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Abstract Computer science and hardware have developed prominently in this decade, advancing Artificial 

Intelligence and Deep Learning applications in translational medicine. As an icon, DL-radiomics research 

mushrooms and solves several traditional radiological challenges. Behind the glory of  DL-radiomics 

successful performance, there is limited attention to the neglected reproducibility of  existing reports, 

which runs contrary to radiomics original intention, to realize unexperienced-dependent radiological 

processing with high robustness and generalization. Besides focusing on objective causes of  reproduction 

barriers, deep-seated factors, between contemporary academic evaluation systems and scientific research, 

should also be mentioned. There is an urgent need for a targeted inspection to promote this area’s healthy 

development. We take Renal cell carcinoma as an example, one of  the common genitourinary cancers, to 

glimpse the reproducibility defects in the whole DL-radiomics field. This study then proposes a 

reproducibility specification checklist with an analysis of  the performance of  existing DL-radiomics 

reports in RCC. The results show a trend of  increasing reproducibility but still a need to further improve, 

especially in technological details of  pre-processing, training, validation, and testing. 
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Abbreviations 

DL Deep Learning,  

RCC Renal Cell Carcinoma 

AI Artificial Intelligent 

ML Machine Learning 

ccRCC Clear Cell Renal Cell Carcinoma 

nccRCC Non-clear Cell Renal Cell Carcinoma 

pRCC Papillary Renal Cell Carcinoma 

chRCC Chromophobe Renal Cell Carcinoma 

SRMs Small Renal Masses 

RTB Renal Tumor Biopsy 

CV Computer Vision 

ILSVRC ImageNet Large Scale Visual Recognition Challenge 

STEM Science, Technology, Engineering, and Mathematics 

CLIAM Checklist for Artificial Intelligent in Medicine  

RQS Radiomics Quality Assessment 

GAN Generative Adversarial Network-GAN,  

DLRRC Deep Learning Radiomics Reproducibility Checklist 

MeSH Medical Subject Headings 

PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses 

1. Introduction 

Radiomics, aiming to promote understanding of  medical imaging by extracting complex features from 

large datasets [1], is a widely discussed field in translational medicine and digital medicine. Going with the 

tide of  historical development of  medical Artificial Intelligent(AI), methods of  radiomics have been 

replicated several times [2]. Now, the mainstream of  methods involves Machine Learning (ML) and Deep 

Learning (DL), defined by disparate workflows. Despite extensive research has shown the superiority of  

DL-radiomics comparing with ML-radiomics while processing large-scale datasets and DL-radiomics 

widely applied in medical imaging processing [3,4], DL-related translation into clinical application does 

not happen yet. 

The responsibility of  DL-radiomics had captured the concern of  academia, especially after the 

sudden outbreak of  COVID-19 and following mushrooming of  DL applications in this field [5]. 

Nowadays, it is not unusual to witness article retractions in the field of  DL-radiomics [6–8]. In this stage, 

reproducibility, as the bedrock of  authenticity and translation, should be focused on and applied to 

targeted reviewing.  

For a better understanding of  this problem, we choose Renal Cell Carcinoma (RCC), one of  the main 

subtypes of  genitourinary oncology, as an example to analyse the deeper layers of  the reproducibility 

concept. In this perspective, we took RCC-related research as examples, summarized the issues of  research 

reproducibility, presented factors of  reproducibility, analyse the sharp contradiction between the modern 

evaluation systems and the nature of  scientific research as a root cause, provide feasible measures under 

existing ethical reviewing structure, and evaluate how to solve main challenges in DL-radiomics and move 

forward. 

https://doi.org/10.2139/ssrn.4435866


3  Zuo et al. 

This preprint research paper has not been peer reviewed.  
Electronic copy available at: https://doi.org/10.2139/ssrn.4435866 

2. The Need and Advances of DL-Radiomics in RCC 

Renal cell carcinoma (RCC) is one of  the main subtypes of  genitourinary oncology, with more than 

300,000 new cases diagnosed each year [9]. Driven by various mechanisms and genes, RCC includes several 

subtypes, which were normally divided into two categories based on microscopic features, clear cell RCC 

(ccRCC) and non-clear cell RCC (nccRCC). After the recent advancement in pathological and genetical 

knowledge, nccRCC are further subdivided into several classes, including papillary RCC (pRCC), 

chromophobe RCC (chRCC), and some rare subtypes. Molecular pathology development has propelled 

the understanding of  biological behavior driving mechanisms and given birth to the further molecular 

classifications, which forebodes the precision diagnosis and treatment age coming. 

