismatched

10 TCGA-KICH ChRCC – – Matched 1. Mismatched
2. Matched

Validation accuracy 96.8640%
Validation sensitivity 99.3794%
Validation specificity 94.0271%
Test accuracy (case) 100%
Test sensitivity (case) 100%
Test specificity (case) 100%
Test accuracy (image) 93.3333%
Test sensitivity (image) 88.2353%
Test specificity (image) 86.6667%
Manual accuracy 85% (90% and 80%)
Manual sensitivity 100%
Manual specificity 70% (80% and 60%)
Frontiers in O
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The accuracy and sensitivity of a manual imaging diagnosis
cannot meet current clinical diagnosis and treatment needs. In
addition, there is still a lack of clinical and radiological features that
can accurately predict histology. The current imaging diagnostic
method has significant limitations. The accuracy and sensitivity of
the manual classification of PRCC/ChRCC according to existing
reports are 61.8% and 84.5% (10), which are significantly lower than
those of our model. The average accuracy, sensitivity, and specificity
of manual classification by our radiologists of these subtypes are
85% (90% and 80%), 100%, and 70% (80% and 60%), which are also
lower than those of our model. Our MobileNet-based model also
Frontiers in Oncology | www.frontiersin.org 6
showed better efficacy than manual processing. This result provides
an automated approach to the dilemma of diagnosing subtypes with
radiological data and may affect the selection of surgical methods
and clinical decisions.

As a typical DL algorithm, due to their interlayer parameter
sharing characteristics and sparse connection characteristics of the
model architecture, CNNs can realize the automated extraction of
pixel-level image features without the need to establish and engineer
large-scale features in advance, and due to the real-time nature of
the model itself, features such as flexibility, associative information
storage, and backpropagation algorithm change weights can achieve
FIGURE 3 | The visual structure of MobileNetV2.
TABLE 3 | The structure of MobileNetV2.

Layer (functions) Output shape Stride Filter shape

Input layer None, 256, 256, 3 / /
Conv1 (Conv+BN+ReLU6) None, 128, 128, 32 2 3 * 3 * 32
Inverted_residual (linear) None, 128, 128, 16 1 1 * 1 * 32 * 16
Inverted_residual_1 (ReLU6) None, 64, 64, 24 2 3 * 3 * 16 * 24
Inverted_residual_2 (linear) None, 64, 64, 24 1 1 * 1 * 24
Inverted_residual_3 (ReLU6) None, 32, 32, 32 2 3 * 3 * 24 * 32
Inverted_residual_4 (linear) None, 32, 32, 32 1 1 * 1 * 32
Inverted_residual_5 (linear) None, 32, 32, 32 1 1 * 1 * 32
Inverted_residual_6 (ReLU6) None, 16, 16, 64 2 3 * 3 * 32 * 64
Inverted_residual_7 (linear) None, 16, 16, 64 1 1 * 1 * 64
Inverted_residual_8 (linear) None, 16, 16, 64 1 1 * 1 * 64
Inverted_residual_9 (linear) None, 16, 16, 64 1 1 * 1 * 64
Inverted_residual_10 (linear) None, 16, 16, 96 1 1 * 1 * 64 * 96
Inverted_residual_11 (linear) None, 16, 16, 96 1 1 * 1 * 96
Inverted_residual_12 (linear) None, 16, 16, 96 1 1 * 1 * 96
Inverted_residual_13 (ReLU6) None, 8, 8, 160 2 3 * 3 * 96 * 160
Inverted_residual_14 (linear) None, 8, 8, 160 1 1 * 1 * 160
Inverted_residual_15 (linear) None, 8, 8, 160 1 1 * 1 * 160
Inverted_residual_16 (linear) None, 8, 8, 320 1 1 * 1 * 160 * 320
Conv (ReLU6) None, 8, 8, 1,280 1 1 * 1 * 320 * 1,280
Global average pooling None, 1,280 1 Pool 8 * 8
Dropout None, 1,280 1 Probability = 0.2
Classifier (ReLU) None, 2 / Classifier
November 2021 | Volume 1
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higher processing accuracy with manual data than traditional
machine learning, prompting high-throughput automation based
on the feasibility of CNN/DCNN models for imaging and omics
analyses. The application of comprehensive digitized clinical data,
radiological images, and pathological data has paved the way for
automated processing methods based on AI for radiological data
processing in the future. In recent years, various studies have started
utilizing complete digital radiological and clinical data for
segmentation and classification (22, 23), verifying the feasibility of
this scheme. In nephrology oncology, study interests that
incorporated AI started focusing on subtype classification. Tanaka
et al. (24), based on the Inception-v3 CNN model and MR images,
identified benign and malignant renal masses (≤4 cm) on images
with an accuracy rate of 88%. Based on a CNN model and CT
images, Baghdadi et al. (25) identified benign renal oncocytoma and
ChRCC on images with an accuracy rate of 95%. Zhou et al. applied
transfer learning to classify benign and malignant kidney tumors
with CT datasets, and the accuracy of the difference was reported to
be 0.95 (26). Lee et al. developed a model that combined DL and
manual feature machine learning to classify specific kidney tumor
types, and the accuracy was 0.77 (27). These studies prove that the
imaging differentiation of kidney tumors based on DL and
dichotomy is feasible but lacks utility and requires high-
performance hardware, limiting the research results to the clinic.
The present models show the possibility of using a high-confidence
DL-based diagnostic method for the radiological classification of
PRCC/ChRCC and provide a feasible low-performance hardware
programwith high accuracy for different medical devices that can be
applied even to a gaming laptop or a mobile workstation.

