
1

Requirements Reflection
Anthony Finkelstein

Department of Computer Science
a.finkelstein@cs.ucl.ac.uk

?

Example: a context aware,
adaptive, football video service

2

Adapts dynamically to user,
bandwidth, device characteristics,
location and environmental
characteristics

I will use this example to motivate the
talk …

Requirements engineering is the branch of
software engineering concerned with
the real-world goals for, functions of,
and constraints on software systems.

It is also concerned with the
relationship of these factors to precise
specifications of software behavior, and
to their evolution over time and across
software families.

3

Computational reflection is the ability
of a program to observe and possibly
modify its design

Typically, reflection refers to runtime
or dynamic reflection, though some
programming languages support
compile time or static reflection.

4

When source code is compiled,
information about the structure of the
program is normally lost as lower level
code is produced

If a system supports reflection, the
structure is preserved as metadata.

Could we have requirements
reflection? Could we dynamically
observe the requirements for a
software system?

In other words can we make
requirements runtime objects?

5

Requirements record the real-word
goals for a system

We wish to satisfy (or perhaps
satisfice) the goals in each context

To obtain accurate account of
the standing of our favoured
teams and as full a sense as
possible of game highlights

6

goal

sub-goal

assumption operationalised goal

KAOS, goal-oriented requirements
engineering method (van Lamsweerde)

goal

sub-goal

assumption operationalised
goal

agent
assignment

environment

7

Check whether the environment
will meet the assumptions

Dynamically reassign the goals to
different agents

or
Move to alternative goals in the
goal tree

Switch resolution, move to text
only service, subtitle video …

8

–Hard goals expressed in terms
of temporal logic formulae

–Soft goals expressed in terms
of metrics over predicates

Generate monitors that check
for environmental assumptions

research

✓

✓

✓

Instrument the code using
Aspect Oriented Programming
techniques

Provide a mapping language that
maps entities and relationships
from goal model onto design

Generate pointcuts

research

✓

✓

✓

9

Instrument the code using
Aspect Oriented Programming
techniques

Provide a mapping language that
maps entities and relationships
from goal model onto design

Generate pointcuts

research

✓

✓

✓

Dynamic aspects for runtime
adaptation

Example: BPEL + Aspects to
provide dynamic service
orchestration

directions

✓

10

goal

sub-goal

assumption

environment

monitor
leaf goal

a b corchestration

assignment

goal

sub-goal

assumption

environment

monitor
leaf goal

a b corchestration

change

11

goal

sub-goal

assumption

environment

monitor
leaf goal

orchestration

assignment

a d c e

–FLEA (Fickas & Feather)
–ReqMon (Robinson)
Acknowledgements:

Andy Dingwall-Smith
Carine Courbis

related work

12

Requirements at runtime

–As a baseline for adaptation
–To explain adaptive behaviour
–To record change and support

redesign and modification

vision

Requirements at runtime

–Reuse existing resource
–To keep requirements

information in sync
–To link requirements to the

user configuration

vision

13

Conclusion:
Requirements engineers can
contribute to the research
community mix

Practical step:
Shared testbeds and examples