From a retroperitoneal organ, signs of  RCC are mostly asymptomatic or nonspecific, which classic 

triad of  hematuria, pain, and mass occurs 5~10% [10]. What is worse, due to anatomical structure of  

kidney and adjacent tissues, it is hard to detect RCC through physical examinations while masses are small. 

Additionally, some natural history of  RCC is variable, even can be asymptomatic. In the clinic, a substantial 

portion of  firstly-diagnosed patients is informed by unintentional radiological examnintaion. 

Recently, increasing use of  radiology in treatment and diagnosis probably cause incidents to rise in 

many countries [11–13], which finally cause an increasing concern of  RCC radiological processing. 

However, the performance of  subjective radiological interpretation is imperfect [14,15], especially in 

differentiation of  subtypes [16].  

Certain renal tumor subtypes have specific diagnosable characteristics [17], like predominantly cystic 

mass with irregular and nodular septa of  low-grade ccRCC [18]. In traditional ideas, three main types of  

RCC have classical diagnostic characteristics, involving hypervascular & hypovascular, vairous peak 

enhancement during different phases [19–22]. Other studies have also discovered several imaging features 

correlated with high-grade tumors [18,23–25]. However, the imaging characteristics of  RCC are highly 

variable [17], especially in small renal masses(SRMs). For SRMs, which are smaller than 4cm and usually 

detected by radiological imaging incidentally [26], available radiological technology can’t distinguish, with 

high confidence, the different subtypes. For example, to differentiate from ccRCC, pRCC can be detected 

with intralesional hemorrhage [17]. However, in SRMs and some undersized nontypical renal masses, the 

hemorrhage isn’t always observable. If  this patient can’t finish renal tumor biopsy(RTB), it will be quite 

passive for clinicians to proceed to following treatment. In this stage, improvement of  radiology would be 

more suitable for promoting diagnostic performance of  RCC. There is an urgent need for a non-empirical 

quantitative measure. 

In the past decade, electronic computer technology rapidly development, like nanomete process 

changes from 2012 (Nvidia GK104 28nm) to 2022 (Nvidia AD102 5nm) and accompanying calculate 

performance improvement, provided the base of  large-scale calculating, which fits the need of  deep neural 

network, the typical DL algorithm. Since 2012, the evolution of  DL in computer vision (CV) has coming 

because of  AlexNet surpassed performance in ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) [27]. Besides, high profits and growths of  DL have attracted hardware and software 

manufacturers to involve in dependent environment development, prompting lowering accessibility 

threshold. Now, it isn’t hard to deploy a DL model in a computer with TensorFlow/PyTorch and 

Nvidia/Intel hardwares for a new-comer in this field. DL-radiomics, with higher performance and lower 

barriers, has became a heavily discussed topic nowadays. It has shown impressive power in various tasks 

of  RCC, like prognosis via classification [28] and treatment selection via detection [29], which are believed 

to solve radiological challenges and promote efficiency. 
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Limited by incidence rate of  RCC and insufficient data size of  RCC’s opening imaging source, most 

reports in RCC DL-Radiomics are stereotypical based on restricted cases. Nonetheless, this field still 

involves several primary tasks, including classification [30–32], segmentation [33] and detection [34]. Now, 

several traditional radiological challenges had been resolved, like the differentiation of  RCC subtypes and 

segmentation of  blurry boundary. With an admirable performance, RCC DL-Radiomics are believed with 

high potential to promote radiological diagnosis efficiency.  

3. Reproducibility, the main barrier in translation 

As an emerging field in radiology, DL-radiomics now is widely applied in almost every area of  medicine 

research, not only in RCC. The threshold of  DL-radiomics technological barrier decreases, contributing 

to the techno-explosion in medicine. It is easy to forecast the bright future of  DL-Radiomics with high 

accessibility of  required softwares and hardwares currently.  