There were some new findings obtained during training and
validation that have not been reported in research in the same field.
First, according to the experimental results, we speculate that the
valuable features of PRCC/ChRCC on CT images are commonly
overlooked, which indicates that the fewer trainable parameters the
model has, the better the accuracy it achieves. Although the feature
Frontiers in Oncology | www.frontiersin.org 7
capacity of the models is correlated linearly with the number of
parameters, the number of parameters is seemingly correlated with
fitting situations in a parabola. In the lightest model, ShuffleNet,
performance is the worst in these coverage models. The best
performance is from the MobileNetV2, with a bigger capacity of
parameters than ShuffleNet. However, as the number of parameters
is continuously increasing, the accuracy is decreasing (ResNet-34).
Importantly, too many trainable parameters in this task can cause
model under-/overfitting (ResNet-50/ResNet-101). The relation
between accuracy and parameters during the classification of
small datasets needs further explanation and selection. However,
this interesting finding shows the importance of feature capacity
assessment of datasets and the right choice of models with a suitable
size before promoting performances. Finally, we noticed that
extreme data augmentation has little effect on training. We tried
several ways to augment and amplify datasets to increase their size,
which obviously did not affect the accuracy of the validation dataset.

This study had two main aims: 1) to make the automated
classification methods easy to use with broad applicability to
provide a highly accurate method that can be used in basic health
units and deployed in medical centers with low-performance
hardware and 2) to combine these methods with those used in
federal studies, which can be used for multicenter studies and to
increase model accuracy without the need to gather all the data. The
deployment of such a model in devices at health centers will
promote clinical treatment. Our future goal is to migrate this
processing paradigm to other RCC subtypes. Although this study
provides the first automated method for the radiological
classification of PRCC/ChRCC subtypes, there are still some
limitations. 1) The main limitation is the lack of multicenter
validation, and the other limitations include the sizes of the
training, validation, and testing datasets, which will be considered
in future studies. Our methods used to avoid overfitting included
data augmentation and ConvBNReLU but should have been more
diverse. Also, due to the limited dataset capacity, the ROC curve was
unsmoothed. 2) The underutilization of digital clinical data is
another limitation. The conjunctive use of clinical and
radiological data can further improve the prediction accuracy. 3)
The underuse of multiphase sequences could be considered another
limitation of our study. In our study, we exported images based on
one patient–one phase. 4) Our dataset was mainly obtained from
East Asian patients, and since a population-based analysis reported
that racial disparities exist between black and white people in kidney
cancer (28), the upshot of our study would have bias in the East
Asian population. Multiple factors including race, gender, and age
could be taken into consideration for further exploration. 5) Our
validation dataset was based on a dataset from our hospital, but it
was not the best choice and had a certain effect on the results of
training. The ideal validation dataset should be based on three or
more datasets from different institutes. The small size of the testing
dataset could also have led to a controversy about the results of
MobileNetV2, which need to be further tested in multiple centers.
6) Processing of datasets by experts may not be regarded as the best
method. Ideally, an automated segmentation procedure contained
in the pipeline may be a better choice. However, there were some
barriers laid that could hardly be bypassed. We tried two proposals:
FIGURE 4 | The performance measure of this model, including the ROC
curve, AUC (0.949), and confidence intervals (0.849, 1.000).
November 2021 | Volume 11 | Article 746750
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individual tumor output and area output. We applied U-Net-based
