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Featured Application: This study is useful for a series-integrated separation between good parts
and defective ones via acoustic resonance testing. The work primarily relies on the simulation-
based generation of mandatory and application-specific training data for defect detection. It also
considers an optional use of additional structural component information in data evaluation. The
given achievements may enable a time- and cost-optimized training procedure, allow for apply-
ing acoustic resonance testing despite a limited number of representative training parts, or pro-
vide a way to counter significant part-to-part variations for improved defect detection.

Abstract: Analyzing eigenfrequencies by acoustic resonance testing enables a fast screening of
components regarding structural defects. The eigenfrequencies of each specific part depend on the
general geometric and material properties, including tolerable part-to-part variations, as well as on
possible structural flaws. Separating good parts from defective ones is not straightforward and each
application-specific sorting algorithm is usually found from experimental training data. However,
there are limitations and training data collection may be intricate. We worked on this challenge
focusing on machine-made model parts varying slightly in geometry. The application objective was
the eigenfrequency-based detection of parts featuring a through-hole test defect drilled into some
of the parts and enlarged stepwise. The eigenfrequencies were measured concomitantly. Unlike the
industry standard, our approach is based on synthetic training data created mainly by simulation
techniques, which resulted in a principally satisfactory classification of the good and defective parts.
However, the parts with small defects were not identified from the eigenfrequencies alone, due to
overlaying geometric variations. In order to counteract such noise and to improve defect detection
based on synthetic training data, the specific actual part geometry was used, in the sense of additional
a priori information. A multimodal data evaluation model showed a clearly enhanced sorting power.

Keywords: acoustic resonance testing; resonance inspection; nondestructive defect detection; sorting
algorithm; geometric variations; part-to-part variations; simulation-based training data; synthetic
training data; a priori component information; multimodal data evaluation

1. Introduction

A quality assessment of manufactured components can be achieved by evaluating
the eigenfrequencies or other characteristics derived from the measured natural vibration
behavior. Such an approach is referred to in relevant sources, among others, as acoustic
resonance testing (ART) or resonance inspection [1–7]. Related to the research focus of this
publication, ART aims at the series-integrated 100% quality screening of metallic or ceramic
parts manufactured in large quantities and with short cycle times. The possible applications
are manifold. They range from testing for cracks or other defects to analyses with regard
to material mix-ups or microstructural anomalies. The particular advantages include the
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testability of an entire component volume in seconds, favorable hardware costs, excellent
automation options, and environmental friendliness. Various implementation options are
available for the respective ART steps, connected with specific advantages and challenges.
However, an ART usually involves an active mechanical excitation of the test object (for
example, impact or sweep excitation), followed by recording the vibration response (for
example, via a microphone or with a contact sensor). After the signal acquisition and digi-
talization, various filtering and transformation steps as well as methods for the extraction
of acoustic characteristics, such as eigenfrequencies, amplitudes, or damping values, may
be carried out with the measurement data. By applying a suitable algorithm to the signal
data or the derived acoustic characteristics, the test object is finally classified with regard to
the application objective, for example, categorized as good or as defective.

ART is an acoustic method in the field of nondestructive testing (NDT). In contrast to
ultrasonic testing, which focuses on the local interaction of sound waves with anomalies,
ART analyzes the resonant vibration behavior of the entire test object. There are also
other approaches that use such vibrations, for example, resonant ultrasound spectroscopy
(RUS). RUS can be used for the nondestructive evaluation of the elastic properties from
defined samples, based on a swept sine excitation. However, despite this common target
of RUS including the evaluation of high frequencies and special algorithms, the term
RUS is also used in NDT with regard to structural defects, see [6,7]. In this sense, RUS
and ART, among other common names, are synonyms. For the purpose of a thematic
delimitation, we limited the scope in the following to the works that are directly related to
ART as a fast NDT-screening method for mostly engineering series parts that are subject
to practice-effects.

