

Application Service Providers: System Development Using Services over the Net

Kenji Takahashi Information Sharing Platform Labs. NTT Tokyo, Japan http://www.kokono.net/~kt Wolfgang Emmerich, Anthony Finkelstein & Sofia Guerra Dept. of Computer Science University College London Gower St, London WC1E 6BT http://www.cs.ucl.ac.uk/ssegroup.html

1

"Five years from now, no one will be buying and running their own software. We'll look back on those days and laugh"

ASP - Internet Research Group

Outline

- **■** Introduction
- Case Studies
- **■** Requirements
- Architectures
- **■** Enabling Technologies
- **■** Development
- **■** Conclusions

3

Learning Contract

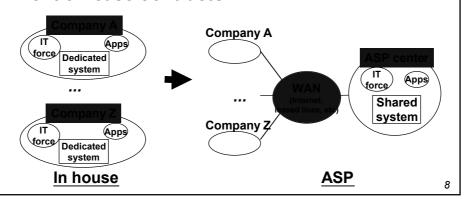
- Understand what an application service provider is
- Appreciate the key technical and management choices
- Gain insight into system development with application service providers over the Internet, intranet, and extranet.
- Understand advantages, pitfalls and prospects of this growing and rapidly developing area

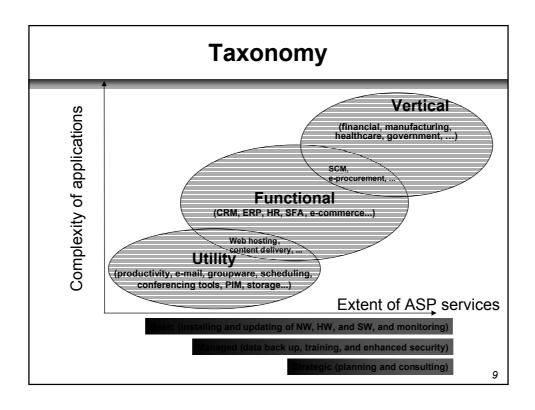
Introduction

5

What is an ASP?

■ An Application Service Provider is a third party organization that provides access to applications to multiple customers over network based on rental or lease contracts. It deploys and manages application software, system hardware, and networking at a centralized facility on behalf of the customers


What is an ASP?

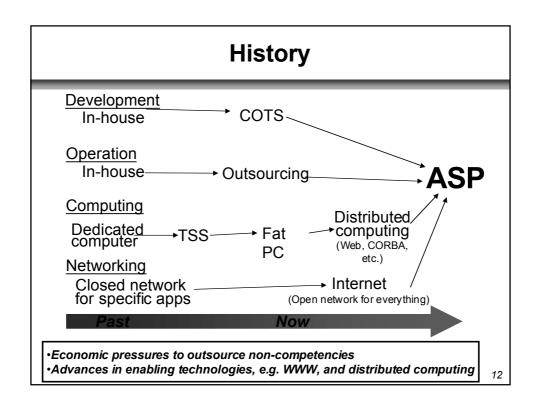

■ Others said...

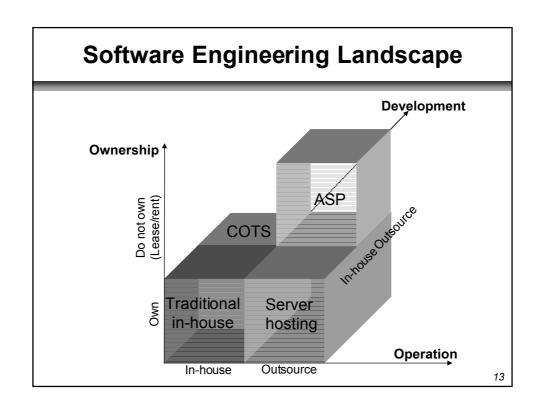
- "ASPs are service firms that provide a contractual service offering to deploy, host, manage, and rent access to an application from a centrally managed facility" (Meredith McCarthy, IDC 1999)
- "An application service provider manages and delivers application capabilities to multiple entities from data centers across a wide area network. An ASP may be a commercial entity, providing a paid service to customers or, conversely, a not-for-profit or government organization supporting end users." (ASP Consortium, 1999)

What is an ASP? (cont.)

- One to many
- One stop shopping for all IT needs applications, network, computers, and operation services)
- Rent or lease contracts

Taxonomy (Cont.)


