BRINGING STRUCTURE TO THE WEB:
XML AND RELATED TECHNOLOGIES

Anthony Finkelstein
University College London
Department of Computer Science

a.finkelstein@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/A.Finkelstein
Also: http://www.xlinkit.com

Outline

— From HTML to XML

— From well-formedness
to validity: the DTD

— Parsing XML
documents: DOM and
SAX

— Transforming XML
documents: XSLT

— Related technologies:
XLink and XPath

From HTML to XML

Some of HTML's drawbacks
— HTML isn't extensible
— HTML mixes structure and presentation
e.g., <TITLE> (structure) and (presentation)
— HTML isn't reusable
see above
— HTML has little or no semantic structure
that’s why it's so hard to perform Internet searches

From HTML to XML

e Is SGML the answer?
— SGML stands for Standard Generalized Markup
Language
— SGML is a "monster”
too complex
too complete
too extensible
e So why XML?
— XML stands in the middle
— XML is a simplification of SGML for general Web use
— Note: both HTML and XML are applications of SGML

SGML, XML, and HTML

For describing software For
packages and their mathematical
For UML dependencies formulas Instances/
models domains
XML
SGML

HTML

<HTML>

<HEAD><TITLE>
Apple Pie Recipe

</TITLE></HEAD>

<BODY>

<H3>My Grandma’s Apple Pie</H3>

<H4>Ingredients</H4>

200 g white sugar

4 eggs

T~

Semantic tag

Presentation tag

<H4>Instructions</H4>
Beat eggs and sugar

</BODY>
</HTML>

The same tag
means different
things!

HTML

¢ In the example above:

— How can a program create a shopping list for the

recipe’s ingredients?

— The same header <H4> denotes both ingredients and

instructions

— HTML is good for humans, not for programs!

XML

<?xml version="1.0"?>
<Recipe>
<Name>Apple Pie Recipe</Name>
<Ingredients>
<Ingredient>
<Qty unit="g">100</Qty>
<Item>sugar</Item>
</Ingredient>
<Ingredient>
<Qty unit="units">4</Qty>
<Item>egg</Item>
</Ingredient>
</Ingredients>
<Instructions>
<Step>
Beat eggs and sugar
</Step>
</Instructions>
</Recipe>

All tags are

semantic!

There are no
presentation tags!

Some Basic Nomenclature

Start tag
A~

~

_
<Qty wunit = “g”">

Tag Attribute Attribute
name name value

Text 100
</Qty>
—

End tag

| <Qty unit="g">100</Qty> D

Well-Formedness

e Unlike HTML, any XML document must be well-formed
¢ Being well-formed means respecting certain rules:
— No unclosed tags: <1tem> .. </Item>

— No overlapping tags:
<Ingredients> <Ingredient> .. </Ingredient> </Ingredients>

— Attribute values must be enclosed in quotes
— The text characters <, >, and " must always be
represented by ‘character entities’
In other words, these are keywords of the language
Character entities: < > "
o Well-formed means parsable

What Does It All Look Like?

W e L LUYWA et ings |0 Ficial 21060 -0

S R e L

W e L LUYWA et ings |0 Ficial 21060 -0

S R e L

ek o+ = - (0 1] A | Byt [Epmtes - ek o+ = - (0 1] A | Byt [Epmtes
d [#] Ot 0 e s Ol 7] o | ke ™ d [#] Ot 0 e s Ol 7] o | ke ™
i 2l i
< Terml witEpirie" 107 1> < Terml witEpirie" 107 1>
E -.I‘.-;-*-:-mpln Mo Rocipo-</hanos E -.I‘.-;-*-:-mpln Mo Rocipo-</hanos
s[ngradieise s [y
= glreinc b s[nprederis
oiFecpEs sy unibst gt L0k
clbsmosegarbems
o irgrddaanl
elngradients
[Tl],
Resembles a tree |raa-1==
doesn't it? -
(Recipe is called [rs saus s sugar-1ap:
the root element)
A = |_ =
& L Compat ;|] e L Compat £

Is Well-Formedness Enough?

e Well-formed means respecting the above rules...
...but...

e ...does a well-formed document always make sense?

<?xml version="1.0"?>
<Person>
<FirstName>Andrea</FirstName>
<LastName>Savigni</LastName>
<Age>32</Age>
<Age>30</Age>
<Age>25</Age>
</Person>

The DTD

e What it takes is a grammar i.e., a set of rules for using and
combining tags
— Such a grammar is called a DTD (Document Type
Definition)
— A DTD actually defines a new markup language
(sometimes called an “XML dialect”)

— A DTD defines what tags are legal, what attributes a
tag has, how tags are nested, how they are combined,
etc.

— Countless DTDs have been or are being defined for
music, chemistry, mathematics, ...