Within the last ten years, some works focusing on the ART detection of cracked auto-
motive parts were performed taking advantage of intelligent classification methods [8,9].
For the good defective distinction of tubular components, the ART data were evaluated
in combination with the component weight and hardness [10]. ART was used for the
characterization of ceramic tiles regarding the effects linked with the mechanical properties
and processing parameters [11]. Other studies dealt with the evaluation of the natural
vibration behavior of some samples produced by selective laser melting [12,13]. ART was
also used for analyzing additive lattice structures [14,15]. Swept-sine excitation was used
to examine additively manufactured bulk parts, based on their natural vibrations [16],
or to evaluate aerospace components, with respect to their metallurgical properties and
defects [17]. A further work addressed microstructural variations or anomalies within cast
iron test samples with the help of ART [18]. There are other studies that focused on com-
posite materials by analyzing the eigenfrequencies for damage detection [19,20]. Moreover,
machine-learning algorithms were applied to ART data and used for the separation of
healthy and damaged glass bottles [21], or for the classification of Euro coins [22]. There
are also several studies dealing with ART-like approaches to various agricultural products,
such as eggs or fruit [23–25].

ART is physically based on the free natural-vibration behavior of a body, which
depends on its mass and stiffness distribution, or in engineering terms, on its geometry,
the elastic constants of the material, and its density. In addition, the entire mechanical
system, and thus the natural vibrations, are affected by various structural anomalies [26,27].
Consequently, the eigenfrequencies of a component reflect its general mechanical properties,
but also its specific expression in terms of geometric and material part-to-part variations or
possible macroscopic defects, such as cracks or voids. From measured eigenfrequencies, it
is not straightforward to make conclusions about the structural condition of a part, because
different effects cause individual spectral shifts superposing on each other. Therefore, a
reliable quality statement with ART is anything but trivial and requires a suitable algorithm
to solve the inverse problem. This arises especially where large tolerable part-to-part
variations occur or small anomalies are to be detected. Some ART companies advertise
statistical algorithms that should be able to detect parts with defects or structural anomalies
by outlier detection, assuming predominantly healthy parts. However, most of the ART
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systems or applications rely on an explicit application-specific calibration or on a training
procedure built on empirical data, respectively. A corresponding training dataset must
be generated beforehand by measurements of many representative parts. Thereby, the
anomalies to be detected, ideally covering all of the possible expressions, as well as tolerable
part variations, must be included. This results in the need for expensive or complicated
reference methods to achieve the quality states of the training parts. A large number
of parts is required, which may not be feasible for defective components from a series
production with low rejects. There are also disadvantages from a practical point of view.
Since component modifications reflect in the natural vibrations, they may require an update
of the training data collection. In addition, the application of ART to a new part type
requires the training data generation initially, which makes it usually not possible to use
ART synchronously with a production launch. In summary, experimental ART training data
generation may be inflexible, difficult, extensive, time consuming, and cost intensive. This
study addresses the challenges connected with the experimental procedure by a strategy
that focusses on the simulation-based generation of synthetic ART training data for ART
defect detection.

Although we found no work that is directly focused on the special topic of this study,
other publications provided relevant findings. It is well known that the finite element
method (FEM) can be utilized to simulate natural vibrations. The FEM data can be used, for
example, for general purposes and for the evaluation versus measurements, or for sensitiv-
ity analyses with regard to geometry, material properties, or structural defects [8,13,27,28].
FEM simulations can quantitatively match the eigenfrequencies measured with ART very
accurately, provided that the mechanical component properties are precisely known and
modeled. Furthermore, the resonance spectra shifts caused by defects or due to other
component variations were examined. Some approaches for the algorithmic separation be-
tween these different effects derived from the FEM data were published in literature [29,30].
Other papers focused on the eigenfrequency shifts calculated by extensive FEM studies
related to the position of a small defect or stiffness change, respectively. Based on such
FEM data, conclusions were drawn algorithmically about unknown defects from a given
set of eigenfrequencies [31–33]. A simulation-based generation of synthetic ART training
data was initially addressed in our previous publication, with an application focus not on
defect detection, but on the correlation between the geometries and the eigenfrequencies of
undamaged parts (some material, datasets, and essential facts are revisited here, without
giving the reference designation each time again to avoid repeated citation) [34].

To summarize, the literature covers many ART application-oriented publications, but
also addresses the challenges connected with an experimental generation of ART training
data. The simulation techniques, such as FEM, were identified as sufficiently powerful
to generate the eigenfrequency data, which can allow the development of various ART
data evaluation strategies in general. Other aspects that are addressed, such as the need
for a method to distinguish between the influences of defects from those of tolerable
variations or the achievements towards an inverse defect detection considering various
defect positions, are relevant points for this study. While existing works demonstrate the
usefulness of simulated data for developing algorithmic approaches, there is no systematic
approach to the application to sets of real parts. It is pointed out that further research
is needed, for example, with respect to the effects such as random part variations, the
offset of the simulation data to the measurement data, or other practice-relevant effects.
In contrast, the strategy, which will be presented, covers all, undamaged and defective
parts, tolerable part-to-part variations, and the fundamental deviations of the simulation
data from measurements. Moreover, the procedure is not only described in detail or
discussed theoretically. It is also verified during a fictitious application scenario, by means
of machine-made model parts and ART measurement data.

