
1

Managing Consistency of Distributed
Documents

 Anthony Finkelstein
With: Ernst Ellmer, Wolfgang Emmerich, Torbjoern

Revheim, Danila Smolko, Andrea Zisman

Software Systems Engineering Group
Department of Computer Science

University College London

Outline

¥ Introduction

¥ Our approach

¥ Consistency rules & consistency links

¥ Classification of the consistency rules

¥ Architecture

¥ Demonstration

¥ Conclusion and future work

2

Introduction

¥ Large number of documents

¥ Distributed document generation

¥ Multiple actors

¥ Different perspectives and forms

¥ Use of heterogeneous applications

Inconsistent and conflicting documents

Goal

¥ Practical support for managing consistency in this
setting

¥ Characteristics
Ð Simple
Ð Lightweight
Ð Scaleable
Ð Can be used in conjunction with existing tools
Ð Applicable to software engineering documents

3

Our Approach

¥ Uses XML and related technologies
¥ Source documents are represented in XML
¥ This is a reasonable assumption as there are a wide

range of emerging standards for document
exchange that use XML
Ð Including the area of software engineering

¥ A large range of tools now export XML, an
increasing number use XML as an internal data
representation
Ð Including the area of software engineering

Running Example

¥ Fragments of a specification of a ÒMeeting
SchedulerÓ

¥ Documents expressed in UML (using Rational Rose)
and in Z

¥ Made available in:
Ð XMI
Ð UXF
Ð ZIF

4

Key Components

Consistency Rule
expresses relationships that should exist between
elements of distributed documents

Consistency Link
associates related elements and identifies either
consistent or inconsistent elements

You will see examples as we proceed

Consistency Rule (Example)
<ConsistencyRule id = “r0” type = “CT”>

<Description> For every instance in a collaboration
diagram there must exist a class in a class diagram
with the same name. </Description>

<Source><XPointer>
root().child(all,Package).(all,CollaborationDiagram).
(all,Collaboration).(all,Instance)

</Xpointer></Source>
<Destination

dest_id=“dest1”><XPointer>root().child(all,Package).(
all,ClassDiagram).(all,Class)</Xpointer>

</Destination>

<Condition expsource= “origin().attr(CLASS)”

 op=“eq” dest_ref=“dest1”
 expdest=“origin().attr(NAME)”

</Condition>

</ConsistencyRule>

5

Things to Note

¥ There is a consistency rule DTD, in other words
consistency rules are defined in XML too

¥ ÒsourceÓ and ÒdestinationÓ elements are identified
by XPointer expressions

¥ There is a ÒconditionÓ given by a condition
expression which defines the relationship which
should hold between the elements there may be
many condition expressions

¥ Each rule has a ÒtypeÓ which defines the nature of
the consistency link generated between the
elements

Rule Type
¥ Three types of rule: CT, CF, and IF.

Ð C or I indicates whether two elements are
linked because they are in a consistent or
inconsistent state, respectively.

Ð T or F indicates if the consistency rule is or not
mandatory. If the value is T, then for every
Source element it is necessary to have a
Destination element. If the value is F and there
is no Destination element for a Source element,
it does not mean that an inconsistency has
occurred.

6

Consistency Link (Example)

<ConsistencyLink xml:form="extended" inline="false"
ruleid="r1">

 <State> consistent </State>
 <Locator xml:form="locator"

href="C:\home\uml\associate_participant_collaboration
_diagram.xml#id(i4)”/>

 <Locator xml:form="locator"
href="C:\home\uml\business_entities_classdiagram.xml#
id(class4)” />

</ConsistencyLink>

Things to Note

¥ There is a consistency link DTD, in other words
consistency links are defined in XML

¥ The links can exploit the full potential of XLink and
XPointer

¥ Links can be made to elements or to the
consistency rules themselves

7

Consistency Rules - Expressiveness

T1: Existence of related elements in different documents

a b ba
A1 A1

T11: Mandatory
 For every association that appears in two or more different
 UML models, the classes related by this association must have
 the same name.

T12: Non-mandatory
 Classes with the same name in different class diagrams, of
 the same UML model, are considered to be identical.

Consistency Rules - Expressiveness

T2: Mandatory Cross-reference
 For every class e1 with subclass e2 in a UML class diagram d1, if

there is a schema eÕ2, in a Z document d2, with the same name as
subclass e2, then there must exist an inclusion eÕ1 in schema eÕ2,
with the same name as class e1.

d1 d2 e2

e1
...

...

e

1

e2

8

Consistency Rules - Expressiveness

T3: Non-existence Cross-reference
 For every class e1 and subclass e2 in a UML class diagram d1, e2

should not be a superclass of e1 in any other class diagram d2, of
the same UML model, for any level of nesting.

d1 d2

e
1

e2

e2

e3

e3

e1
. . .

Consistency Rules - Expressiveness

T4: Dependent relation
 For every association between two classes e1 and e2, in two

different package diagrams d1 and d2, there must exist a
dependency between these two packages.

d1 d2

e
1

e2

9

Consistency Rules - Expressiveness

T5: Associativity
 For every association e1 in a UML class diagram d1, there must exist

either a schema e2 in a Z document d2, with the same name as the
association e1, or a variable e3 in a schema in a Z document d2, with
the same name of the association e1, and the variable must be of
type relation or cartesian product.

d1
a

b

d2 e1

e1 Sch
e1: A x B

Consistency Rules - Expressiveness

T6: Mandatory Non-existence
 A primitive process e1 in a DFD d1 should not be decomposed into

another DFD d2.