Validity

e A valid XML document is:
— a well-formed XML document
— that, in addition, conforms to a DTD

Instantiation

XML
Specification

Markup
Language
Definition

l Valid XML
°~ Document

Parsing Valid XML Files

e Nonvalidating parsers just check for well-formedness

e Validating parsers check for well-formedness and then
check for validity

e A valid XML file must contain a document type declaration
by which the validating parser can retrieve the DTD

<?xml version="1.0"?>
<!DOCTYPE I%s:cipe SYSTEM "Recipe.dtd">

AN

...validate document against
Recipe.dtd DTD

Look for Recipe tag (the
root element) ...

The Recipe DTD

<!-- This is an example DTD for the recipe markup language -->
<!ELEMENT Recipe (Name, Description?, Ingredients?, Instructions?)>
<!ELEMENT Name (#PCDATA)>

<IELEMENT Description (#PCDATA)>

<!ELEMENT Ingredients (Ingredient)*>

<IELEMENT Ingredient (Qty, Item)>

<IELEMENT Qty (#PCDATA)>

<IATTLIST Qty unit CDATA #REQUIRED>

<!ELEMENT Item (#PCDATA)>

<IATTLIST Item optional CDATA "0" isVegetarian CDATA "true">
<!ELEMENT Instructions (Step)+>

<IELEMENT Step (#PCDATA)>

An Overview of The DTD Syntax

Element Type Declaration

/\
~ —

<!ELEMENT Recipe (Name, Description?, Ingredients?, Instructions?)>

/‘\ _
—

Sub-elements

Element name (in this case
this is the root element type)

An Overview of The DTD Syntax

<!ELEMENT Name (#PCDATA)>

Parsed Character Data
This declaration means that Name cannot have subelements

An Overview of The DTD Syntax

<!ELEMENT Ingredients (Ingredient)*>

Subelement

Ingredients is a sequence of zero or more Ingredients

¢ (Element)? Optional: zero or one occurence of Element
¢ (Element)* means zero or more occurences of Element
¢ (Element)+ means one or more occurences of Element

An Overview of The DTD Syntax

<IATTLIST Qty unit CDATA #REQUIRED>

\

Attribute list for ~ Attribute Attribute This attribute
Oty element name type is compulsory

XML Virtues So Far

e XML is extensible
— anyone can create their own markup language

e XML is independent of rendition
— in other words, an XML document is pure content

e XML is easy to parse

— plenty of commercial and public-domain parsers are
available

— they can parse any well-formed XML document
— no need to build custom parsers!

The DOM (Document Object Model)

e The DOM is a specification
- i.e., a reference model (like ISO/OSI or TCP/IP)
— that, of course, can be implemented
— a DOM implementation is an API
— language abuse: the DOM is an API (you can use it as
long as you remember it's an abuse)

e DOM bindings exist for a number of programming
languages

e The DOM allows you to manipulate an XML document as a
tree of objects

Pros and Cons of the DOM

e Pros:

— the DOM is extremely simple and easy to use: one
method call to process an entire document

— the DOM is very high-level

— the DOM is readily available for a number of languages
e Cons:

— too coarse-grained (it always slurps the whole file,
cannot process a part of it)

— what if the file is huge?
— what if the file is on a remote machine?
— keeps the whole tree in memory

The SAX (Simple API for XML)

e SAX is an event-based parsing API
— the parser reads the XML document once
— at each parser event it notifies the application
— callback-style mechanism: applications must register
appropriate event handlers
e SAX is lower-level than DOM
— actually, DOM uses SAX

— harder to use but more flexible and efficient

SAX and DOM

Applications

What is XSLT?

e XSLT is a language for transforming the structure of an
XML document

e Hence the legitimate question: Why do I need to transform
an XML document into another one?
— communication with another computer: OK, everybody
uses XML, but not everybody uses the same DTDs
— presentation (i.e., communication with a human): the

same XML file can be transformed into HTML, PDF,
RTF, ...

Where Does XSLT Fit?

e XSLT is part of a larger language, called XSL (eXtensible
Stylesheet Language)

e XSL covers formatting and presentation of XML documents
e It soon became clear that this is a two-stage process:

— transformation (e.g., reordering, sorting, adding a table
of contents, etc.), covered by XSLT (eXtensible
Stylesheet Language: Transformations)

— actual rendition, covered by XSL-FO (XSLT (eXtensible
Stylesheet Language: Formatting Objects), not yet
standardised

Why Is a Separate Language Needed?

e SAX and DOM allow to quickly and easily manipulate XML
documents, so why a dedicated language for
transforming?

e Once again the answer is: convenience
— XSLT is a declarative language
— provides a huge set of very high-level constructs
— a very appropriate analogy: SQL

e XSLT converts a document tree into another one without
the need to specify the exact sequence of actions to
perform

The Classical Example: XML to HTML

XML XSL HTML

rule

< pattern

action

Output object
tree

XML source Conversion
element tree rules

Some Key Features of XSLT

XSLT is declarative
— no need to specify the sequence of operations
— even though space is left for scripts (just like in SQL)

XSLT is written in XML itself!