Figure 1 outlines our strategy for setting up any specific ART application (for defect
detection) based on synthetic ART training data. The essential steps are:
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• Step no. 1 is the generation of the simulation data representing the part type, possible
defect type(s) of interest, or the magnitude and nature of the tolerable part-to-part
variations in a realistic manner. This entails actual simulations, as well as data en-
hancement or scaling methods. Furthermore, an adaption of the simulated data to
corresponding measurement data is needed to reduce any systematic deviation of
the synthetic data versus the measurement data. This can be achieved from a few
machine-made reference parts that are characterized experimentally and are then
rebuilt in the virtual world;

• Step no. 2 consists of finding a suitable ART sorting algorithm from the synthetic
training data set. The sorting algorithm depends heavily on the target of an ART
application, which here is defect detection. However, it does not need to be different
from the procedure in the case of experimental training data;

• Step no. 3 covers the validation of the simulation-based ART training procedure via
machine-made parts or the series application of the found ART sorting algorithm.
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Figure 1. Overview of our strategy including a simulation-based ART training data generation and
the subsequent training procedure aiming to build a specific ART sorting algorithm.

Section 2 of this publication contains a description of the part type considered for
the application scenario, including geometric part-to-part variations. The possible defect
is introduced with regard to type, size, and position. In addition, the background and
the settings used for the FEM simulations are presented. This includes a snapshot of the
natural vibration behavior of the part type and an analysis of the defect impact on the
eigenfrequencies versus the frequency shifts caused by geometric variations. The theoretical
limits of a simple defect detection approach using one single eigenfrequency are shown.
Afterwards, some machine-made parts are introduced. The experimental methods that
were used for the data acquisition are described. The application scenario and further
assumptions for a practicable classification algorithm are addressed. Section 3 deals with
the realization of our approach, including all of the steps as summarized in Figure 1. This
means that the specific generation of the synthetic ART training data is described first.
Next, several classification models or sorting algorithms are introduced, including the
background of their design. This also includes a theoretical validation process. Finally,
the results from the application of the derived defect detection models towards more than
twenty machine-made parts are presented. Since the addressed application scenario uses
measurement data, but is still fictive, Section 4 contains a discussion with a focus on a
practical series-integrated ART defect detection, based on synthetic training data. Future
research tasks for ART are also discussed. Section 5 summarizes the essential aspects of
this work.

2. Materials and Methods
2.1. Part Type and Random Geometric Part-to-Part Variations

Connecting rods were selected as the exemplary parts. Figure 2 visualizes the geometry
of this model-like part type. Since each part is symmetrical with respect to the x–y-plane and
the x–z-plane, the geometry can essentially be quantified with eight geometric parameters.
The parameters dR1 and dR2 or DR1 and DR2 describe the inner or the outer diameters of
the rotationally symmetrical cylinder rings, respectively. The two cylinder ring heights are
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identical and indicated with hR. The bar area has a cuboidal shape with the width wB and
the height hB. The bar length is set via lR, which is the distance between the cylinder ring
axes. There are additional edge fillets with a constant radius of 3 mm.
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Figure 2. General geometry of a connecting rod with eight independent geometric parameters, in-
cluding mean values and standard deviations of the normally distributed basic population depending
on the geometric parameter; compare the previous publication [34].

Random part-to-part variations in geometry are relevant when using ART. To describe
such variations, normal distribution was chosen. Each of the eight geometric parameters
was connected with a stochastically independent normally distributed random variable,
which itself is quantified by a mean value and a standard deviation. The defined mean
values and standard deviations are also shown in Figure 2. We use the term basic population
in this manuscript to indicate a random population of connecting rods, whose geometry
varies normally distributed with respect to the values given in Figure 2.

Approximately 99.73%, and thus almost all of the possible values, of a normally
distributed random variable deviate no more than three standard deviations from the mean
value. Having regard to this, the essential geometric ranges of the basic population are
covered by the accuracy class c (coarse) or at least v (very coarse) of the general tolerances,
according to DIN ISO 2768, see [35]. This means that such variations are large, but still
realistic, especially for unfinished blanks produced with a forging or casting process.

