International Conference on NDE 4.0 24 – 27 October 2022 in Berlin, Germany

Statistical analysis and automation through machine learning of resonant ultrasound spectroscopy data from tests performed on complex additively manufactured parts

Anne-Françoise OBATON¹, Nasim FALLAHI^{2,3}, Anis TANICH¹, Louis-Ferdinand LAFON¹, Gregory WEAVER⁴

¹ Laboratoire National de Métrologie et d'Essais (LNE), Paris, France ² Politecnico di Torino, ³ Engineering Ingegneria Informatica, Turin, Italy ⁴ Weaver NDT, LLC, Las Vegas, USA

anne-francoise.obaton@lne.fr

Principle and advantages of RUS

Description of the tested parts

RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

Summary and conclusions

• 24-27/10/2022 Conference on NDE 4.0

Objective 1: Non-destructive volumetric quality inspection of a batch of <u>complex shape but</u> <u>also large/dense</u> additively manufactured (AM) parts supposedly identical:
⇒ Resonant Ultrasound Spectroscopy (RUS)

> Objective 2: Statistical analysis and classification of RUS data of parts supposedly identical \Rightarrow **Z-score** analysis

Objective 3: Clustering, classification and automation of RUS data of parts supposedly identical to make the analysis operator independent
Supervised and unsupervised machine learning (ML) analysis