DL-Radiomics, as a heavily-discussed part of  translational medicine for a decade, which, 

disappointingly, leaving developing clinical practice applications of  biomedical sciences without adequate 

discussion in clinical practice. Immediate causes involve the accessibility of  codes, data and weights, which 

are undervalued of  existing checklists. Considering manual processes existed in most workflows of  

existing researches, “black box” training and possible random selection of  partitions, it is hardly possible 

to reproduce a similar result without weights and codes, even with a standard protocol and described 

processing details. Worsening, there are several excuses that can be used to refuse opening access, like 

intellectual property and ethical protection. In the eyes of  people with malice motivations, DL-Radiomics 

is a buck of  Emmental cheese, holey and delicious.  

An emerging research field is usually a hardest hit area of  academic controversies without effective 

standards, which is a common occurrence of  modern scientific research and have an inkling in DL-

Radiomics. The key player of  this abnormal phenomenon is intense contradictions between modern 

scientific evaluation systems and striving in research, which is the predictable outcome of  a neoliberalist 

academia and its system of  knowledge production. 

For many years, studies and critics had been in the lamentable state in which the notion “publish or 

perish” had become the law of  the land. The modern academic system of  knowledge production, 

especially that of  STEM (Science, technology, engineering, and mathematics) research, is, as Max Weber 

had so elegantly put it, a system of  state capitalistic corporation in which the employer suffers from 

alienation, institutional pressure of  publishing, and constant fear of  losing their jobs [35] or missing out 

in promotion due to mere fate or even luck [36]. As the tenure-track system is implemented, as private 

universities became more ranking-sensitive and donation-sensitive [37–39], competition turns violent. The 

number of  publications, the value of  influential factors [40] of  each publications, and the sector-place of  

the journal upon which the publication in SSCI or SCI establishment became the center for the careers of  

today’s “Quantified Scholars” [41] in today’s system of  “Digital Taylorism” [42]. With more high-quality 

publications, come higher positions, better professional repute, and higher chance of  attaining more 

funding or grants [43,44], which the modern private academic institutes rely more and more desperately. 

Rising number of  Scientists and limited number of  funding or publishing vacancy exacerbated the trend 

[45]. 

The unfortunate prevalence of  many predatory journals with exploding prices shows the miles that 

young scholars are willing to go to cope under such extreme stress [46]. Under such pressure, unfortunately, 

certain scholars adapt disingenuous representations of  their works. Embellishing, salami slicing, almost 

became too common in Medical publishing and news [47,48]. Even worse, the occurrence for ever more 
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rampant academic fraudulence became a predictable vice under such system [49–55]. Medical science and 

Biological science in particular, has now a repetition crisis [56,57], with certain estimation of  malpractice 

to be “as common as 75%” [58]. This fierce competition had even pushed Journals, which are also seeking 

for more exposure and citations, to publish more novel and distinguished results, pushing many scholars 

to forge their academic findings [59]. Studies even found that as “fixation in top-tier journals on significant 

or positive findings tend to drive trustworthiness down, and is more likely to select for false positives and 

fraudulent results” [60]. The fact of  Medical science research are usually conducted by groups of  many 

people, with great number of  experiment needed, data produced, only makes verification harder and 

falsification a lot easier, which added to the risk of  falsification occurring. 

All this, paints a vivid picture of  neoliberalist academia and its inevitable result. Neoliberalism, is, at 

its core, a system of  offering and constantly shifting identities [61], which inspires all participants to drown 

in a vicious cycle of  never-ending cut-throat battle. With apparatuses like Journals, and governing 

technology like Influential Factor calculator, the global assemblage [62] of  academic cohort as a field of  

social conflict is formed. The neoliberalist calculation machine, rendering evaluation of  each and 

everyone’s “value”, reducing every one as “bare individuals” being disembedded from their social and 

political relations [63], constantly offering and shifting identities to scholars, and encouraging insurgence 

of  social and academic status in a Darwinist fashion, without a feasible verification system in place, will 

lead to the individuals constantly race to the bottom as they race to the top to occupy more publishing 

space and exposure. As neoliberalism constantly shift individual identity, it also generates new pressure 

and incentives for the individual to further participate into this vicious game of  “publish or perish”. This 

system, together with willing or unwilling participants, had formed today’s strange landscape of  academic 

fraudulent that many scholars now thrive on. Because in an age where grand academic, Weberian vision 

had collapsed, a vicious number and power game is all the masses can have to feel meaningful in their lives. 