T7: Existence of related documents
 For every non-primitive process e1 in a data flow diagram d1,
 there must exist an associated decomposition DFD (document d2).

 T8: Existence of isolated elements/documents
 For every product being developed there must exist a document d1

related to the SRS of the product

10

Consistency Rules - Expressiveness

T9: Existence of constant elements in different documents
For every method e1 of a class in a UML class diagram d1, there
must exist a schema e2 in a Z specification d2, with the same name
of the method, and the purpose of the schema e2 needs to be of
value ÒoperationÓ.

T10: Elements related to an operation
 The total amount e1 spent in a day during a trip must be the

result of the sum of the values ei in the receipts di (2 ≤ i ≤ n).

Definition

Check &
Generation

Visualisation

Notification

specification of
consistency rules

and document
universe

consistency
links

XML source
documents

output
presentation

events

incremental
updates

source
documents

consistency
management
view

11

Application/Tool

Application/Tool

Consistency Link
Generator

markup

registration

Document
Universe Editor

XML Editor

generation/export

Exporter/
Converter

Rule Editor

specification

working
documentsworking

documentsworking
documents

XML source
documents
(.xml)

XML source
documents
(.xml)

XML source
documents
(.xml)

source
documents
DTD (.dtd)

consistency
rules DTD
(.dtd)

consistency
rules (.xml)

document
universe
definition

source
documents
DTD (.dtd)

source
documents
DTD (.dtd)

Consistency
Manager

Watchdog

Sometimes Rules can get Large

Which is why you need a rule editor!

<ConsistencyRule id = Òr11Ó type = ÒCTÓ>

<Description>For every association that appears in twoÉ</Description>
<Source><XPointer>
 root().child(all,XMI.content).(all,Model_Management.Model).(all,Foundation.
 Core.Namespace.ownedElement).(all,Foundation.Core.Association)

</Xpointer></Source>
<Destination dest_id=Òdest1Ó><XPointer>
 root().child(all,XMI.content).(all,Model_Management.Model).(all,Foundation.
 Core.Namespace.ownedElement).(all,Foundation.Core.Association)

</Xpointer></Destination>
<Condition expsource=Òorigin().child(1,Foundation.Core.ModelElement.name)Ó
 op=ÒeqÓ
 dest_ref=Òdest1Ó

 expdest=Òorigin().child(1,Foundation.Core.ModelElement.name)Ó
 </Condition>
<Operator value=ÒANDÓ/>
<Condition expsource=Òid(origin().child(1,Foundation.Core.Association.connection).

 (all,Foundation.Core.AssociationEnd).(all,Foundation.Core.AssociationEnd.type).
 child(1,#element,xmi.idref,*)).child(1,Foundation.Core.ModelElement.name)Ó
 op=ÒeqÓ
 dest_ref=Òdest1Ó

 expdest= =Òid(origin().child(1,Foundation.Core.Association.connection).
 (all,Foundation.Core.AssociationEnd).(all,Foundation.Core.AssociationEnd.type).
 child(1,#element,xmi.idref,*)).child(1,Foundation.Core.ModelElement.name)Ó
 </Condition> </ConsistencyRule>

12

Consistency Link
Generator

BOX

Browser

source
documents
with links
(.xml’)

source
documents
with links
(.xml’)

consistency
links (.xml)

output
presentation
(.html)

output
presentation
(.html)

output
presentation
(.html & .vml)

XML source
documents
(.xml)

XML source
documents
(.xml)

XML source
documents
(.xml)

BOX (Browsing Objects in XML)

¥ A special purpose visual front-end
¥ Uses output from Rational Rose exporter
¥ Translates XMI to VML (Vector Graphic Markup

Language)
¥ Adds HTML and javascript overlay
¥ Will display consistency links

13

Toolkit

JDK 1.2.2
XML parser for Java

(IBM Alphaworks)
Internet Explorer 5

 Demo ...

Example (Meeting Scheduler)

¥ Documents:

¥ business_entities_classdiagram.xml
¥ create_meeting_collaboration_diagram.xml
¥ associate_participant_collaboration_diagram.xml

meeting_scheduler_i2 (Rose 98).xml
meeting_scheduler_i4 (Rose 98).xml
meeting_scheduler_i5 (Rose 98).xml

> zifex.xml

XMI

ZIF

UXF

14

Example (Meeting Scheduler)

Rules:
R1: For every instance e1 in a collaboration diagram d1, there must

exist a class e2 in a class diagram d2, with the same name.
R2: For every class e1 and subclass e2 in a UML class diagram d1, e2

should not be a superclass of e1 in any other class diagram d2, of
the same UML model, for any level of nesting.

R3: For every association e1 in a UML class diagram d1, there must
exist either a schema e2 in a Z document d2, with the same name as
the association e1, or a variable e3 in a schema in a Z document d2,
with the same name of the association e1, and the variable must be
of type relation or cartesian product.

As seen before

Achieved

¥ Consistency detection of distributed documents on
the WWW

¥ Simple and relatively lightweight
¥ Leverages XML and related technologies
¥ Applicable in a large variety of ÒWeb Information

ManagementÓ settings
¥ Readily extensible and acts as an effective

testbed
¥ Scaleable

15

Immediate Challenges

¥ Harden and refine our implementation
¥ Engage in some large-scale experimentation and

use
¥ Migrate to XPath
¥ Finish off the notification and integrate with

WebDAV

Long Term Challenges

¥ Refine our scaleability strategies
¥ Extend our experiments in other domains (for

example syllabus management)
¥ Develop Òinconsistency handlingÓ strategies
¥ Extend visualisation
¥ Develop Òconsistency managementÓ based web

services