methods to draw ROIs and found that the methods of existing
reports (29–31) could not fit the need. In studies, tumor Dice scores
were lower than 0.85 generally, which meant that some parts of
tumor pixels could not be contained in the processed images and
some radiological characters were lost unavoidably. The reason why
we finally did not use this method was that this automated
segmentation/classification-combined model had a performance
lower than expected. Unless the method to improve the tumor
Dice score obviously is developed, the automated segmentation–
classification model efficiency has a rare possibility to reach the
baseline of clinical application. We also tried YOLO-v3-based
detection and area segmentation; however, it did not show better
performances compared with existing ML-based methods, which
finally led to its abandonment. Besides the technological challenges,
the main reason why we did not introduce an automated
segmentation into the pipeline was that in this study we focused
more on the classification, and the key point was realizing the
classification of subtypes with low capacity under a smaller feature
engineering preprocessing and more automated processing
compared with ML-based classification methods. As a challenge
in DL-based radiomics, automated segmentation is our next study
orientation. We are developing a possible method to realize our
proposed DL-based radiological processing series, and we are also
Frontiers in Oncology | www.frontiersin.org 8
trying to integrate several models into a DL-based radiomics
workstation (Figure 5).

Overall, although there may be limitations in this study such
as a small dataset and differences in races as well as in imaging
single-center protocol, the research results may be biased to
some extent. However, based on the result that a CNN-assisted
diagnosis model with high diagnostic accuracy was developed
in a single center of this study, it suggests that the AI research
and development model adopted in this study has high clinical
application potential in improving the accuracy of differential
diagnosis of PRCC and ChRCC, at least in a single regional
center. In the future, although there will be some difficult
challenges in developing AI high diagnostic accuracy which
was caused by some objective factors such as subtle potential
differences in image feature led by the discrepancy between race
and region and inability in high homogeneity in the imaging
method, we still expect that the AI auxiliary renal tumor
imaging diagnostic research can expand into different regions,
different centers, and different races, together with bigger
sample data to validate our conclusion, and can accurately
classify as well as precisely and automatically segment multiple
pathological types of renal tumor, with the aim of making it
an auxiliary diagnostic imaging tool with wide clinical
application prospects.
FIGURE 5 | A demo of a DL-based radiomics workstation (next study).
November 2021 | Volume 11 | Article 746750
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CONCLUSIONS

To the best of our knowledge, this study provides the first
automated framework for differentiating PRCC and ChRCC
that could produce reliable results. This approach may be
useful in improving the radiological diagnostic accuracy of
RCC and, thus, benefit patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.
Frontiers in Oncology | www.frontiersin.org 9
AUTHOR CONTRIBUTIONS

TZ and YZ: conceptualization, project administration, writing—
original draft, and writing—review and editing. LH and TC: data
curation, formal analysis, software, and visualization. BZ, JY, XL,
RL, JB, SS, YW, SYZ, and SZ: investigation, methodology, and
writing—review and editing. LW and JC: conceptualization, data
curation, funding acquisition, investigation, project
administration, supervision, validation, writing—original draft,
and writing—review and editing. All authors contributed to the
article and approved the submitted version.
FUNDING

This work was supported by grants from the Natural
Science Foundation of Fujian Province (2019J01153) and the
Startup Fund for Scientific Research, Fujian Medical
University (2019QH1053).
REFERENCES
1. Richard PO, Jewett MAS, Bhatt JR, Kachura JR, Evans AJ, Zlotta AR, et al.