Remolding of  academic evaluation systems are not about to happen quickly, but the chaos of  

academic controversy isn’t tolerated, which requires the improvement of  existing checklists. Being similar 

to the legislation effects to constraint social functioning, checklists are supposed to become a inspectproof  

net to prevent intentional or unintentional academic controversy. However, the hole of  this net is big 

enough to drill, caused by imperfections of  checklists. 

4. Imperfections of current reproducibility reviewing 

Certain concerns were voices regarding DL-Radiomics translations [64], the process from codes to clinic. 

Reviewing existing reports, especially targeting in quality assessments, usually uses two checklists, CLIAM 

(Checklist for Artificial Intelligent in Medicine) and RQS (Radiomics Quality Assessment). However, 

several imperfections of  these checklists are obvious, escaping academic attention due to the lack of  

interdisciplinary background. We summarize the reproducibility-relative clauses of  them (Table 1). 

Table 1 Reproducibility-related clauses in CLIAM 

No. Item 

1 Identification as a study of  AI methodology, specifying the category of  technology used (eg, deep learning) 

3 Scientific and clinical background, including the intended use and clinical role of  the AI approach 

4 Study objectives and hypotheses 

6 Study goal, such as model creation, exploratory study, feasibility study, noninferiority trial 

7 Data sources 

9 Data preprocessing steps 
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No. Item 

10 Selection of  data subsets, if  applicable 

13 How missing data were handled 

14 Definition of  ground truth reference standard, in sufficient detail to allow replication 

15 Rationale for choosing the reference standard (if  alternatives exist) 

16 Source of  ground truth annotations; qualifications and preparation of  annotators 

20 How data were assigned to partitions; specify proportions 

21 Level at which partitions are disjoint (eg, image, study, patient, institution) 

22 Detailed description of  model, including inputs, outputs, all intermediate layers and connections 

23 Software libraries, frameworks, and packages 

24 Initialization of  model parameters (eg, randomization, transfer learning) 

25 Details of  training approach, including data augmentation, hyperparameters, number of  models trained 

26 Method of  selecting the final model 

27 Ensembling techniques, if  applicable 

28 Metrics of  model performance 

32 Validation or testing on external data 

33 Flow of  participants or cases, using a diagram to indicate inclusion and exclusion 

35 Performance metrics for optimal model(s) on all data partitions 

36 Estimates of  diagnostic accuracy and their precision 

37 Failure analysis of  incorrectly classified cases 

40 Registration number and name of  registry 

41 Where the full study protocol can be accessed 

 

CLIAM inspects the whole processes of  DL-radiomics, from data collection to testing, However, 

several issues are existed: 

1) Lack of  quantitative evaluation. It doesn’t grade the work, which means the eligible boundary is 

unset. It is unable to provide valid assessment a targeted work or massive hunting. 

2) Lack of  accessibility review in weights and datasets. It can be found in No.41 that CLIAM 

requires a possible accessibility of  codes. Reports are hard to reproduce and to assess authenticity 

only with the accessibility of  codes and described details of  processes. 

3) Weighted in protocol normative comparatively, with limited attention to reproducibility-

authenticity details. There are contents with great length existing in CLIAM associated with 

protocol normalization, which is understandable considering the standardizing requirement as a 

checklist. There should be some rules in the checklist for further promising of  reproducibility 

and authenticity. It isn’t hard to conceal defects intentionally or unwittingly under the supervision 

of  CLIAM. 

RQS 2.0 [65], with significant variations of  clauses, is accessible through the following webpage 

(https://www.radiomics.world/rqs2/dl). Although RQS has a wider scope of  examination, it also has 

some issues existed while applying in reproducibility assessment.  

1) Contains unreasonable weights of  options. Comparing with CLIAM, RQS 2.0 can score the 

quality of  reports. However, the score of  some options are not quite matching with their tangible 

impacts. For example, in the clause of  “The algorithm, source code, and coefficients are made publicly 

available. Add a table detailing the different versions of  software & packages used.”, the option of  Yes only 

https://doi.org/10.2139/ssrn.4435866
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score for 1 point with 1.64%. It is easy to reproduce with codes and coefficients, which is usually 

called weights in DL. It is not reasonable to score just 1 point.  

2) Can be considered too broad and shallow. Original intention of  RQS probably is forward-looking 

quality assessment, which cause RQS that has a too broad scope to assess. It also causes the 

limited depth of  detail analysis, which leads to a non-ideal situation of  reproducibility assessments. 