Principle and advantages of RUS

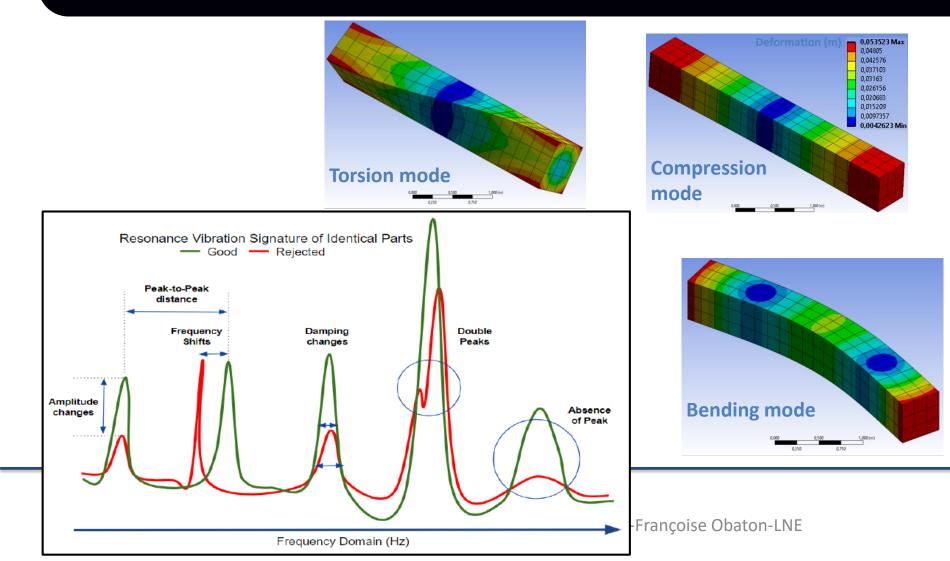
Description of the tested parts

RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

Summary and conclusions

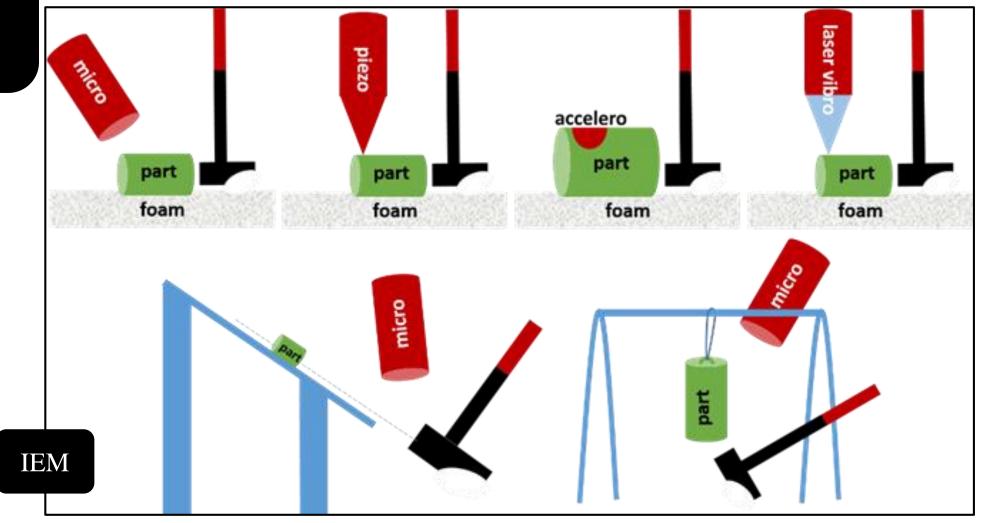


24-27/10/2022 Conference on NDE 4.0

Principle and advantages of Resonant Ultrasound Spectroscopy (RUS)

Whole body non-destructive examination technique consisting in exciting and recording, in the acoustic and/or ultrasonic ranges, the spectrum of the natural resonant frequencies of the vibration modes of the part and then in comparing it to the spectra of an established acceptable resonant frequency pattern (reference parts or parts from the same group or simulations). Any shift in resonant frequency between the spectrum of the part under test and the spectra of the pattern will be the signature of a difference between the part and the pattern. Thus, the method enables classification of the parts as acceptable or unacceptable or according to their intrinsic properties.

RUS takes on all the challenges that come with AM:


- 1. adapted to shape complexity,
- 2. adapted to high surface roughness,
- 3. adapted to any size/density,
- 4. easy to implement,
- 5. fast,
- 5. low cost.

Principle of Impulse Excitation Method (IEM), a RUS method

According to ASTM E2001 standard, RUS includes two types of methods:

- 1. swept sine
- 2. impulse excitation methods (IEM).

Principle and advantages of RUS

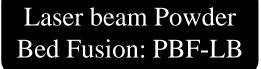
Description of the tested parts

RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

Summary and conclusions


• 24-27/10/2022 Conference on NDE 4.0

Description of the tested parts

Batch of 24 additively manufactured parts, supposedly identical, in Ta6V, manufactured by Safran on 3 different platforms.

Principle and advantages of RUS

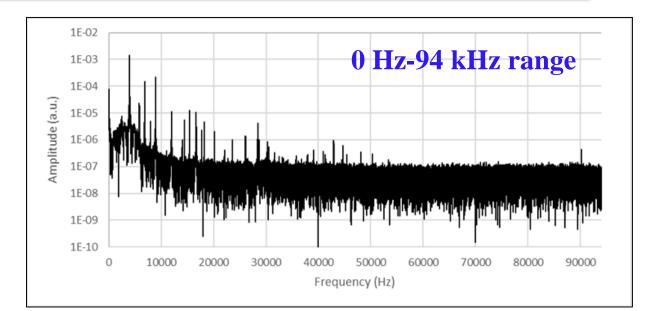
Description of the tested parts

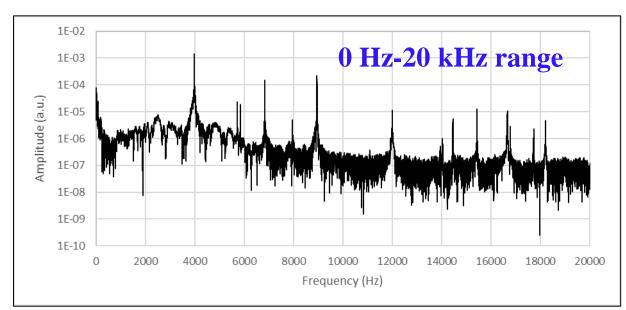
RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