XSLT has no side-effects

Processing is described as a set of independent pattern-
matching rules

The Recipe Example: the XML Source

<?xml version="1.0"?>
<Recipe>
<Name>Apple Pie Recipe</Name>
<Ingredients>
<Ingredient>
<Qty unit="g">100</Qty>
<Item>sugar</Item>
</Ingredient>
<Ingredient>
<Qty unit="units">4</Qty>
<Item>egg</Item>
</Ingredient>
</Ingredients>
<Instructions>
<Step>
Beat eggs and sugar
</Step>
</Instructions>
</Recipe>

The Recipe Example: the HTML Target

<HTML>
<HEAD><TITLE>
Apple Pie Recipe
</TITLE></HEAD>
<BODY>
<H3>My Grandma'’s Apple Pie</H3>
<H4>Ingredients</H4>
200 g white sugar
4 eggs

<H4>Instructions</H4>
Beat eggs and sugar

</BODY>
</HTML>

The Recipe Example: the XSLT Rules

<?xsl:stylesheet

Standard xmins:xsl=http://iwww.w3.0rg/1999/XSL/Transform
header version="1.0"?>
<xsl:template match="Recipe"> / A rule... I
<htmlI>
<head>

<title><xsl:value-of select="title"/></title>

..and that </head> / ...that refers to
defines an <body> other rules
select="Name”"/>

HTML <xsl:apply-templates .
formatting <xsl:apply-templates selectz“lngred!ents“b
<xsl:apply-templates select="Ingredient”/>
<xsl:apply-templates select="Instructions”/>
<xsl:apply-templates select="Step”/>
</body>
</html>

</xsl:template>

The Recipe Example: the XSLT Rules (cont.)

<xsl:template match="Name”">

<H3><xsl:value-of
select="."/></H3>

Format Name </xsl:template>
as H3

<xsl:template
match="Ingredients">

<H4><xsl:value-of
select="."/></H4>

</xsl:template>

...and
Ingredients

as H4

A Quick Recap: DOM Representation

DOM
Representation

Catalogue

.| “B00L” “349.95” “Free...”

XPath

Catalogue

Product

N

Name

Code

Price

Description

“BOOI”

“349.95”

“Free...”

XPath Expressions

f| Context node I

(in this case the

root node)

/Catalogue/Product/Name/text (

Tt

Steps. A step is a /-separated path component

Axes

e XPath is very powerful!
e Provides many different ways of traversing the tree (the
axes)
— the descendant axis (/ /) can cover any number of
nodes
— the parent axis (. .)
— the attribute axis (@) steps into the attribute nodes of
an element

XLink

Extensible behaviours

Linking to Definable
elements — navigation,
(with XPath), Multiple
Any element destinations
as link

Potentially out of line

XLink

¢ Linking means declaring a relationship between two things
e In HTML:
— the source end of the link knows it is a link
— the target end:
does not know (if it's a whole page)
does know (if it's a part of a page — anchors)

¢ The basic XLink idea: neither end should know about the
link

— the link resides with a third part

Simple links

e Much like HTML links:

<citation xlink:type=“simple”
xlink:href="http://genius.at.work.com”>

Savigni (2020)

</citation>

e What makes this a link is not its name!
— you can call it whatever you want

e It is the xlink:type attribute

XML Application

HTML
Wigw #1
feg.
purchasing
agent)

Dis play
hdulitiple wew s created fom
the HML-bazed data

HTHL
“lew #2
(eg.
ConsUmer]

L delivered to other application s
AF or objects for further proceszsin,
Desktop i P a

Data Delivery,
Manipulation

ML exchanged ower HTTP,
manipulated wiathe OO

‘Webh Server

DB Access, Intedration
Business Rules
Middle-Tier g purchase omer) Data Integration
ML emitted or generated
from multiple sounces

Storage

Mainframe Databasze

XML Application

e database interchange:
— example: home health care in the US (data interchange
between hospitals and health agencies)

current: log into hospital, see records in browser,
print them and key them into own database
XML: log into hospital, drag records onto own
database

— present different web views to clients

— tailored information discovery

XML Application

e distributed processing:
scheduling applications: airlines, trains, buses,
subways, restaurants, movies, plays, concerts, ...
commercial applications: shopping
educational applications: online help

customer-support applications: lawn-mower
maintenance to support for computers

e view selection: switch between views without downloading
data again

dynamic TOC without data reload
switching between languages
sorting phone books

XML Applications

e web agents:
— intelligent searches over the web

search criteria and searched documents have to be
expressed in standard format (e.g. XML); structural
requirements beyond HTML;
— example: 500-channel cable TV and personalised TV
guide across entire spectrum of providers

user preferences and program description in XML

Conclusion

¢ Statement of Belief:

— These technologies are already having a major effect on
information management! This is only set to increase.

e Questions
— What are the implications for your organisation?

— What XML dialects are relevant to your professional
practice?

— What stake do you have in the relevant standardisation
processes?