- Taxonomy based on "how services are provided"
 - Web Software Vendors
 - Service Aggregators
 - Full Service Providers
 - Application Infrastructure Providers


(source: "Application service providers: A market overview", Internet Research Group, 2000)

Taxonomy (Cont.)

- Taxonomy based on "what applications are provided"
 - Enterprise ASPs
 - Local/regional ASPs
 - Specialist ASPs
 - Vertical Market ASPs
 - Volume Business ASPs

(source: "ASPnews.com")

Bespoke vs. ASP-based Development

Bespoke	ASP
In-house development	Packaged software
In-house management	Outsourced management
Specify everything	Specify requirements and
	choose implementation
Customized architecture	Standardized architecture
Computing locally	Networked computing
Traditional big firms	Rapidly growing SMEs
Large intial investment	Small set-up fee
Fixed cost	Pay per usage

Overview of ASP Industry

- Young and attracting many companies
 - The term "ASP" is just two years old.
 - Over 300 companies called themselves ASPs as of Jan. 2000.

(source: "Application service providers: A market overview", Internet Research Group, 2000)

• In 2000, 1000 ASPs will join the market.

(source: Summit Strategies)

15

Overview of ASP Industry (cont.)

- Big companies have jumped on the bandwagon
 - AT&T
 - Microsoft
 - IBM
 - Sun
 - Oracle
 - SAP
 - ...
- ASP Industry Consortium
 - Nearly 400 members world-wide as of March 2000

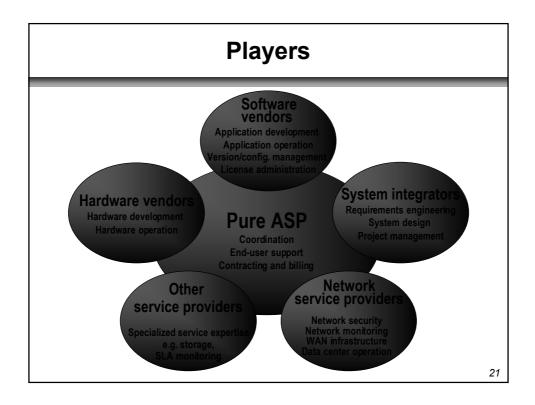
Overview of ASP industry (cont.)

- **■** Estimated market size (world wide)
 - IDC
 - US\$296 millions (1999)
 - US\$7800 millions (2004)
 - Gartner Group's Dataquest
 - US\$889 millions (1998)
 - US\$ 2,700 millions (1999)
 - US\$ 22,700 millions (2003)

17

Business Models

- ASPs sell "services", not "applications"
- Customers buy services but do not own applications
- Partnership is the name of game
 - share risks (initial investment) and revenues
 - gather expertise in different areas
- ASPs serve as a primary contact for customers
- Major model is monthly fee per user.
 - Per transaction
 - Supported by advertising free to end-users
 - Revenue sharing with partners


Example of ASP Arrangement

- Utility applications (e.g. groupware and e-mail)
 - Installation: \$0-1,000 (within a few days)
 - Monthly fee: \$20 per user
 - Term : 1 12 months
- **■** Enterprise applications (e.g. ERP)
 - Installation: \$100,000 (within a few months)
 - Monthly fee: \$800 per user
 - Term : 1 3 years
- Customers are seeking usage-based fee structure and volume discounts

10

Service Level Agreements (SLA)

- SLA are a means for customers to have service levels guaranteed and for ASPs to distinguish their services
- ASPs are still struggling to define SLA and manage the service levels
- Typical SLA of ISPs include availability, latency, and time for error notification
- Also important are problem resolution speed and resources
- Refunds are made only upon customer claim in many cases

Pure ASPs

- Pure ASPs focus on application services
 - Full service providers, e.g.
 - USinternetworking
 - Breakaway Solutions
 - · Service aggregators, e.g.
 - Corio
 - Futurelink

Software Vendors

- Some application vendors are trying to become ASPs
 - Enterprise: mySAP.com, Siebel and Oracle BOL
 - Office/personal: Lotus Notes and Microsoft Office
 - Also they are starting to license their products on lease and rental contracts
- Software used by ASPs include:
 - Web servers and performance monitoring tools (e.g. BMC)

