
BRINGING STRUCTURE TO THE WEB:
XML AND RELATED TECHNOLOGIES

Anthony Finkelstein
University College London
Department of Computer Science

a.finkelstein@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/A.Finkelstein
Also: http://www.xlinkit.com

Outline

Ð From HTML to XML

Ð From well-formedness
to validity: the DTD

Ð Parsing XML
documents: DOM and
SAX

Ð Transforming XML
documents: XSLT

Ð Related technologies:
XLink and XPath

From HTML to XML

Some of HTMLÕs drawbacks
Ð HTML isnÕt extensible
Ð HTML mixes structure and presentation

e.g., <TITLE> (structure) and (presentation)
Ð HTML isnÕt reusable

see above
Ð HTML has little or no semantic structure

thatÕs why itÕs so hard to perform Internet searches

From HTML to XML

¥ Is SGML the answer?
Ð SGML stands for Standard Generalized Markup

Language
Ð SGML is a ÒmonsterÓ

too complex
too complete
too extensible

¥ So why XML?
Ð XML stands in the middle
Ð XML is a simplification of SGML for general Web use
Ð Note: both HTML and XML are applications of SGML

SGML, XML, and HTML

SGML

XML HTML

UXF OSD MathML

For UML
models

For describing software
packages and their

dependencies

For
mathematical

formulas Instances/
domains

The same tag
means different

things!

HTML

The same tag
means different

things!

<HTML>
<HEAD><TITLE>

 Apple Pie Recipe

</TITLE></HEAD>

<BODY>
<H3>My Grandma’s Apple Pie</H3>

<H4>Ingredients</H4>

200 g white sugar
4 eggs

…

<H4>Instructions</H4>

Beat eggs and sugar
…

</BODY>

</HTML>

Semantic tag

Presentation tag

HTML

¥ In the example above:

Ð How can a program create a shopping list for the
recipeÕs ingredients?

Ð The same header <H4> denotes both ingredients and
instructions

Ð HTML is good for humans, not for programs!

XML
<?xml version=Ò1.0Ó?>
<Recipe>

<Name>Apple Pie Recipe</Name>
<Ingredients>

<Ingredient>
<Qty unit=ÒgÓ>100</Qty>
<Item>sugar</Item>

</Ingredient>
<Ingredient>

<Qty unit=ÒunitsÓ>4</Qty>
<Item>egg</Item>

</Ingredient>
</Ingredients>
<Instructions>

<Step>
Beat eggs and sugar

</Step>
</Instructions>

</Recipe>

All tags are
semantic!

There are no
presentation tags!

Some Basic Nomenclature

<Qty unit=ÒgÓ>100</Qty>

<Qty unit = ÒgÓ>

Start tag

100

</Qty>

End tag

Tag
name

Attribute
name

Attribute
value

Text

Well-Formedness

¥ Unlike HTML, any XML document must be well-formed
¥ Being well-formed means respecting certain rules:

Ð No unclosed tags: <Item> É </Item>
Ð No overlapping tags:
<Ingredients> <Ingredient> É </Ingredient> </Ingredients>

Ð Attribute values must be enclosed in quotes
Ð The text characters <, >, and " must always be

represented by Ôcharacter entitiesÕ
In other words, these are keywords of the language
Character entities: < > "

¥ Well-formed means parsable

What Does It All Look Like?

Resembles a tree
doesnÕt it?

(Recipe is called
the root element)

Resembles a tree
doesnÕt it?

(Recipe is called
the root element)

Is Well-Formedness Enough?

¥ Well-formed means respecting the above rulesÉ
ÉbutÉ
¥ Édoes a well-formed document always make sense?