It is easy to figure that an urgent need of  specific reproducibility-based reviewing is existed in DL-

Radiomics. As an emerging field in digital medicine, the focus on reproducibility and standardization at an 

early stage is believed to promote healthy development.  

The main hinder of  targeted reviewing is actually coming from the academic ethical requirement. 

This is not a criticism to ethical reviewing, but an approval, on the contrary. Lowering ethical requirements 

would be an avalanche, probably causing uncoverable tough situation in academia. Considering the 

constantly technical development in DL, it could be foreseen that possibility of  raising ethical 

requirements would be existed in future, like Generative Adversarial Network (GAN) and its generability-

related privacy disclosures. The academic rigor gives people with ulterior motives a leg up on deceiving, 

which is undesirable. Sheltering by ethics and intellectual property, people can refuse opening access to 

codes, datasets and weights, which is similar to piping of  dams. The most feasible method to plug is 

deepening non-sensitive detail requirements, which is the motive to design the new checklist. 

5. A New Checklist, Deep Learning Radiomics Reproducibility Checklist 

(DLRRC) 

To fill the gap, we proposed a new checklist Deep Learning Radiomics Reproducibility Checklist (DLRRC) 

(Table 2). The particulars of  DLRRC and reviewing results of  RCC DL-Radiomics studies (Supplement 

1) are attached.  

Table 2 Deep-Learning Radiomics Research Checklist (DLRRC). This checklist scores 100 points, 

regarding 50 points as a baseline of  “acceptable reproducibility”. The website of  DLRRC is 

https://apps.gmade-studio.com/dlrrc. 

No. Item with Answers & Scores 

Part I: Basic information and Data Acquisition (10 points) 

1 Labels are meaningful and biological discrepancy, mentioning potential topological differences existing. 

Answers and scores: Yes (2.5); No (0). 

2 Filtration of  radiological data are applied and described. 

Answers and scores: Yes (2.5); No (0). 

3 Radiological data types: 

- If  several modalities are involved, each type of  modality should have an acceptable ratio with detailed 

descriptions. 

- If  only one modality is involved, declaration is required. 

Answers and scores: Yes (2.5); No (0). 

4 For data sources: 

- If  it is all originated from open sources, situation of  application and filters should be declared. 

- If  it involves closed-source data, institutional ethical reviewing approvement and serial numbers are 

required. 

Answers and scores: Yes (2.5); No (0). 

https://doi.org/10.2139/ssrn.4435866
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No. Item with Answers & Scores 

Part II: Pre-processing (27.5 points) 

5 The ratio of  each label should be unextreme and acceptable. 

Answers and scores: Yes (2.5); No (0). 

6 The ratio of  images and cases should be closed, otherwise reasonable explanation is required. 

Answers and scores: Yes (2.5); No (0). 

7 Processing staffs are radiological professionals. 

Answers and scores: Yes (2.5); No (0). 

8 Pre-processing is processed by the gold standard guidance. 

Answers and scores: Yes (2.5); No (0). 

9 Effective methods exist to promise accuracy of  pre-processing. 

Answers and scores: Yes (2.5); No (0). 

10 The ratio of  each dataset is reasonable. 

Answers and scores: Yes (2.5); No (0). 

11 Cases are independent, which aren’t involved in different datasets. 

Answers and scores: Yes (2.5); No (0). 

12 Datasets are established by random selection, without manual manipulating. 

Answers and scores: Yes (2.5); No (0). 

13 Examples of  pre-processing are listed. 

Answers and scores: Yes (2.5); No (0). 

14 Methods of  data augmentation are suited and correctly applied. 

Answers and scores: And (5); Or (2.5); Nor (0). 

Part III: Model and Dependence (10 points) 

15 Methods to avoid overfitting are applied and described. 

Answers and scores: Yes (2.5); No (0). 

16 Software environment should be listed, like serial numbers of  version. 

Answers and scores: Yes (2.5); No (0). 

17 Hardware details should be listed. 

Answers and scores: Yes (2.5); No (0). 

18 Applied models are suited for tasks. 

Answers and scores: Yes (2.5); No (0). 

Part IV: Training, Validation and Testing (27.5 points) 

19 Training details are listed, like epoch and time spent. 

Answers and scores: Yes (2.5); No (0). 