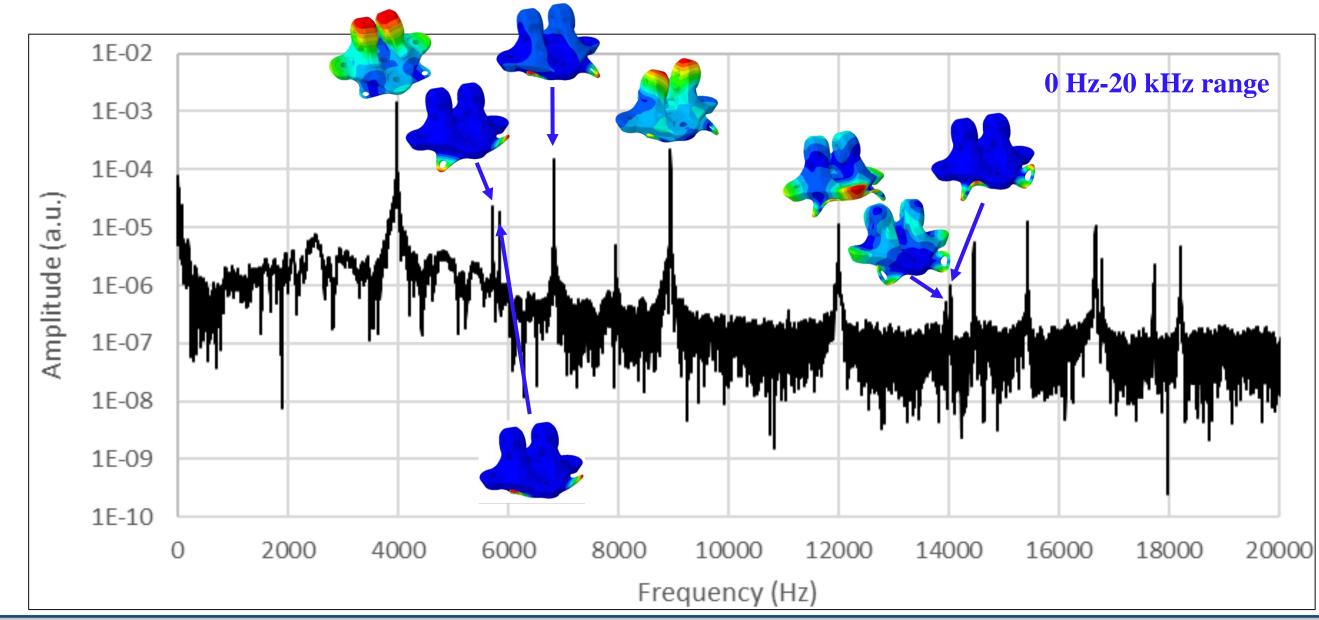
Summary and conclusions


• 24-27/10/2022 Conference on NDE 4.0



Objective 3

30 tests were performed on each parts



Objective 3

RUS (IEM) examination of the tested parts

Principle and advantages of RUS

Description of the tested parts

RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

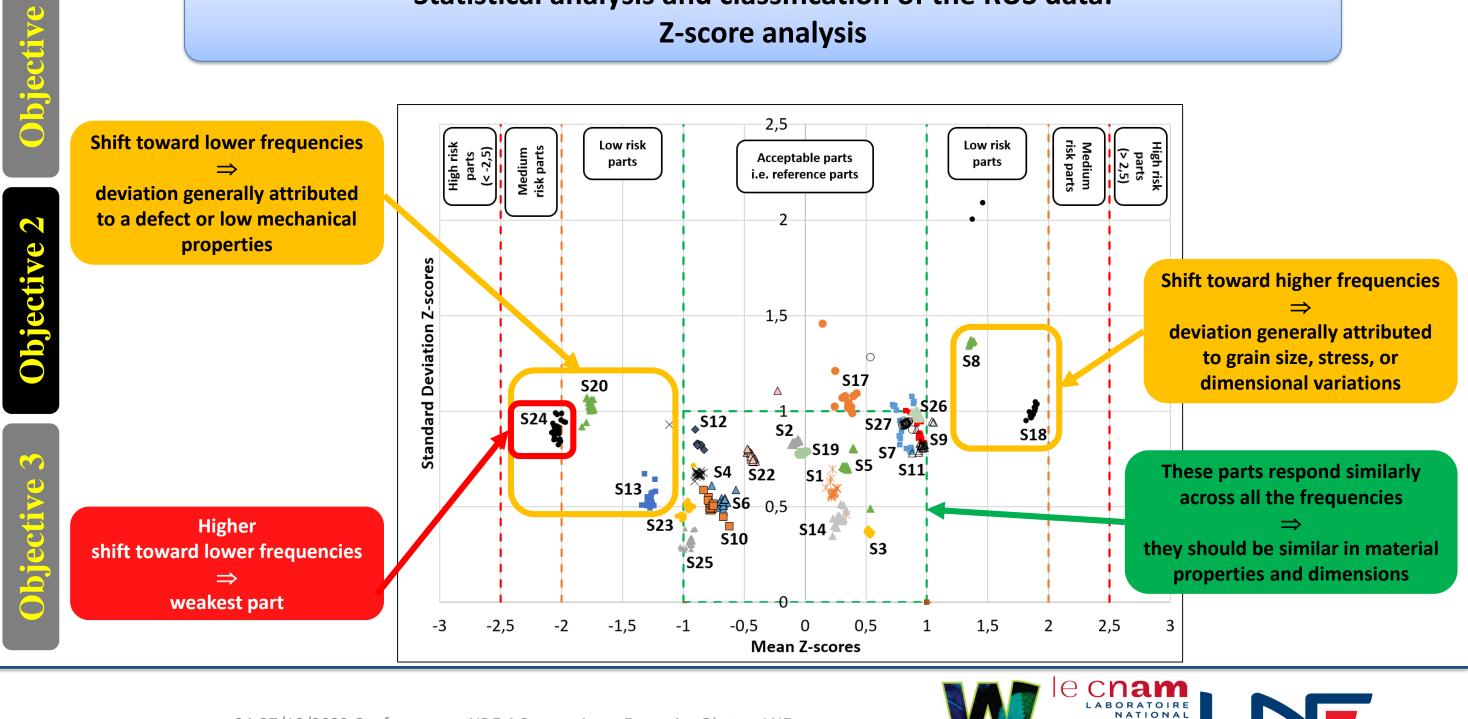
Summary and conclusions

• 24-27/10/2022 Conference on NDE 4.0

Objective 3

Statistical analysis and classification of the RUS data: Z-score analysis