<?xml version="1.0"?>
<Person>

<FirstName>Andrea</FirstName>
<LastName>Savigni</LastName>
<Age>32</Age>
<Age>30</Age>
<Age>25</Age>

</Person>

The DTD

¥ What it takes is a grammar i.e., a set of rules for using and
combining tags
Ð Such a grammar is called a DTD (Document Type

Definition)
Ð A DTD actually defines a new markup language

(sometimes called an ÒXML dialectÓ)
Ð A DTD defines what tags are legal, what attributes a

tag has, how tags are nested, how they are combined,
etc.

Ð Countless DTDs have been or are being defined for
music, chemistry, mathematics, É

Validity

¥ A valid XML document is:
Ð a well-formed XML document
Ð that, in addition, conforms to a DTD

Well-formed Valid

Instantiation

W3C Consortium XML User

XML
Specification

Markup
Language
Definition

Instantiation

Valid XML
Document

Instantiation

DTD

Parsing Valid XML Files

¥ Nonvalidating parsers just check for well-formedness

¥ Validating parsers check for well-formedness and then
check for validity

¥ A valid XML file must contain a document type declaration
by which the validating parser can retrieve the DTD

<?xml version="1.0"?>
<!DOCTYPE Recipe SYSTEM "Recipe.dtd">

Look for Recipe tag (the
root element) É

Évalidate document against
Recipe.dtd DTD

The Recipe DTD

<!-- This is an example DTD for the recipe markup language -->
<!ELEMENT Recipe (Name, Description?, Ingredients?, Instructions?)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Ingredients (Ingredient)*>
<!ELEMENT Ingredient (Qty, Item)>
<!ELEMENT Qty (#PCDATA)>
<!ATTLIST Qty unit CDATA #REQUIRED>
<!ELEMENT Item (#PCDATA)>
<!ATTLIST Item optional CDATA "0" isVegetarian CDATA "true">
<!ELEMENT Instructions (Step)+>
<!ELEMENT Step (#PCDATA)>

An Overview of The DTD Syntax

<!ELEMENT Recipe (Name, Description?, Ingredients?, Instructions?)>

Element name (in this case
this is the root element type)

Sub-elements

Element Type Declaration

An Overview of The DTD Syntax

<!ELEMENT Name (#PCDATA)>

Parsed Character Data

This declaration means that Name cannot have subelements

An Overview of The DTD Syntax

<!ELEMENT Ingredients (Ingredient)*>

Subelement

Ingredients is a sequence of zero or more Ingredients

¥ (Element)? Optional: zero or one occurence of Element
¥ (Element)* means zero or more occurences of Element
¥ (Element)+ means one or more occurences of Element

An Overview of The DTD Syntax

<!ATTLIST Qty unit CDATA #REQUIRED>

Attribute list for
Qty element

This attribute
is compulsory

Attribute
type

Attribute
name

XML Virtues So Far

¥ XML is extensible
Ð anyone can create their own markup language

¥ XML is independent of rendition
Ð in other words, an XML document is pure content

¥ XML is easy to parse
Ð plenty of commercial and public-domain parsers are

available
Ð they can parse any well-formed XML document
Ð no need to build custom parsers!

The DOM (Document Object Model)

¥ The DOM is a specification
Ð i.e., a reference model (like ISO/OSI or TCP/IP)
Ð that, of course, can be implemented
Ð a DOM implementation is an API
Ð language abuse: the DOM is an API (you can use it as

long as you remember it's an abuse)
¥ DOM bindings exist for a number of programming

languages
¥ The DOM allows you to manipulate an XML document as a

tree of objects

Pros and Cons of the DOM

¥ Pros:
Ð the DOM is extremely simple and easy to use: one

method call to process an entire document
Ð the DOM is very high-level
Ð the DOM is readily available for a number of languages

¥ Cons:
Ð too coarse-grained (it always slurps the whole file,

cannot process a part of it)
Ð what if the file is huge?
Ð what if the file is on a remote machine?
Ð keeps the whole tree in memory

The SAX (Simple API for XML)

¥ SAX is an event-based parsing API
Ð the parser reads the XML document once
Ð at each parser event it notifies the application
Ð callback-style mechanism: applications must register

appropriate event handlers
¥ SAX is lower-level than DOM

Ð actually, DOM uses SAX
Ð harder to use but more flexible and efficient

SAX and DOM

SAX

DOM

ApplicationsApplications

What is XSLT?