20 Hyperparameters are listed (at least including batch size and learning rate). 

Answers and scores: Yes (2.5); No (0). 

21 The curves of  accuracy-epoch and loss-epoch are provided. 

Answers and scores: Yes (2.5); No (0). 

22 The end of  training is decided by the performance trends in validation datasets and is described. 

Answers and scores: Yes (2.5); No (0). 

23 Methods to promote robustness are applied. 

Answers and scores: Yes (2.5); No (0). 

24 The details of  initial weights are described. 

Answers and scores: Yes (2.5); No (0). 

https://doi.org/10.2139/ssrn.4435866
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No. Item with Answers & Scores 

25 Training workloads are listed. 

Answers and scores: Yes (2.5); No (0). 

26 Objective indexes are reasonable and complete. 

Answers and scores: And (5); Or (2.5); Nor (0). 

27 Comparison between testing performance and manual processing with the same test dataset is provided. 

Answers and scores: Yes (2.5); No (0). 

28 Details of  test datasets and speculation results are provided. 

Answers and scores: Yes (2.5); No (0). 

Part V: Accessibility (25 points) 

29 Codes. 

Answers and scores: Fully accessible (10); Partly accessible (7.5); Possible accessible (5); Not (0). 

30 Datasets. 

Answers and scores: Fully accessible (10); Partly accessible (7.5); Possible accessible (5); Not (0). 

31 Weights. 

Answers and scores: Accessible (5); Inaccessible (0). 

 

To be noticed, DLRRC is designed for targeted reproducibility assessment of  DL-Radiomics, which 

causes different focuses comparing with CLIAM/RQS. The principal index is reproducibility of  reports, 

which manifest different items. It could be found that our checklist involves clauses mentioned by 

RQS/CLIAM, and some new requirements. These new requirements, like spent time of  each epoch and 

matched-degree of  models & tasks, are applied to profile the authenticity and reproducibility logically. For 

example:  

1) We require authors to provide hardware details, parameters of  models, datasets size and spent 

time in each epoch, which can be used to deduce bidirectionally. The expected computing scale 

and hardware performance will have to spend more time. Also, the computing scale, formed by 

parameters and datasets size, can be speculated by spent time and hardware performance. This 

logic is used to assess the authenticity and provide suggestions in reproduction.  

2) We require authors to provide hardware and software details, involving dependent software 

version and hardware version, like the versions of  TensorFlow/ PyTorch/ CUDA/ CUDNN 

and graphic card types. There are relevance existed between TensorFlow/PyTorch and 

CUDA/CUDNN, which means the models can’t perform with inconsistent versions of  these 

dependencies. In some retracted articles, the authenticity can be argued quickly by checking these 

details. Also, in reproduction, these details are important to deploy models. 

There are several veins hiding in this checklist, weaving a blanket over researches in this field. We 

don’t explain reasons of  every clause, but each one equally have an important role in reproducibility 

assessments. This checklist can be applied in other DL-Radiomics fields as the generalization of  DL 

methods, which can be proved by the scores of  retracted articles from different fields of  DL-radiomics.  

6. DLRRC Practice and Discovery in RCC 

To obtain a glimpse of  the current situation about reproducibility of  DL-Radiomics, we collect documents 

of  RCC DL-Radiomics from PubMed and Web of  Science with certain Medical Subject Headings (MeSH), 

involving “Neural Networks, Computer”[Mesh], “Deep Learning”[Mesh] and “Carcinoma, Renal 

https://doi.org/10.2139/ssrn.4435866
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Cell”[Mesh]. Finally, 22 peer-reviewed journal articles in RCC field fall in the scope [29–34,66–81] and are 

examined by DLRRC (more details are attached in Supplementary Information).   

Figure 1 presents a scatter of  JIF percentile via DLRRC scores of  the reports. Setting 50 points as 

the threshold of  “acceptable reproducibility”, this study finds that overall quality of  RCC DL-Radiomics 

is relatively acceptable, according to Figure 1. Most reports (i.e., 16 of  22) are partly reproducible, which 

means similar results can be performed with semblable protocols. Given further analysis, we find that 

reports with disquieting scores are published earlier than 2021 in some technology-focused journals (c.f., 

Supplementary Information), which pay more attention to innovations of  DL methodology and less 

attention to overall normalization. Hence, it is encouraged to keep an attention balance between 

innovations and protocol normalization, which is more reasonable. 