23

Hardware Vendors

- **■** Provide hardware for ASPs
 - Computers (e.g. servers, PCs, thin clients)
 - Network equipment
 - Storage devices
- Enter ASP market through new business models
 - Revenue sharing
 - e.g. HP, Qwest, and SAP alliance
 - Pay-as-you-grow
 - e.g. SUN's "Capacity on demand"

Network Service Providers

- **■** Telephone companies
 - Are becoming ASPs and/or provide network services to ASPs
 - e.g. AT&T, US West, Qwest, and NTT
- Internet service providers (ISPs)
 - Also provide Web hosting services and try to get ASPs as their customers
 - e.g. Verio, Uunet, and Concentric
- **■** Data center operators
 - Focus on server hosting services
 - e.g. Exodus and AboveNet

25

System Integrators

- System integrators provide consulting services to introduce ASPs to enterprises
- Faster installation of standardized applications changes the role integrators play in system development
 - e.g. EDS/C2O
 - Deloitte and
 - Andersen Consulting

Other Service Providers

- **■** Storage service providers
 - e.g. Storage Network provides data storage services over network
- **SLA monitoring**
 - e.g Candle monitors ASP performance for ASP customers and NSP performances for ASPs

27

Market Needs

- Time to services is critical huge first movers' advantages in e-commerce
- Avoid risks in IT recruitment and retention
- Constant pressures to focus on core competencies and reduce total cost of ownership of information systems
- For start ups, renting and leasing are preferable options to improve cash flows
- Increased acceptance of IT outsourcing
- Web and Internet access is ubiquitous

Case Studies

Corio, USInternetworking, Futurelink & mySAP

29

Case Studies: Corio

- www.corio.com
- Service aggregator
- **■** Provides applications including
 - SAP (ERP)
 - PeopleSoft (Finance and HR)
 - Siebel (CRM)
 - CommerceOne (e-procurement), etc.
- Architecture: client/server

Case Studies: Corio (cont.)

- Main customers are medium and large size companies
- Monthly fee per sheet
- Partnership with more than 27 companies
 - Networking and data centers: Exodus and Cocentric
 - System integrators: Ernst & Young and Cambridge technology partners

31

Case Studies: USinternetworking

- **■** www.usi.net
- **■** Full service provider
- **■** Provides applications including:
 - PeopleSoft (Finance and HR)
 - Siebel (CRM)
 - Ariba (e-procurement), etc.
- Architecture: client/server

Case Studies: USinternetworking (cont.)

- Main customers are medium and large size companies
- **■** Flat monthly fees
- USi owns and manages data centers and peer-to-peer network

33

Case Studies: Futurelink

- **■** www.futurelink.net
- **■** Full service providers
- **■** Provides applications including:
 - Sales Logix (SFA)
 - Onix (CRM)
 - Greatplains (e-commerce).
- Architecture: server-based

Case Studies: Futurelink (cont.)

- Main customers are small and medium size companies
- Fees per hour, per day, per project, per consultant per month, or per sheet per month
- **■** Owns and manages data centers

35

Case Studies: mySAP

- www.mysap.com
- **■** Web software vendor
- Provides SAP products and B2B portal services
- Architecture: Web-based

Case Studies: mySAP

- Main customers are small and mediumsize companies.
- Used by over 10,000 companies
- Partners provide implementation and hosting services
 - Corio, EDS, eOnline Inc., HostLogic Inc., IBM Global Services, Interpath Communications Inc., Qwest CyberSolutions, and Siemens Business Services

37

Challenges to ASPs

- Business models are still changing customers tend to wait and see
- Huge early investment, then race to quickly establish ASP infrastructure
- Need to guarantee responsiveness of each of different applications, which are growing in volume and complexity
- Need to measure and guarantee the level of usability and customer satisfaction
- **■** Trade off customization & standardization

Requirements

Security, Availability, Reliability, Scalability, Interoperability & Performance

39

Requirements and Architecture

- Non-functional requirements (global service properties) determine architectures (ASP)
- Changes in non-functional requirements can necessitate costly architecture changes (ASP)
- Getting these requirements right to start with is critical (End-user)
- Estimate degree in which they are likely to evolve in the foreseeable future (Enduser)

Security

■ Preserve security for all work processes of customers- from clients to servers

■ Good news:

- ASPs also can function as security information clearinghouses
 - Access to security expertise
 - Provides continuous updates on security issues
 - Education and training are most critical
- Stronger security at hosting centers physically and operationally
- Data back up and transaction logs for faster recovery

41

Security (cont.)