¥ XSLT is a language for transforming the structure of an
XML document

¥ Hence the legitimate question: Why do I need to transform
an XML document into another one?
Ð communication with another computer: OK, everybody

uses XML, but not everybody uses the same DTDs
Ð presentation (i.e., communication with a human): the

same XML file can be transformed into HTML, PDF,
RTF, ...

Where Does XSLT Fit?

¥ XSLT is part of a larger language, called XSL (eXtensible
Stylesheet Language)

¥ XSL covers formatting and presentation of XML documents
¥ It soon became clear that this is a two-stage process:

Ð transformation (e.g., reordering, sorting, adding a table
of contents, etc.), covered by XSLT (eXtensible
Stylesheet Language: Transformations)

Ð actual rendition, covered by XSL-FO (XSLT (eXtensible
Stylesheet Language: Formatting Objects), not yet
standardised

Why Is a Separate Language Needed?

¥ SAX and DOM allow to quickly and easily manipulate XML
documents, so why a dedicated language for
transforming?

¥ Once again the answer is: convenience
Ð XSLT is a declarative language
Ð provides a huge set of very high-level constructs
Ð a very appropriate analogy: SQL

¥ XSLT converts a document tree into another one without
the need to specify the exact sequence of actions to
perform

The Classical Example: XML to HTML

Output object
tree

Output object
tree

XML source
element tree
XML source
element tree

Conversion
rules

Conversion
rules

Some Key Features of XSLT

¥ XSLT is declarative
Ð no need to specify the sequence of operations
Ð even though space is left for scripts (just like in SQL)

¥ XSLT is written in XML itself!

¥ XSLT has no side-effects

¥ Processing is described as a set of independent pattern-
matching rules

The Recipe Example: the XML Source
<?xml version=Ò1.0Ó?>
<Recipe>

<Name>Apple Pie Recipe</Name>
<Ingredients>

<Ingredient>
<Qty unit=ÒgÓ>100</Qty>
<Item>sugar</Item>

</Ingredient>
<Ingredient>

<Qty unit=ÒunitsÓ>4</Qty>
<Item>egg</Item>

</Ingredient>
</Ingredients>
<Instructions>

<Step>
Beat eggs and sugar

</Step>
</Instructions>

</Recipe>

The Recipe Example: the HTML Target

<HTML>
<HEAD><TITLE>
 Apple Pie Recipe
</TITLE></HEAD>
<BODY>
<H3>My GrandmaÕs Apple Pie</H3>
<H4>Ingredients</H4>
200 g white sugar
4 eggs
É
<H4>Instructions</H4>
Beat eggs and sugar
É
</BODY>
</HTML>

The Recipe Example: the XSLT Rules
<?xsl:stylesheet

xmlns:xsl=http://www.w3.org/1999/XSL/Transform

version=“1.0”?>

<xsl:template match=“Recipe”>

<html>

<head>

<title><xsl:value-of select=“title”/></title>

</head>

<body>

<xsl:apply-templates select=“Name”/>

<xsl:apply-templates select=“Ingredients”/>

<xsl:apply-templates select=“Ingredient”/>

<xsl:apply-templates select=“Instructions”/>

<xsl:apply-templates select=“Step”/>

</body>

</html>

</xsl:template>

Standard
header

Standard
header

A rule...A rule...

...that refers to
other rules

...that refers to
other rules

...and that
defines an

HTML
formatting

...and that
defines an

HTML
formatting

The Recipe Example: the XSLT Rules (cont.)