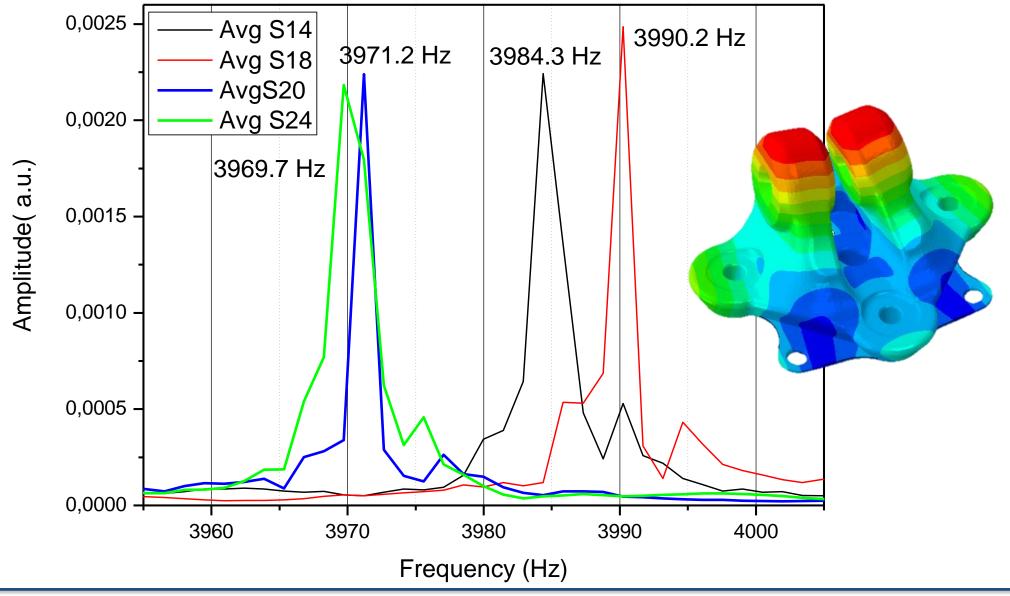
Objective: classification of the parts, supposedly identical, into various risk categories computing Z-score statistical tool which offers a physical interpretation of the data.


Z-score:

- used to compare a sample's location within a population of reference samples,
- expresses the deviation of the sample from the mean value of the reference samples' population in term of standard deviation on the population taken as reference.

