

Introduction

- Large number of documents
- Distributed document generation
- Multiple actors
- Different perspectives and forms
- Use of heterogeneous applications

Inconsistent and conflicting documents

Our Approach

- Uses XML and related technologies
- Source documents are represented in XML
- This is a reasonable assumption as there are a wide range of emerging standards for document exchange that use XML
 - Including the area of software engineering
- A large range of tools now export XML, an increasing number use XML as an internal data representation
 - Including the area of software engineering

Key Components

Consistency Rule

expresses relationships that should exist between elements of distributed documents

Consistency Link

associates related elements and identifies either consistent or inconsistent elements

You will see examples as we proceed

Consistency Rule (Example) <consistencyRule id = "r0" type = "CT"> ConsistencyRule id = "r0" type = "CT">

<pre><description> For every instance in a collaboration diagram there must exist a class in a class diagram with the same name. </description></pre>
<source/> <xpointer> root().child(all,Package).(all,CollaborationDiagram). (all,Collaboration).(all,Instance)</xpointer>
<destination< td=""></destination<>
<pre>dest_id="dest1"><xpointer>root().child(all,Package).(all,ClassDiagram).(all,Class)</xpointer></pre>
<condition <="" expsource="origin().attr(CLASS)" td=""></condition>
op="eq" dest_ref="dest1"
expdest="origin().attr(NAME)"

Things to Note

- There is a consistency rule DTD, in other words consistency rules are defined in XML too
- "source" and "destination" elements are identified by XPointer expressions
- There is a "condition" given by a condition expression which defines the relationship which should hold between the elements there may be many condition expressions
- Each rule has a "type" which defines the nature of the consistency link generated between the elements

Consis	tencyRule id = "r11" type = "CT">
Descr	ption>For every association that appears in two
Sourc	e> <xpointer></xpointer>
root	().cniid(aii,XMI.content).(aii,Model_Management.Model).(aii,Foundation.
	.Namespace.owneuclement).(an,rounuation.core.Association)
/Apon Doctir	ation_dest_id="dest1"> <ypointer></ypointer>
root	(),child(all,XML,content),(all,Model, Management,Model),(all,Foundation,
Core	Namespace.ownedElement).(all.Foundation.Core.Association)
/Xpoi	iter>
Condi	tion expsource="origin().child(1,Foundation.Core.ModelElement.name)"
	op="eq"
	dest_ref="dest 1"
	expdest="origin().child(1,Foundation.Core.ModelElement.name)"
<td>lition></td>	lition>
Opera	tor value="ANU"/> tion company "id(onicin() child() Foundation Comp Association companyies)
	lion expsource="id(origin().child(1,Foundation.core.Association.connection).
child()	#element ymi idref *)) child(1 Foundation Core ModelElement name)"
ciniu(on="eq"
	dest_ref="dest1"
	expdest= ="id(origin().child(1,Foundation.Core.Association.connection).
(all,Fo	undation.Core.AssociationEnd).(all,Foundation.Core.AssociationEnd.type).
child(,#element,xmi.idref,*)).child(1,Foundation.Core.ModelElement.name)"
<td>lition> </td>	lition>

Example (Meeting Scheduler)

Rules:

- <u>R1:</u> For every instance e1 in a collaboration diagram d1, there must exist a class e2 in a class diagram d2, with the same name.
- <u>R2:</u> For every class e1 and subclass e2 in a UML class diagram d1, e2 should not be a superclass of e1 in any other class diagram d2, of the same UML model, for any level of nesting.
- <u>R3</u>: For every association e1 in a UML class diagram d1, there must exist either a schema e2 in a Z document d2, with the same name as the association e1, or a variable e3 in a schema in a Z document d2, with the same name of the association e1, and the variable must be of type relation or cartesian product.

As seen before

Immediate Challenges

- Harden and refine our implementation
- Engage in some large-scale experimentation and use
- Migrate to XPath
- Finish off the notification and integrate with WebDAV

Long Term Challenges

- Refine our scaleability strategies
- Extend our experiments in other domains (for example syllabus management)
- Develop "inconsistency handling" strategies
- Extend visualisation
- Develop "consistency management" based web services