Besides the basic population, some populations with other probability distributions
(scaled normal distributions, uniform distributions) were defined. All of the random
parts, either virtual parts that only exist as computer models or machine-made parts that
are produced according to given nominal dimensions, were specified with independent
random numbers. These numbers were created with the MATLAB® functions normrnd
(normal distribution) and unifrnd (uniform distribution). Often, the same sets of random
numbers were used multiple times, for example, to achieve batches of parts with identical
geometries, but different defect specifications. This was realized by controlling the random
number generator via the function rng, in combination with specific seed values.

In addition to the parts with random dimensions, a geometrically non-random con-
necting rod, called geometrically mean part, was defined as a reference. The geometric
dimensions of this part are the mean values shown in Figure 2.

The connecting rod material was chosen to be homogeneous and constant with
isotropic elastic properties, as far as technically possible for the machine-made parts.

2.2. Defect Type to Detect

Each connecting rod can feature an optional defect, which means that there is a single
defect, or that the part is defect-free. A cylindrical through-hole with an alignment of its
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axis in the z-direction was chosen as the defect type. This defect type was chosen for the
fictitious application example, due to its good implementability in simulation models as
well as in machine-made parts by drilling. The defect diameter of interest is in the range
from 1 mm to 3 mm with an even probability of occurrence. Figure 3 shows the possible
defect positioning. A defect occurs either within one of the two cylinder rings, exactly
placed between the inner and outer cylinder ring wall (it is centered on one of the red circles
in the sketch, but any position on the circles is possible). Alternatively, a defect is located
in the bar area, with the defect axis being at least 4 mm away from the bar edges and the
cylinder rings (it is anywhere inside the red shaded area, or it is even centered on the red
lines in the sketch). The defect position limits were chosen to avoid breakouts towards the
edges and to ensure that a reasonable residual wall thickness always remains, independent
of the geometric dimensions, defect position, and defect size. We assume the defect position
to be random within the given explanations. This means that the three defect domains
are considered with the same probabilities and no subdomain is more likely than another
subdomain. However, for general investigations or for ART training data generation, for
example, more extreme defect sizes or special defect positions were examined.
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Figure 3. Defect domains with regard to the position of a through-hole defect in a connecting rod
(the multiple sketched through-holes serve for illustration, only a single defect per part can occur).

2.3. FEM-Simulated Natural Vibrations and Basic Data Insights
2.3.1. FEM Simulations and Eigenmodes of a Connecting Rod

To access the eigenfrequencies and eigenmodes of the virtual connecting rods, FEM
simulations were performed using COMSOL Multiphysics® (basic software plus Structural
Mechanics Module, version 5.2a). Perfect linearity was supposed and quadratic 3D tetrahe-
dral elements were used. As the maximum element size, 1.1 mm was chosen. Additionally,
damping was ignored during the simulations and each object was set to be free without
any external support or fixation. For all of the simulations, a homogeneous material, with a
density of 2700 kg/m3 and an isotropic elasticity, was assumed (Young’s modulus: 70 GPa;
Poisson ratio: 0.34; shear modulus: 26.12 GPa). These values are typical for an aluminum
alloy. They were selected with regard to the machine-made parts described later.

Figure 4 shows the FEM-calculated eigenmodes assuming the geometrically mean part.
There are 18 eigenmodes up to a frequency of 30 kHz, which have either bending, torsional,
or longitudinal character. The eigenmodes are named as Mode-1, Mode-2, . . . , Mode-18,
according to the ascending eigenfrequency order observed for the geometrically mean part.
The eigenfrequencies vary in a mode-specific way as a function of the specific mechanical
part structure. The eigenmodes stay the same for the different parts with individual
geometric dimensions in a qualitative manner, however, they can occur in another order
compared to the geometrically mean part. We always used the eigenfrequencies sorted by
identified modes (and not by ascending frequency values) for this study.
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2.3.2. Geometry-Induced Eigenfrequency Shifts versus Defect Impacts

Understanding the relationship of the specific structure of a part towards its eigen-
frequencies is fundamental for reaching a reliable defect detection. Based on FEM, Table 1
gives an estimation of the connecting rod eigenfrequencies depending on the geometric
effects, together with an optional through-hole defect of 2 mm diameter in the center of
the bar (central 2 mm defect). Besides the geometrically mean part, different batches each
containing 1000 virtual parts from the basic population with or without defect were used
to generate the table data. Table 1 contains the following mode-specific information:

• Frequency without defect: This column contains the eigenfrequencies of the geometrically
mean part without any defect. The averaged frequencies of the defect-free parts
derived from the basic population are roughly the same;

• Geometry-induced standard deviation: These columns contain the standard deviations of
the eigenfrequencies that can be obtained for the normally distributed basic population
(the frequencies are also nearly normally distributed). The values refer to the defect-
free parts, but approx. identical standard deviations can be observed for the parts with
a central 2 mm defect. The values are given in absolute and relative terms;

• Frequency shift due to a central 2 mm defect: These columns present the eigenfrequency
shifts or defect impacts induced by a central 2 mm defect. The shifts refer to the geo-
metrically mean part. On average, similar shifts can be observed for the defective parts
from the basic population, all featuring an identical, central 2 mm defect. However, the
individual defects’ impacts depend significantly on the specific random part geometry.
The values are given in an absolute and relative manner.
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Table 1. Statistics to characterize the connecting rod eigenfrequencies with regard to the frequencies
in undamaged case, the frequency variations caused by geometric part-to-part variations, and the
impact of a through-hole with 2 mm in diameter being central within the bar area.

Mode no.
Frequency

without Defect
Geometry-Induced
Standard Deviation

Frequency Shift due to a
Central 2 mm Defect

(in Hz) (in Hz) (in %) (in Hz) (in %)

1 1760 45.3 2.58 −5.9 −0.34
2 3619 93.9 2.59 −13.9 −0.38
3 3705 56.0 1.51 2.3 0.06
4 5099 102.5 2.01 −1.1 −0.02
5 8974 98.0 1.09 −7.5 −0.08
6 10,292 141.6 1.38 −15.0 −0.15
7 12,032 100.1 0.83 −17.4 −0.14
8 13,802 156.1 1.13 2.2 0.02
9 16,507 156.2 0.95 −7.8 −0.05
10 17,083 146.8 0.86 15.2 0.09
11 18,797 148.3 0.79 −8.5 −0.05
12 20,303 140.0 0.69 −19.8 −0.10
13 21,186 164.3 0.78 4.8 0.02
14 22,399 202.5 0.90 −16.3 −0.07
15 26,471 196.6 0.74 −46.2 −0.17
16 26,727 230.6 0.86 −64.6 −0.24
17 28,356 265.0 0.93 −28.8 −0.10
18 29,125 262.9 0.90 −24.3 −0.08

Referring to the geometrically mean part, the defect impact with respect to the defect
position and size was analyzed with FEM. Figure 5 visualizes the impact of a 2 mm defect at
various positions in the bar for some eigenmodes. Such nonlinear and mode-specific behavior
depending on the defect position is well known [29,36]. However, a useful defect detection
requires the consideration that a defect can influence an eigenfrequency with an individual
maximum or has nearly no effect, which strongly depends on the defect position.

Figure 5. Relative defect impact on the eigenfrequencies of a connecting rod depending on the
position of a 2 mm through-hole defect in the bar, taking the example of the geometrically mean part.
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Since a linear growth in the defect diameter results in a quadratic rise in the defect
area and volume, a quadratic dependence of the defect-induced frequency shift from the
defect diameter was expected. Once again, using the fixed defect position in the center of
the bar, such behavior could approximately be confirmed for the moderate defect sizes up
to 3 mm or 4 mm, which is sufficient for our range of interest. Nevertheless, there are more
complicated or interactional effects in the case of a larger defect, or in the case of a variable
defect position in combination with geometric variations. For example, a large defect has
an impact on the geometry-induced eigenfrequency standard deviations of a population,
even if the position is fixed. Of course, when the defect position is also variable, this has an
additional impact on the statistical characteristics. The nonlinear frequency shifts caused by
a defect in a random position combined with an individual part geometry can then cause
very individual eigenfrequency shifts versus the geometrically mean part.