■ Bad news

- Communication between end-users and ASP centers is potentially insecure
- · Critical data is in third party hands

Network Security

- Trade off among cost, flexibility, and strength
- Generally the higher the layer at which network security functions, the less expensive, the more flexible, and the more vulnerable security becomes.
 - Secure application protocols (HTTPS, SSL, etc.)
 - Virtual private network (network layer)
 - Dedicated leased lines (physical layer)

43

NW

Application Security

■ Authentication

- Identify and permit agents (both human and computer) to execute particular actions (e.g. access network and data, and use of applications)
- Users
 - (one time) passwords, biometrics, IC card, etc.
- Servers and files sent by servers (e.g. mobile codes)
 - digital certificates issued by third parties (e.g. RSA), etc.

■ Viruses

Availability

- Give guarantees for service availability to end-users
- As network services become indispensable and global, services cannot be allowed to stop
- A few ASPs guarantee availability
 - USinternetworking (99.9%)
 - Breakaway Solutions (99.5%)
 - Hitachi (100%)

45

Availability (cont.)

- Typical SLA of ISPs includes:
 - Network access availability (e.g. 100% guaranteed. Return one day's fee for each hour unavailability in a month)
 - 24*7 monitoring and immediate notification of network service problems (e.g. within 15 minutes)

Reliability

- **■** Define reliability level of services
- Typically measure unscheduled downtime and mean time to repair
- ASPs claim to provide cost effective, 24*7 maintenance services using shared and secured facilities
- Some ASPs provide data back-up services

47

Reliability (cont.)

- **■** Few ASPs guarantee reliability
- **■** Typical SLA of ISPs include:
 - No more than one hour of unscheduled downtime per year
 - No more than 40 minutes to restore network operation

Scalability

- End-users demands high degrees of scalability from their ASPs, because
 - their potential customer base is global
 - growth of electronic markets
- Users want scalability to be provided with smooth cost model
- Scale can grow in
 - Number of customers
 - Total number of transactions
 - Required transaction throughput
 - Transaction complexity with more demanding customers

Interoperability

- Interoperability is the capacity of a system to cooperate with other systems
- Service provided by an ASP may have to be integrated into a vertical business process either at user or at ASP end
- Service provision itself may have to be based on existing legacy systems

Interoperability (cont.)

- Requires resolution of hardware and operating system heterogeneity platforms
- Challenge is to achieve interoperability and still be able to make non-functional guarantees!

51

Performance

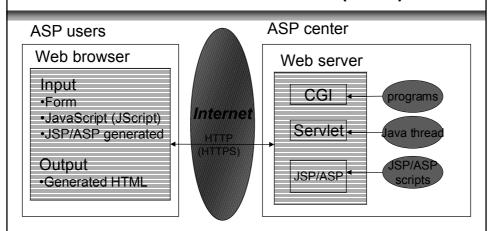
- **■** Maintain service performance
 - Response time
 - Throughput
 - · Time to service
- ASPs claim to be able to flexibly upgrade their capacity to meet performance requirements
- **■** Few ASPs guarantee performance

Performance

- Overall usability and customer satisfaction are also important but difficult to quantify
- Typical SLA of ISPs includes:
 - Latency (e.g. less than 120 ms for a transatlantic round trip)
 - Time to service (e.g. less than 40 days after signing contracts)

53

Architectures


Web-based, Mobile-code, Server & Client/Server

Web-based Architecture

- Web browsers are used as clients. User interaction is implemented using forms, JavaScript, and Java Server Page (or Jscript and Active Server Page)
- Computing is mainly done on web-server side via HTTP/application gateway interface (e.g. CGI) or Servlet API, or server side script API (ASP/JSP)
- Internet is usually used for communications
- Examples: Web-enabled ERPs (e.g. mySAP.com) and utility tools (groupware, e-mail, personal productivity tools, etc.)

55

Web-based Architecture (cont.)