 $Z \ score = \frac{peak \ frequency \ of \ a \ sample-mean \ of \ the \ peak \ frequencies \ of \ a \ reference \ samples' \ population}{standard \ deviation \ of \ the \ peak \ frequencies \ of \ the \ reference \ samples' \ population}$




Statistical analysis and classification of the RUS data: **Z-score analysis**

ROLOGIE

D'

Principle and advantages of RUS

Description of the tested parts

RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

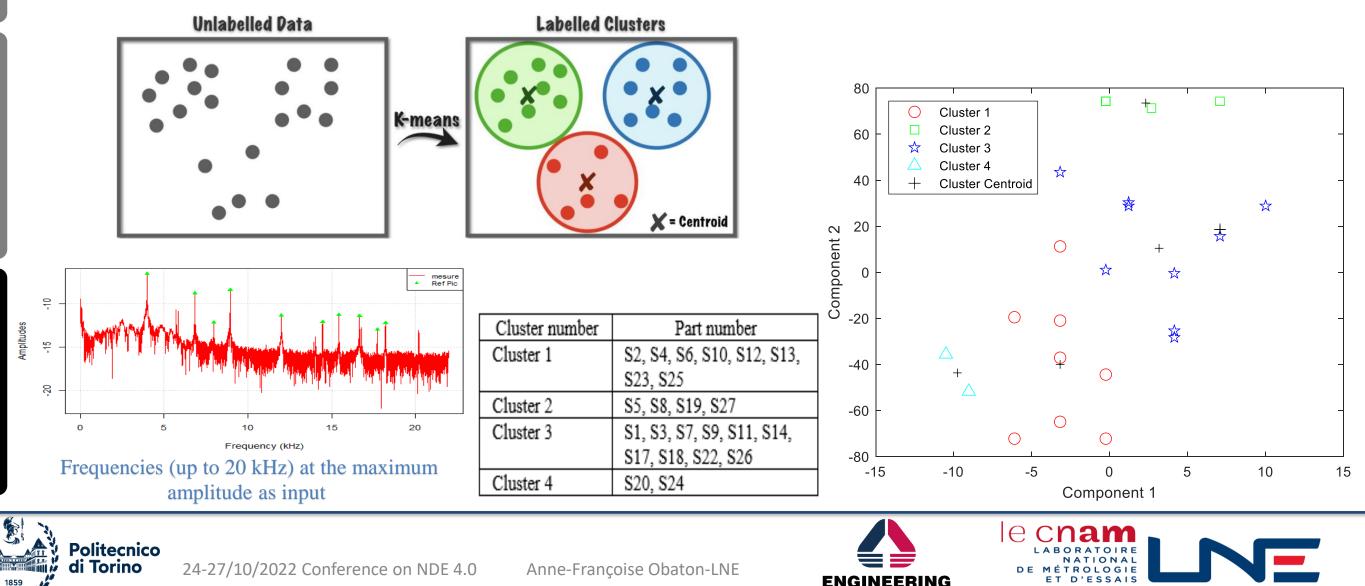
Summary and conclusions

• 24-27/10/2022 Conference on NDE 4.0

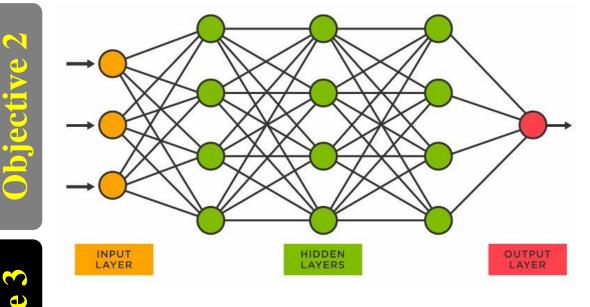
Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

Objective: Machine learning (ML), on the RUS data, was computed for the purpose of automating the whole analysis, to make the RUS analysis operator-independent.

- 1. Considering only the available RUS data, an unsupervised model was implemented. Then, based on the clustering performed by the unsupervised model, a supervised model was initiated.
- **Objective 3**
- 2. Considering the available RUS data, as well as the results of the Z-score analysis to identify acceptable and unacceptable parts for labelling the data, virtual parts were generated. Then, several supervised models were implemented.


24-27/10/2022 Conference on NDE 4.0

Objectiv


1. Considering only the available RUS data, an unsupervised model was implemented. Then, based on the clustering performed by the unsupervised model, a supervised model was initiated.