<xsl:template match=“Name”>

<H3><xsl:value-of
select=“.”/></H3>

</xsl:template>

<xsl:template
match=“Ingredients”>

<H4><xsl:value-of
select=“.”/></H4>

</xsl:template>

Format Name
as H3

Format Name
as H3

...and
Ingredients

as H4

...and
Ingredients

as H4

A Quick Recap: DOM Representation

<Catalogue>
ÊÊÊ <Product>
ÊÊÊÊÊÊÊ <Name>HARO SHREDDER</Name>
ÊÊÊÊÊÊÊ <Code>B001</Code>
ÊÊÊÊÊÊÊ <Price currency="sterling">349.95</Price>
ÊÊÊÊÊÊÊ <Description>Freestyle Bike.</Description>
ÊÊÊ </Product>
</Catalogue>

DOM
Representation Catalogue

Product

Name Code Price Description

ÒHaroÉÓ ÒB001Ó Ò349.95Ó ÒFreeÉÓ

¥ XPath is an addressing language for XML documents (more
pecisely for DOM trees)
Ð analogy: URLs

¥ Allows to specify paths to elements in DOM tree

¥ The result of an XPath query is a nodeset (i.e., a set of nodes) in
the DOM tree

¥ e.g. /Catalogue/Product/Name/text()

Catalogue

Product

Name Code Price Description

ÒHaroÉÓ ÒB001Ó Ò349.95Ó ÒFreeÉÓ

XPath

XPath Expressions

/Catalogue/Product/Name/text(
)

Context node
(in this case the

root node)

Context node
(in this case the

root node)

Steps. A step is a /-separated path componentSteps. A step is a /-separated path component

Axes

¥ XPath is very powerful!
¥ Provides many different ways of traversing the tree (the

axes)
Ð the descendant axis (//) can cover any number of

nodes
Ð the parent axis (..)
Ð the attribute axis (@) steps into the attribute nodes of

an element

XLink

HTML
Linking

Linking at
file level

Limited behaviours

Unidirectional,
Point-to-point

Embedded

Extensible behaviours

Linking to
elements
(with XPath),
Any element
as link

Potentially out of line

Definable
navigation,
Multiple
destinations

XLink

XLink

¥ Linking means declaring a relationship between two things
¥ In HTML:

Ð the source end of the link knows it is a link
Ð the target end:

does not know (if itÕs a whole page)
does know (if itÕs a part of a page Ð anchors)

¥ The basic XLink idea: neither end should know about the
link
Ð the link resides with a third part

Simple links

¥ Much like HTML links:

¥ What makes this a link is not its name!
Ð you can call it whatever you want

¥ It is the xlink:type attribute

<citation xlink:type=ÒsimpleÓ
 xlink:href=Òhttp://genius.at.work.comÓ>
Savigni(2020)
</citation>

XML Application

XML Application

¥ database interchange:
Ð example: home health care in the US (data interchange

between hospitals and health agencies)
current: log into hospital, see records in browser,
print them and key them into own database
XML: log into hospital, drag records onto own
database

Ð present different web views to clients
Ð tailored information discovery

XML Application

¥ distributed processing:
scheduling applications: airlines, trains, buses,
subways, restaurants, movies, plays, concerts, É
commercial applications: shopping
educational applications: online help
customer-support applications: lawn-mower
maintenance to support for computers

¥ view selection: switch between views without downloading
data again

dynamic TOC without data reload
switching between languages
sorting phone books

XML Applications

¥ web agents:
Ð intelligent searches over the web

search criteria and searched documents have to be
expressed in standard format (e.g. XML); structural
requirements beyond HTML;

Ð example: 500-channel cable TV and personalised TV
guide across entire spectrum of providers
user preferences and program description in XML

Conclusion

¥ Statement of Belief:
Ð These technologies are already having a major effect on

information management! This is only set to increase.
¥ Questions

Ð What are the implications for your organisation?
Ð What XML dialects are relevant to your professional

practice?
Ð What stake do you have in the relevant standardisation

processes?