- •CGI invokes a process for each request
- Servlet invokes a Java thread for each request
- JSP/ASP scripts have structures similar to output HTML formats

Web-based Architecture

■ Advantages

- Web is ubiquitous
 - browsers are available on virtually any machine
 - HTTP goes through almost any network
- Reduced education cost and faster learning curve
- Reduced cost of software installation and maintenance on client side

■ Disadvantages

- Limited user interaction capability
- No standardized transaction support

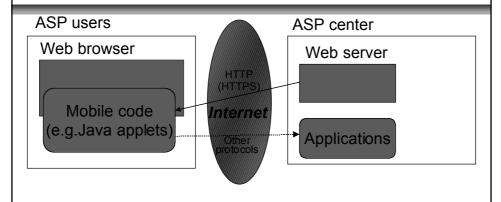
57

Mobile Code Architecture

- ASPs send application programs written as mobile code to users' clients
- Mobile code transmitted across IP networks
- Mobile code mainly provides user interface functionality

Mobile Code Architecture (cont.)

■ Mobile code can be:


- independent programs (e.g. Java applets and Active X controls).
- embedded in HTML documents (e.g. JavaScript and VBScript)

■ Examples: highly interactive applications

- conferencing tools (as Java applet)
- validation of complex forms (as JavaScript)

59

Mobile Code Architecture (cont.)

- •Mobile code is executed independently of browsers
 - •GUI is not limited by browser implementation
 - Applets can communicate with other programs
- •JSP/ASP can be used together

Mobile Code Architecture (cont.)

■ Advantages

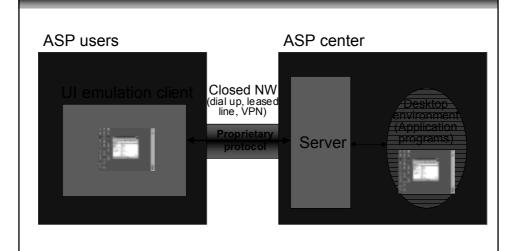
- Complex, highly interactive GUIs can be implemented
- Reduced cost of software installation and maintenance on client side

■ Disadvantages

- Slow at invocation and execution compared to "static" code
- Security concerns can result in limited capabilities (e.g. cannot read, write, or print local data)

61

Server-based Architecture


- Applications are provided using emulated "thin" clients
- Thin clients emulate desktops (or application windows) running on servers
- Thin clients can be either software or hardware-based
- Computing, including handling of user interaction, is executed on server side

Server-based Architecture (cont.)

- Closed network is used for communications to facilitate security and interoperability considerations
- Examples: use of ERP systems with Windows NT Terminal Server Environment and Citrix software on Windows CE thin client machines

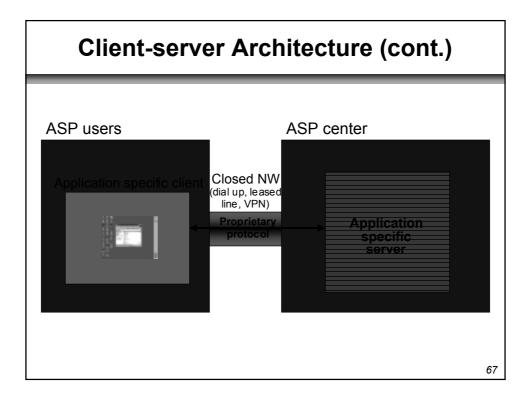
63

Server-based Architecture(cont.)

Server-based Architecture (cont.)

■ Advantages

- Existing systems can be used from multiple platforms without modification
- Reduced cost of software installation and maintenance on client side
- · Bandwidth is not a problem
 - e.g. Citrix MetaFrame can work at under 20 Kbps


■ Disadvantages

- Loads are concentrated on server machines
- Need highly secure network

65

Client-server Architecture

- Original clients and servers are used
- Closed network is used for communication to facilitate security and interoperability
- Many enterprise ASPs still take this approach
- **■** Examples: Corio and USinternetworking

Client-server Architecture (cont.)

■ Advantages

• Existing systems can be used from multiple platforms without modification

■ Disadvantages

- Cost of software installation and maintenance on client side are higher compared to other approaches
- Need high speed, highly secure network

Enabling Technologies

Client, Middleware, XML, Server & Networking

69

Client

■ Web browsers

- Script languages
 - Enable more dynamic and interactive web pages
 - Proprietary solutions (e.g. JavaScript, Jscript, ECMAscript)
- Mobile computing
 - Access to Web via smart phones and PDAs
 - Competing standards (protocols, markup languages, and browsers)

Client (cont.)