Renal Tumour Biopsy for Small Renal Masses: A Single-Center 13-Year
Experience. Eur Urol (2015) 68(6):1007–13. doi: 10.1016/j.eururo.2015.04.004

2. Yang Y, Xie L, Zheng JL, Tan YT, Zhang W, Xiang YB. Incidence Trends of
Urinary Bladder and Kidney Cancers in Urban Shanghai, 1973-2005. PLoS
One (2013) 8(12):e82430. doi: 10.1371/journal.pone.0082430

3. Rossi SH, Prezzi D, Kelly-Morland C, Goh V. Imaging for the Diagnosis and
Response Assessment of Renal Tumours. World J Urol (2018) 36:1927–42.
doi: 10.1007/s00345-018-2342-3

4. Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T, et al. Long Non-Coding RNA IRAIN
Inhibits VEGFA Expression via Enhancing Its DNA Methylation Leading to
Tumour Suppression in Renal Carcinoma. Front Oncol (2020) 10:1082.
doi: 10.3389/fonc.2020.01082

5. Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, et al.
Comprehensive Molecular Characterization of Papillary Renal-Cell
Carcinoma. N Engl J Med (2016) 374:135. doi: 10.1056/NEJMoa1505917

6. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016
WHO Classification of Tumours of the Urinary System and Male Genital
Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol (2016) 70:93.
doi: 10.1016/j.eururo.2016.02.029

7. Turajlic S, Swanton C, Boshoff C. Kidney Cancer: The Next Decade. J Exp
Med (2018) 215(10):2477–9. doi: 10.1084/jem.20181617

8. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, Fernández-
Pello S, et al. European Association of Urology Guidelines on Renal Cell
Carcinoma: The 2019 Update. Eur Urol (2019 ) 75(5):799–810. doi: 10.1016/
j.eururo.2019.02.011

9. Wang D, Huang X, Bai L, Zhang X, Wei J, Zhou J. Differential Diagnosis of
Chromophobe Renal Cell Carcinoma and Papillary Renal Cell Carcinoma
With Dual-Energy Spectral Computed Tomography. Acta Radiol (2020) 61
(11):1562–9. doi: 10.1177/0284185120903447

10. Sun XY, Feng QX, Xu X, Zhang J, Zhu F-P, Yang Y-H, et al. Radiologic-
Radiomic Machine Learning Models for Differentiation of Benign and
Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists.
AJR Am J Roentgenol (2020) 214(1):W44–54. doi: 10.2214/AJR.19.21617

11. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial
Intelligence in Radiology. Nat Rev Cancer (2018) 18(8):500–10.
doi: 10.1038/s41568-018-0016-5

12. Lehman CD, Yala A, Schuster T, Dontchos B, Bahl M, Swanson K, et al.
Mammographic Breast Density Assessment Using Deep Learning: Clinical
Implementation. Radiology (2018) 290(1):52–8. doi: 10.1148/radiol.2018180694
13. Yasaka K, Akai H, Abe O, Kiryu S. Deep Learning With Con- Volutional
Neural Network for Differentiation of Liver Masses at Dynamic Contrast-
Enhanced CT: A Preliminary Study. Radiology (2017) 286:887–96.
doi: 10.1148/radiol.2017170706

14. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated
Classification of Pulmonary Tuberculosis by Using Convolutional Neural
Networks. Radiology (2017) 284:574–82. doi: 10.1148/radiol.2017162326

15. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NNC,
et al. Accurate and Reproducible Invasive Breast Cancer Detection in Whole-
Slide Images: A Deep Learning Approach for Quantifying Tumour Extent. Sci
Rep (2017) 7:46450. doi: 10.1038/srep46450

16. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A
Survey on Deep Learning in Medical Image Analysis. Med Image Anal (2017)
42:60–88. doi: 10.1016/j.media.2017.07.005

17. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.
Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv (2017).

18. Tan M, Le QV. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. arXiv (2019) 1905.11946.

19. Ma N, Zhang X, Zheng H-T, Sun J. “ShuffleNet V2: Practical Guidelines for
Efficient CNN Architecture Design”. In: European Conference on Computer
Vision. Cham: Springer (2018).

20. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition.
In: IEEE Conference on Computer Vision & Pattern Recognition IEEE
Computer Society.

21. Soulen MC. Small Renal Masses: Challenges for the Radiologist. Radiol (2018)
288(1):91–2. doi: 10.1148/radiol.2018180602
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