Supervised ML Neural Network (NN) model for linking the input and output data with a series of interconnected neurons

1. Considering only the available RUS data, an unsupervised model was implemented. Then, based on the clustering performed by the unsupervised model, a supervised model was initiated.

	Data splitting (%)	Mean squared error (MSE)	Coefficient of determination R
Training	70	0	1.0000
Validation	15	0.6180	0.9648
Test	15	0.0994	0.9307

R is close to $1 \Rightarrow$ the fit and model are efficient \Rightarrow K-means clustering method combined with NN supervised algorithm can be implemented as post-processing classification methods to automate the RUS data analysis.

Objectiv

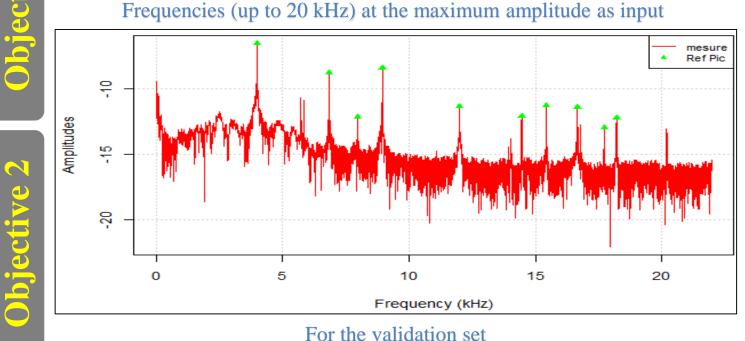
24-27/10/2022 Conference on NDE 4.0

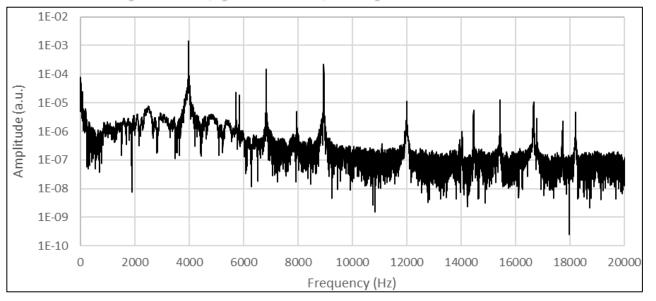
Supervised ML analysis, based on labelled data with Z-score results, to classify parts

2. Considering the available RUS data, as well as the results of the Z-score analysis to identify acceptable and unacceptable parts for labelling the data, virtual parts were generated. Then, several supervised models were implemented.

To increase the amount of data, 9 virtual outliers and 68 inliers were generated (10 % outliers to be as representative as possible of industrial cases).

Objective 3


For better estimation of the capacity of prediction, a stratified cross-validation was performed: different train and validation sets were selected in a loop (70 % train and 15 % validation) and the capacity of prediction was computed at each iteration. 15 % of the data was kept for testing the model at the end of the cross-validation.


 \sim

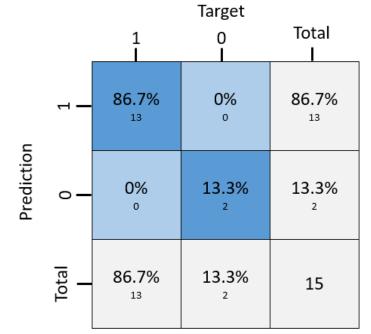
Objective

Supervised ML analysis, based on labelled data with Z-score results, to classify parts

All spectrum (up to 20 kHz) as input + noise reduction

For the validation set

Model	mean accuracy	accuracy std	mean sensitivity	sensitivity std	Model	mean accuracy	accuracy std	mean sensitivity	sensitivity std
SVM polynomial kernel	0.89	0.04	0.20	0.27	SVM polynomial kernel	0.85	0.03	0.00	0.00
SVM radial kernel	0.91	0.06	0.30	0.44	SVM radial kernel	0.88	0.10	0.30	0.45
Naïve Bayes	0.89	0.24	1.00	0.00	Naïve Bayes	0.92	0.06	0.53	0.36


A good compromise between high accuracy and sensitivity is required ⇒ the Naïve Bayes model is the best model. It is more performing with frequencies at the maximum amplitude as input rather than with spectrum, also more time-consuming ⇒ the Naïve Bayes model was evaluated on the test set