■ Thin client

- Software-based
 - Unix: Virtual Network Computer (AT&T UK Labs)
 - Windows: Windows NT Terminal Server Edition/2000, Citrix MetaFrame
 - Proprietary protocols
- Hardware-based
 - Inexpensive thin terminals with thin-client software embedded
 - No local storage

71

Middleware

- Layered between Application and OS/Network
- Makes distribution transparent
- Resolves heterogeneity of
 - Hardware
 - Operating Systems
 - Networks
 - Programming Languages
- Provides development and run-time environment for distributed systems

Why not use Network Protocols?

- Manual mapping of complex request parameters to byte streams
- Manual resolution of data heterogeneity
- Manual identification of components
- Manual implementation of component activation
- No guarantees for type safety
- Manual synchronization of interaction between distributed components
- No quality of service guarantees

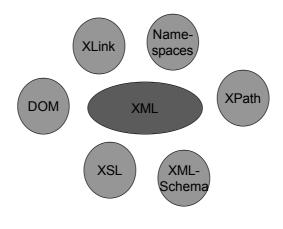
73

Forms of Middleware

- **■** Transaction-Oriented
 - IBM CICS
 - BEA Tuxedo
 - Encina
- Message-Oriented
 - IBM MQSeries
 - DEC Message Queue
 - NCR TopEnd

- **RPC Systems**
 - ANSA
 - Sun ONC
 - OSF/DCE
- **■** Object-Oriented
 - · OMG/CORBA
 - DCOM
 - Java/RMI

XML


- XML eXtensible Markup Language
- Based on SGML and developed by the W3C Architecture Domain
- Enables definition of markup schemes for a large variety of "documents"
- **■** Provides
 - Extensibility
 - Structure
 - Validation

75

XML (cont.) XML instantiation Specification Markup instantiation Language Definition (.dtd) Marked-up' Document .xml World-Wide Web XML User Consortium 76

XML Related Technologies

■ XML is not a stand-alone technology!

77

Server: Web Servers

- Applications interact with Web servers:
 - via API (e.g. CGI and Java Servlet API)
 - via server-side script computing (e.g. MS Application Server Pages/Java Server Pages)
- **■** Scalability
 - Major sites handle more than 100 million pages per day (e.g. Yahoo handles around 235 million page views per day)
 - Various technologies are available (e.g. application servers, monitoring tools, replication)

Server: Web Servers (cont.)

■ Availability

- The server is the bottle-neck in ASP architecture
- Our web dependent society will not tolerate Web servers to stop at any time

79

Server: Thin client server

- Thin client server software handles session management, load balancing, and fail-over
- Application requests are processed by original application programs
- **■** Scalability
 - A high-end machine can handle 10 20 simultaneous users

Networking

■ Dedicated leased lines

- LANs at end-user sites are connected to LANs of ASP centers with dedicated leased lines
- Security and QoS guaranteed at lower network layer
- Comparatively more expensive and less flexible
- Most enterprise ASP customers use dedicated leased lines for security reasons

81

Networking (cont.)

■ Virtual private network (VPN)

- A VPN is a private network that is virtually established on an open network (e.g. the Internet) by using encryption and tunneling technologies
- Customer LANs are connected to ASP LANs via VPNs
- Security and QoS guaranteed at higher network layer (L3)
- Comparatively less expensive and more flexible
- Alternative to dedicated leased lines

Networking (cont.)

■ Secure Internet protocols

- Web-based ASPs use secure Internet protocols (SSL) and digital certificates (RSA)
- Current web browsers and servers support such protocols and certificates
- Each user directly accesses ASP centers
- No guarantee of end-to-end QoS
- Inexpensive and very flexible

83

Networking (cont.)

