
24/02/2011

1

10 OPEN CHALLENGES IN
SOFTWARE ENGINEERING

Anthony Finkelstein

Computer Science

24/02/2011

2

Brief outline of talk …

The Discipline of Software Engineering…

  Sustained relevance of ‘big agenda’
  Substantial scientific progress but (perhaps)

receding impact on practice
  Significant advances in some areas

 Testing
 Automated verification (model-checking)
  (largely outstripping capacity to absorb innovation)

24/02/2011

3

The Discipline of Software Engineering…

  Uncertain directions in other areas
 Software architecture
 Software design
 Software requirements

  Difficulties in making progress in some areas
 Software development tools
  ‘Methodologies’ (modelling and process combos)
 Middleware

  Grounds for optimism

Challenge I – sketch

  Move to an ‘evidence-based’ practice
 cf medicine

  Existing practice
 Evidence-free
 Anecdotal
 Quasi-evidence-based

24/02/2011

4

Challenge I – tentative approach

  Review ‘classic’ work
  Underpin work with clear hypotheses
  Openly encourage ‘reproducibility’

studies
  Reorganise research efforts around a

‘translational pipeline’
  Restructure software engineering

education to reflect an evidence-
based approach

  Engage with the ‘blogosphere’
http://www.sciencecartoonsplus.com/index.php

Challenge II – sketch

  Making ‘twin peaks’ more than a picture

Weaving together requirements and architectures
IEEE Computer, Vol. 34, No. 3. (2001), pp. 115-119.
by B. Nuseibeh

24/02/2011

5

Challenge II – tentative approach

  ‘Non-functional properties’ drive architectures
(perhaps)

  Map the relationships between these properties and
architectural styles

  Insights from architectural evolution

Challenge III – sketch

  Engineering scalability
  ‘Internet-scale’ services
 Handling large and rapid variations in the demand for

resources

  Existing practice
 Some high level patterns for limited classes of

application
 Resource profligacy
 Suck it and see (dimension by dimension)

24/02/2011

6

Challenge III – tentative approach

  Large-scale testbeds
  Scaling ‘in the wild’

 Surmounting the
data challenge

  Architectural
breakdowns

  Dynamic systems
models

Challenge IV - sketch

  Convergence of web standards and software
engineering standards

  Existing practice
 Fundamentally separate worlds with OMG and W3C

moving in different incompatible directions
 Wasteful of effort and of technical opportunity

24/02/2011

7

Challenge IV – tentative approach

  Stop playing at the periphery and pull back to
fundamental requirements, a fudge probably will
not work

  Devise and test shared schemes
  Identify quick wins

 For example smart semantic tagging of software
artefacts

  Start the ‘hard grind’ of engagement with
standards bodies

Challenge V – sketch

  Resource estimation	

  Existing practice	

  We are unable to reliably predict the cost/effort

required to build a system. We may be fortunate and
have built a very similar system before. 	

 Function Points are precious little assistance. ‘Jelly
Beans’ only work for small systems, relatively ‘late’ in
the process.	

24/02/2011

8

Agile Montage

  Nothing even on the horizon here!
 Perhaps machine learning has a part to play

  We are probably going to have to:
 Rethink software economics

 Making money a ‘first class object’ in software
engineering

 Get a much better handle on ‘programmer
productivity’

 Provide an appropriate data-sharing infrastructure

Challenge V – tentative approach

24/02/2011

9

Challenge VI – sketch

  New models around SaaS	

  Existing practice	

 We know how to build SaaS (sort of, see III) but we

don’t know how to:
 buy it
 manage QoS
 achieve interoperability

Challenge VI – tentative approach

  Stop ‘wasting time’ with fine grained software
services (wake up and smell the cocoa)	

  Enterprise mash-ups
  Requirements methods based on balancing

mutability
  ‘Security in the cloud’
  ‘Walk away’ methods

24/02/2011

10

Challenge VII – sketch

  The apotheosis of ‘apps’
  Existing practice

 Channel delivery
 Highly-tuned, device-specific

interfaces across to services
with ‘sync’ to clients

 Because a viable payment
model exists …

Challenge VII – tentative approach

  Requirements engineering for mass-markets
  New types of ‘product-family’ engineering
  App Stores SM

  App management
  App assembly

24/02/2011

11

Challenge VIII – sketch

  Development of emerging classes of ‘adaptive’
system

  Existing practice
 Problems with systems that must adapt to context
 Problems with systems embedding significant COTS/

Community Sourced independently evolving components
 Problems with systems that involve user scripting and

‘plug-ability’

Challenge VIII – tentative approach

  Moving reflection from being a programming
language level mechanism to software systems that
can ‘account for themselves’ – models@runtime
 Can reflect their requirements and (through monitoring)

the extent to which those requirements are being satisfied

24/02/2011

12

Challenge IX – sketch

  “History repeats itself, first as tragedy, second as
farce” Karl Marx

  Existing practice
 And third, and fourth, and …
 See CHAOS reports passim

Challenge IX – tentative approach

  Mismatches at the boundaries between business and
software engineering
 Governance

24/02/2011

13

Challenge X – sketch

  Addressing complex inter-product and inter-supplier
dependencies

  Existing practice
 None to ad-hoc

Challenge X – tentative approach

  Rethinking software production
  From garage ‘design and make’ to …

 Supply chain
 Software ecosystem

24/02/2011

14

And by way of an inadequate conclusion
Two Free Challenges (for Oxford)

  Beyond … software engineering
  Physiome, energy and sustainability models

  require large composite heterogeneous models (& meta-models)
  multiple stakeholders
  subject to collaborative construction and rapid evolution
  prone to error

And by way of an inadequate conclusion
Two Free Challenges (for Oxford)

  Bringing automated verification to software
engineering practice
 … and making the kind of breakthrough for theorem proving

technology that has made model checking a practical reality

http://www.toothpastefordinner.com