2.3.3. Theoretical Limits of a Simple Eigenfrequency Defect Detection

One single eigenfrequency is generally not suitable for an ART defect detection,
because a frequency may not be significantly affected or sensitive to a defect, depending
on its position. Therefore, an approach based on a single frequency can only work for
special defect positions. In addition, the defect influence may be much less compared to
the geometry-induced effects on the eigenfrequencies. Therefore, geometric scatter can
superpose the effects from the structural defects. FEM data were used for an estimation
of the defect detection limits for the connecting rods using a single eigenfrequency. A
central through-hole defect in the middle of the bar was assumed as an example. Figure 6
is derived from Table 1. It refers to the parts from the basic population and visualizes
the relative sensitivity of the connecting rod eigenfrequencies to a 2 mm defect. Every
sensitivity value is the mode-specific ratio between the frequency shift caused by the defect
on average compared to the eigenfrequency standard deviation caused by the geometric
variations. As can be seen, Mode-16 has the highest sensitivity towards such a central
2 mm defect.
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Figure 6. Relative defect sensitivity to a central 2 mm defect in a connecting rod (the relative defect
sensitivity is the ratio of the defect impact and the geometry-induced standard deviation).

Figure 7 visualizes the distribution of the eigenfrequencies regarding Mode-16 for
large batches of defect-free parts and for parts with a central through-hole. The figure
shows density curves derived for the basic population parts, as well as for the parts from a
scaled population with only 10% geometric scatter in cross-comparison. There are curves
for the different defect sizes. In the case of the basic population, there is no chance of a
reliable separation between the damaged parts containing a defect with a diameter from
1 mm to 5 mm and the good parts, due to a significant overlap of the frequency ranges.
A separation may only be possible for large defects with a size of 10 mm or more. This,
however, is an academic finding and not a demonstration of a satisfactory performance. In
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contrast, for the small geometric variations, the defects with a size of around 3 mm or larger
should, in theory, be detectable with the help of that single eigenfrequency. Nevertheless,
the utility for a defect detection is still limited to special positions and a 3 mm defect is quite
large, taking into account the low geometric variations. Furthermore, these results are based
on simulation data and practice-relevant effects may result in a reduced detection power.
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Figure 7. Eigenfrequency distribution for connecting rods depending on quality state and amount of
geometric part-to-part variations regarding Mode-16.

The previous explanations illustrate that a simple ART defect detection approach
based on a single eigenfrequency is extremely limited. This is particularly valid in the case
of large variations in the geometry from part to part or when a possible defect is not limited
to a small and known region of a part. To counteract the observed challenges, we describe a
much more powerful approach within this paper, based on a more efficient data evaluation
method as well as on extensive synthetic ART training data.

2.4. Machine-Made Parts and Experimental Data Acquisition

A set of 29 machine-made connecting rods manufactured in a workshop was charac-
terized experimentally. Five reference parts were used, which are indicated with the letters
A to E. These parts were machine-made, following the geometrically mean part, which
means that the identical mean geometry was set as the nominal geometry. Additionally,
two dozen validation parts were used. These parts were labeled with consecutive numbers
from 1 to 24. The nominal geometric dimensions of the validation parts were set with
random numbers, considering the basic population and its value ranges. For the parts no.
1 to 12, the normally distributed basic population was imputed directly. For the parts no.
13 to 24, a uniform distribution was selected instead, whereby the interval borders are the
mean value plus or minus three times the standard deviation of the basic population for
each geometric parameter. Due to the limited amount of machine-made parts, the uniform
distribution was chosen to describe many parts that are more likely to have values near
the borders of the essential value ranges instead of being more centered with a higher
probability. However, the part geometries could also come from the basic population,
because all of the dimensions are inside the typical value ranges of the basic population.
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For some parts, a single dimension was manually set to the mean value plus or minus
four times the standard deviation. This should achieve dimensions slightly outside the
usual ranges. It is noted that all of the nominal geometric values were rounded to integer
multiples of 0.05 mm for better handling. Finally, the parts were machined from a single
batch of rolled aluminum alloy, according to the defined geometric dimensions. Using a
single material batch should ensure a nearly constant material behavior. Additionally, a
consistent production strategy was agreed with the manufacturer to reflect a reproducible
series process.

Through-holes representing structural defects were drilled into 14 of the 24 parts,
using a conventional pillar-drilling machine and enlarged stepwise. We selected the parts
no. 1 to 7 and no. 13 to 19 for the defect implementation. The process started with a defect
diameter of 1 mm and resulted in a final size of 3 mm, with steps of 0.5 mm. The defect
position was individual for each part. The defects were placed manually over the parts to
achieve a uniform defect distribution, considering the limited number of parts and taking
into account that the application example does not assume any preferred defect positions.
Symmetry was taken into account to avoid similar positions due to the limited amount of
parts. Figure 8 shows the chosen defect position depending on the part number. The actual
positions can vary up to 1 mm in the lateral directions compared to the sketch, because the
positioning was completed by hand and not by machine. In addition, the figure includes
photos of two of the machine-made parts with their final 3 mm defect size.
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Figure 8. Defect positions for the machine-made connecting rods and photos of two machine-
made parts with a through-hole defect in its final size of 3 mm (the given numbers refer to the
numbers/designations of the machine-made parts and indicate the defect position depending on
part no.).