■ Storage area network (SAN)

- Storage management in very large data centers is a significant technical challenge
- Storage servers can be connected via optical fibers for distributed and replicated data storage
- Extension of SAN to WAN is actively being developed to provide storage services on demand over Net

Development

Specification, Search, Selection, Integration & Evolution

85

Specification

- Characterize service goals <u>and</u> nonfunctional requirements
- **■** Focus on differentiators and prioritize
- Specify acceptance tests to be transformed into SLA
- Requirements management remains responsibility of end user throughout service life
- Procurement process that emphasizes partnership and risk sharing

Search

- There may be more than one provider for the same service
- Complexity is likely to increase as services become more disaggregated
- Need for publication of service type descriptions (meta-data)
- Need for trading / brokering of service provision (yellow pages for ASPs)

87

Selection

- Over-specification may constrain choice unnecessarily
- Iterative process informed by the services existing in the marketplace
- Users may have to adapt their requirements to ASP offerings
- Service shopping versus service matching
- Accept service with minimal changes to gain benefits while minimizing risk

Integration

- Use middleware to achieve interoperability and resolve distribution
- Middleware selection problem
- May require component wrapping techniques to provide legacy components with middleware interfaces
- Bridging techniques to deal with heterogeneous middleware

89

Evolution

- Requirements of each end-user change
- Requirements of the ASP change
- Requirements changes demand evolution
- User and ASP evolution are dependent on each other
- They need to be kept in-line
- Important to define exit strategy
- Demands agreement by user and ASP on how evolution is managed and controlled

Conclusions

Prospects, Pitfalls and Research Challenges

91

Prospects for End-Users

- Reduced total cost of ownership
- Consistent and efficient updating of applications
- Reduced in-house IT staff
- Shorter time to start using services
- Flexible and scalable deployment of applications
- Applications available to wider user range
 - For example, small organizations can lease complete ERP systems that would not be affordable otherwise

Prospects for End-Users

- Corio claims average 56% reduction of total cost of ownership (TCO)
 - e.g. Vertical Networks estimates 62 % saving of TCO
 - Financials, Distribution, SFA, Integration with other company's system
 - 15 active users
 - 1120 employees
 - In house: \$5.5 mm ↔ ASP: \$2.1 for five years
- Gartner expects 50 70% reduction of TCO

93

Prospects for ASPs

■ Vendors

- ASPs are a new sales channel (Vendors may give up current revenue streams)
- Opportunities to sell products to a wider range of customers
- Network service providers
 - ASPs generate more traffic
 - Opportunities to sell value-added services such as data management
- **■** Other service providers
 - ASPs are main sales channel or customers

-

Problems

- **■** Immaturity of market
- Viability of ASPs
- Managing evolution and perceived loss of control
- Writing a good SLA and liability management

95

Future Trends

- Two major trends:
 - Server-based architecture for enterprise applications
 - Web-based architecture for E-commerce applications
- **■** Widespread multi-channel computing
- Immediate challenges include
 - Defining and guaranteeing SLAs for ASPs
 - End-to-end security
 - Customization of application services
 - Migration of application services from legacy

Research Challenges

- **■** Development processes
- New code mobility paradigms and technology
- **■** Specifying non-functional requirements
- **■** Service composition

97

Guide to ICSE 2000 - ASP Topics

■ Tutorials:

- Scalability Issues in CORBA-based Systems
- Understanding Code Mobility

■ Future of Software Engineering:

- Software Engineering and Middleware
- Software Engineering for Mobility
- Software Engineering for Security
- Software Engineering for Performance
- Software Reliability and Dependability

Guide to ICSE 2000 - ASP Topics

■ Workshops:

- Component-based Software Engineering
- Continuing Collaborations for Successful COTS Development
- Software Engineering Over the Internet
- Economics-driven Software Engineering Research

■ Technical Programme Sessions

- Components and COTS
- Component-based Software Engineering and the Issue of Trust - Panel

How to find out more?

■ Contact the authors

Kenji Takahashi (kt@nttlabs.com)

Wolfgang Emmerich (w.emmerich@cs.ucl.ac.uk)

Anthony Finkelstein (a.finkelstein@cs.ucl.ac.uk

References

■ Web sites

- ASP Industry Consortium
 - http://www.aspindustry.org
- ASP Island
 - http://www.aspisland.com
- ASP News Review
 - http://www.aspnews.com

■ Textbook

"Engineering Distributed Objects" by W. Emmerich

(http://www.distributed-objects.com)

101

References (cont.)

- The following companies provide comprehensible, free white papers and case study reports
 - · Corio: www.corio.com
 - USinternetworking: www.usi.com
 - Futurelink: www.futurelink.net
 - Breakway Solutions: www.breakaway.com
 - IDC: www.idc.com/Store/Free/forms/five_form.htm
 - Internet Research Group: www.irgintl.com/publications.shtml