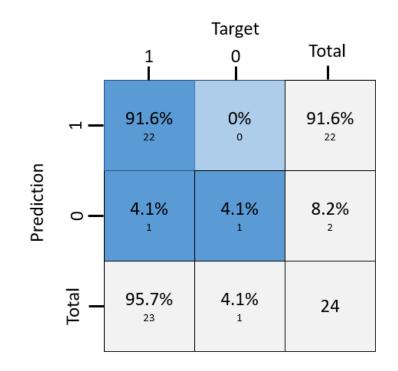
Supervised ML analysis, based on labelled data with Z-score results, to classify parts

Evaluation of the Naïve Bayes model on the test set

Frequencies at the maximum amplitude as input

All spectrum as input Target Total 0 86.7% 6.7% 93.3% -13 14 1 Prediction 0% 6.7% 6.7% 0 0 1 1 Total 86.7% 13.3% 15 13 2

One part was predicted false negative i.e. acceptable instead of unacceptable when using all spectrum as input which is not the case when using frequencies at the maximum amplitude as input. The model should be applied on frequencies at the maximum amplitude as input.


Confusion matrix

Confusion matrix			
% true positive (acceptable parts predicted as acceptable)	% false negative (unacceptable parts predicted as acceptable)	Sum in row	One part w unacceptak case when
% false positive (acceptable parts predicted as unacceptable)	% true negative (unacceptable parts predicted as unacceptable)	Sum in row	The model amplitude a
Sum in column	Sum in column	Number total of parts tested	ançoise Obaton-LNE

Objective

Supervised ML analysis, based on labelled data with Z-score results, to classify parts

To confirm that the Naïve Bayes model works properly, it was tested with the 24 real labelled parts with frequencies (up to 20 kHz) at the maximum amplitude as input

One part over the 24 was not predicted correctly. It was predicted false positive i.e. unacceptable instead of acceptable. Otherwise, the rest of the parts was predicted correctly.

Principle and advantages of RUS

Description of the tested parts

RUS examination of the tested parts

Classification of the RUS data: Z-score analysis

Clustering, classification and automation of RUS data: unsupervised and supervised machine learning (ML) analysis

Summary and conclusions

24-27/10/2022 Conference on NDE 4.0

Summary

- Application of Resonant Ultrasound Spectroscopy (RUS), through Impulse Excitation Method (IEM), on complex shape but also large/dense additively manufactured (AM) parts supposedly identical,
- > Application of Z-score statistical analysis to classify RUS data of a batch of supposedly identical parts,
- Application of supervised models to automate the analysis of RUS data of a batch of parts with model trained on labelled parts.

Conclusions

- RUS is a performant volumetric NDT technique enabling to identify each part's conformity in regard to its group of like parts whatever their shape and surface roughness but also their size/density,
- > RUS is easy to implement, fast and low cost,
- The inspection can be further accelerated if the RUS data analysis is performed with Z-score and/or supervised and unsupervised machine learning (ML) algorithms,
- Combined with ML analysis, the RUS data can be fully automated to make the analysis operator independent.

- > Application of Resonant Ultrasound Spectroscopy (RUS), through Impulse Excitation Method (IEM), on complex shape but also large/dense additively manufactured (AM) parts supposedly identical,
- > Application of Z-score statistical analysis to classify RUS data of a batch of supposedly identical parts,
- > Application of supervised models to automate the analysis of RUS data of a batch of parts with model trained on labelled parts.

Summary

- > RUS is a performant volumetric NDT technique enabling to identify each part's conformity in regard to its group of like parts whatever their shape and surface roughness but also their size/density,
- \succ RUS is easy to implement, fast and low cost,
- > The inspection can be further accelerated if the RUS data analysis is performed with Z-score and/or supervised and unsupervised machine learning (ML) algorithms,
- > Combined with ML analysis, the RUS data can be fully automated to make the analysis operator independent.

Thanks for you attention

Conclusions

Anne-Françoise OBATON <anne-francoise.obaton@lne.fr>, Nasim FALLAHI <Nasim.Fallahi@eng.it>, Anis TANICH,

Louis-Ferdinand LAFON <louis-ferdinand.lafon@lne.fr>, **Gregory WEAVER** <gweaver@weaverndt.com>.