The machine-made parts were characterized experimentally as briefly described in our
previous publication. For example, we recognized a homogenous but slightly anisotropic
material behavior linked with the rolling structure of the material and discovered, with the
help of radiography, that the parts featured no macroscopic volume defects. During the
measurements, the temperature was measured and the temperature effects on the quantita-
tive measurement data were computationally corrected to the best possible accuracy.

Before implementing the through-holes, all of the connecting rods were measured
geometrically, because each actual geometry differs inevitably from the nominal dimensions
due to production tolerances. A coordinate measuring machine was used for this. The
measured data were then applied to our geometry model. This means that the dimensions
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regarding the eight geometric parameters were updated, although the measuring machine
provided additional information, such as small deviations from perfect symmetry. The
updated geometry data included averaged cylinder ring heights, since the initial results
contained individual heights for both of the cylinder rings indicating some offset. However,
all of the observed uncertainties towards the idealized geometry were small and not critical.

The eigenfrequencies of the parts were measured with ART. This was initially com-
pleted before drilling the through-holes into some of the parts. After each step of defect
enlarging, the ART measurements were repeated to record the eigenfrequencies depending
on the defect size. For the ART measurements, the part to be examined was placed on
three rubber tips. A manual impulse hammer was used for excitation and a microphone
recorded the sound signals. Several excitations at different points were carried out on each
part to ensure a stimulation of all of the relevant eigenmodes. To minimize the effect of
random fluctuations or outliers, each part was measured at least five times in each defect
condition. Single outliers were identified and eliminated. The frequencies were finally
averaged, resulting in 18 experimental eigenfrequencies per part and per defect condition.

In addition, we performed associated FEM simulations of the defect-free states, as
well as considering the different defect sizes. These simulations were carried out using the
metrologically updated geometries. On the one hand, the simulated eigenfrequencies were
used to match and sort the measured eigenfrequencies to the eigenmode numbers (a laser
Doppler vibrometer measurement and amplitudes from the ART data, depending on the
direction of excitation, delivered further information for this purpose). On the other hand,
the simulation data served to access the systematic deviations between the simulated and
measured eigenfrequencies, which is central for this work.

2.5. Overview and Further Specifications for the Application Scenario

The application scenario is focused on the detection of defective connecting rods via
ART, under the additional boundary condition that the parts also vary randomly in their
geometric dimensions. As the defect to detect, a through-hole with a size between 1 mm
and 3 mm was chosen, whereby a part features exactly one single through-hole or none.
Multiple holes or other defect types were not allowed. Material variations were avoided as
far as possible. A set of 18 eigenfrequencies, being used as the mandatory classification
input, and either four or all of the eight geometric dimensions per part, being used as an
optional input, formed the basis for each test decision with respect to a defect. To design
the application scenario unambiguously and to achieve an appropriate optimization of the
classification problem, the scoring of any misclassification, as well as the probabilities of
occurrence for the undamaged and defective parts, also had to be taken into account.

Within a real series production, whether a defective part is overlooked or a good
part is mistakenly rejected will usually have different degrees of severity. This can have
safety-critical or economic reasons. Our application scenario is fictive and only serves for
demonstration. Therefore, we did not specify any additional constraints and remained
neutral with regard to the scoring of misclassifications. Any mixing up of the good parts
with the defective parts or vice versa by a classification model was seen critically in the
same way during the data evaluation. Furthermore, good parts are usually more frequent
in a series production. Some of the possible defect types, positions or sizes can also be more
likely than others. However, defining specific constraints would have been speculative,
especially because finding an allover optimizing classification rule can highly depend on
the assumed probabilities of occurrence. Therefore, we once again remained neutral to
ensure a balanced quality evaluation. This means that we assumed that the good parts and
defective parts would occur with an equal fifty-fifty chance. In the case of damage, each of
the defined defect domains should occur with a probability of 1/3. Additionally, within
each of these domains, the defect specifications are random and uniformly distributed,
with no subdomain being more likely.