Grounded on the above findings, we further analyse the correlation between journal levels and 

DLRRC scores (Figure 1) and the trend over time (Figure 2). Figure 1 reveals that there is no linear 

correlation between the journal levels and DLRRC scores (corr = -0.085, p = 0.707; partial corr = -0.125, 

p = 0.590), indicating that the need of  advancing reproducibility is a general issue across all levels of  

journals. Fortunately, Figure 2 reveals a moderately positively linear correlation between years of  

publications and DLRRC scores (corr = 0.402, p = 0.064; partial corr = 0.411, p = 0.064; the p value is 

reasonably accepted due to the limited sample size), hinting a good omen achieved by the academia and 

explicable due to time-varying accessibility of  DL methods.  

 

Figure 1 The score scatter of  JIF percentile and DLLRC Score in RCC. Correlation coefficients = -0.085 

(p = 0.707); partial correlation coefficients = -0.125 (p = 0.590), controlling year effect. 
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Figure 2 The line chart of  DLRRC score in RCC and published year. Correlation coefficients = 0.402 (p 

= 0.064); partial correlation coefficients = 0.411 (p = 0.064), controlling JIF effect. 

Figure 3 presents the average point percentages of  each part. The average point percentage of  the 

whole report is 52.4%, equal to the threshold of  “acceptable reproducibility”. Part I “Basic information 

and Data Acquisition” and Part III “Model and Dependence” are relatively well done, with average point 

percentages of  64.8% and 60.2%, respectively. Part II “Pre-processing” and Part V “Accessibility” are with 

moderate average point percentages around the threshold of  “acceptable reproducibility”. Part IV 

“Training, Validation and Testing” should be noticed, due to its average point percentage as 42.6%. 

41.667

53.250

49.375

59.500

20

30

40

50

60

70

2019 2020 2021 2022

D
L

R
R

C
 S

c
o

re

Year

https://doi.org/10.2139/ssrn.4435866


Reconsideration Reproducibility of  Currently Deep Learning-Based Radiomics 12 

This preprint research paper has not been peer reviewed.  
Electronic copy available at: https://doi.org/10.2139/ssrn.4435866 

 

Figure 3 Bar chart of  average point percentages in total and each part. 

To explore current vulnerability in terms of  reproducibility, we summarize the average point 

percentages of  each item in Figure 4. Several discoveries with recommendations are highlighted:  

1) Accessibility needs improvement. The main discovery is that the impressive weights (item 31 rated 

4.5%) and overall accessibility is quite low. Considering possible factors of  closed sources existed, 

we set a baseline of  accessibility, which should have 50% points or higher points of  Part V scores. 

It is tolerable that details of  models and datasets are described while codes and datasets are non-

open and belong to some ongoing projects. Even so, the pass rate of  accessibility is still fallacious 

in general.  

2) Institutional reviewing number of  closed source data should be offered (item 4 rated 18.2%). Some authors 

declared that the written informed consent was waived and didn’t provide institutional reviewing 

number, which is not encouraged in our perspective. Usually, as a retrospective study, it truly can 

be waived of  written informed consent. We encourage authors to provide reviewing approval 

details, as an authenticity evidence of  research and inevitable information if  authors really register 

for a retrospective study in institutions.  

3) Data pre-processing needs standardization to prove robustness. The robustness of  results is the 

cornerstone of  reproducibility and comes from standard and well-designed pre-processing and 

methodology. Unfortunately, issues of  data pre-processing are common in established reports. 

Unbalanced labels’ ratios without suited models (item 5 rated 31.8%), inconsistent ratios of  

images generation (item 6 rated 27.3%), the lack of  referring golden standard guideline during 

pre-processing (item 8 rated 18.2%), the lack of  cross-validation (item 9 rated 31.8%), and manual 

manipulating during datasets division (item 12 rated 45.5%) may weaken the robustness of  results. 

In addition, it should be noted that random division of  training, validation and testing datasets 

need to be in the patients scale instead of  images scale. Otherwise, it may lead to a situation where 

images of  one patient are involved in different datasets, and thus obviously mistaking.  
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4) Technological information on model and dependence, especially software dependencies, should be elaborately attached. 

Software environment descriptions are often incomplete in existing reports (item 16 rated 4.5%, 

i.e., only 1 report passing). Versions of  CUDA, cuDNN, as well as the deep-learning framework 

such as TensorFlow and PyTorch are supposed to be listed, because it’s believed that the 

dependency across those versions can improve the level of  confidence about the authenticity and 

reproducibility of  a certain report. However, most authors don’t describe clearly about dependent 

software environment. Instead, they usually tend to describe ambiguous information, like “using 

PyTorch” or “with TensorFlow”, much less to more detailed information like applied package 

version. For example, cuDNN version is declared while CUDA version and TensorFlow/Python 

version are not declared, which is quirky. It is beyond understanding, considering that no barrier 

exists in acquisition of  these information in a real study.  

5) Details of  training, validation, and testing need to supplement. Except item 26, items of  Part IV are rated 

low.  

a) Training details about epoch and time spent are hardly listed in the reports (item 19 rated 

31.8%); accuracy / loss – epoch curves are rarely presented (item 21 rated 18.2%); and none 

of  studies report the workloads during training (item 25 rated 0%). These details are 

important, given that they have a potential combination with hardware information. This is 

understandable as it is not a common index in existing research, especially in non-special 

application study that rely on edge calculation or low-performance hardware. We encourage 

authors to provide these details for a better value assessment. 

b) No declaration of  hyper-parameters (item 20 rated 59.1%) and initial weights (item 24 rated 

54.5%) is also common in these reports. Again, these details are not technical sensitive, 

which should have no barrier to acquire in research and declared in articles. We suggest the 

authors provide non-technical sensitive details as much as possible, for better 

reproducibility and authenticity.  

c) Only a few of  studies have employed methods for more convincing results (item 22 rated 

18.2%, item 23 rated 50.0%). We encourage authors to apply robustness promotion 

methods, like x-fold cross-validation in model training without a specific validation dataset 

and determinate training end by the performance trends in validation datasets. 
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Figure 4 Column chart of  average points in items. Average points in Item 16 and 31 are impressively low. 

Average points in Item 1 are quite high. 

Based on the above findings, several implements can be proposed. As the deficiency of  DL-

Radiomics reports in RCC exists, we call for a widely recognized DL protocol or a detailed guideline to 

direct following efforts. Furthermore, and significantly, given that article structures are various, influencing 

readability and detail extraction, we call for an appropriate standard to promote readability by guiding 

structures of  articles, like PRISMA of  Meta-analysis. Finally, for a more comprehensive analysis of  

reproducibility, a wider reviewing of  DL-Radiomics reports is required. 

DLRRC, as a new generalized checklist, needs more extensive testing and evaluation for proving 

efficiency. We provide a web application for online assessment with DLRRC (https://apps.gmade-

studio.com/dlrrc). Everyone is welcome to use this checklist to assess the reproducibility of  DL-

Radiomics reports and send their feedback or suggestions. It is too far to say that we hope this perspective 

and DLRRC can fix these reproducibility defects in DL-Radiomics. Also, it is not a criticism to a certain 

report. Our original intention is to call for attention from academia to focus on the current situation. We 

truly hope that the future of  DL-Radiomics can be brighter with industry-wide attempts. 

7. Conclusions 

We take DL-Radiomics applications in RCC as an example to analyze reproducibility, glimpsing the 

reproducibility of  the whole DL-Radiomics. It is not surprised that mostly reports can’t reproduce 

completely, as the reproducibility deficiency has been notorious for decades in translational medicine. The 

current situation is still frustrating. However, scant attention from academia is devoted to this, which is 

the main motive of  this perspective. We truly hope that more practitioners will devote into the healthy 

development of  DL-Radiomics in the future, for a greater tomorrow of  translational medicine. 

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 1011121314 15161718 19202122232425262728 293031

A
ve

ra
g

e
 p

o
in

ts
 t

o
 t

o
ta

l 
p

o
in

ts
 (

%
)

No. of  Item

https://doi.org/10.2139/ssrn.4435866
https://apps.gmade-studio.com/dlrrc
https://apps.gmade-studio.com/dlrrc


15  Zuo et al. 

This preprint research paper has not been peer reviewed.  
Electronic copy available at: https://doi.org/10.2139/ssrn.4435866 

Availability of data and materials 

All data can be availed by contacting Gmade Studio(gmadestudio@163.com) and Mr. Teng Zuo. 
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