In the end, the application scenario aims at the discrimination of the good parts and the
defective ones. For the classification models with multiple defect classes, the assigned defect
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size or defect position of a classified part was only considered secondarily. Rather, it was
primarily evaluated whether a part had been correctly or incorrectly assigned to the good
class, or to any defect class at all. In other words, the decisions were mostly retrospectively
reduced to a two-class system (good/defective) and then evaluated. The evaluation was
completed with the help of TPR (true positive rate) and TNR (true negative rate) [37]. These
metrics represent the proportion of the defective parts that are also classified as damaged
(TPR) or the proportion of good parts that are also classified as (TNR).

3. Results
3.1. Simulation-Based ART Training Data Generation

The first step of our application scenario demonstration covered the generation of
the ART training data based on simulation techniques (see Figure 1). The training data
generation included FEM simulations of connecting rods, but also further partial steps that
aimed to enhance the amount of simulation data and to adapt it to measurement data.

The geometric dimensions of 5000 virtual training parts were described with random
numbers. Contrary to the basic population, uniform distribution was chosen for the virtual
training parts. This ensured that no subrange of the training data was more common. The
uniform distribution interval borders were set to the mean values plus or minus 4.5 times
the standard deviations of the basic population. Since the essential values of the basic
population differed by a maximum of three standard deviations from the respective mean
values, by 50% increased ranges were assigned for the virtual training parts. This scaling
ensured that the training data confidently covered the geometries of the machine-made
parts (or of any of the basic population parts subjected to a defect detection).

The structure-dependent eigenfrequencies of the virtual training parts with respect
to Mode-1 to Mode-18 were calculated by FEM. The simulations were initially performed
without any defect. Afterwards, the simulations were repeated three times, assuming again
5000 virtual parts each time with the same individual geometric dimensions as before, but
considering a through-hole defect either in one of the two cylinder rings or in the bar area.
This entire set featured defective parts with a 2 mm through-hole appearing uniformly,
and randomly distributed within the defined defect domains. As an output, we obtained
the geometric data and eigenfrequencies of 5000 defect-free virtual trainings parts and the
corresponding data for the geometrically same parts, but with a randomly positioned 2 mm
defect within one of the cylinder rings or the bar area.

To achieve a suitable ART defect detection, the training data generation had to take
into account that the eigenfrequencies of a defective part depend, in a nearly quadratic
manner, on the defect diameter. However, performing further FEM simulations assuming
many other defect sizes would have resulted in a large computational effort. To counteract
this and to enhance the data effectively, we took advantage of the recognized defect size
behavior and the fact that the geometric dimensions of the defect-free training parts were
used again for the FEM simulations including a 2 mm defect. The eigenfrequency deviations
from the defective to the good parts were calculated. These deviations can be seen as the
isolated impacts of a randomly positioned 2 mm defect in each case. We scaled these defect
impacts by using the quadratic dependence from the defect diameter. For example, a 1 mm
defect causes approx. one quarter of the impact of a 2 mm defect at the same position. In
this way, the defect impacts from 0.8 mm to 3.6 mm with an increment of 0.1 mm were
derived (since the aim is the detection of any defects from 1 mm to 3 mm in size, 20%
smaller or larger values were chosen). Finally, the impacts of the scaled defects were added
to the eigenfrequencies of the 5000 defect-free parts for each defect size, resulting in a much
more extensive data set. If we had generated all of the data directly with FEM and not
enhanced them, we would have had to perform 440,000 calculations instead of 20,000 FEM
calculations (5000 good parts + 3 × 5000 defective parts × 29 defect sizes).

Since the simulation-based data differed from the measured data due to many simplifi-
cations or inaccurate assumptions, as discussed extensively within our previous publication,
the synthetic data set had to be adapted to the measurement data. The five machine-made
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reference parts were taken into account for this. Their associated FEM-calculated eigen-
frequencies were evaluated versus the frequencies that were measured by ART. A similar
offset behavior between the simulations and the measurements was found for all of the
parts, which clearly depends on the eigenmode. This indicates that an easy multiplicative
adaption via mode-specific correction factors is suitable. Table 2 shows the correction fac-
tors (measured data divided by simulated data), which were averaged from the reference
parts depending on the eigenmode and finally applied to the synthetic training data.

Table 2. Correction factors for adapting FEM eigenfrequencies to ART data.

Mode
no.

Correction
Factor

Mode
no.

Correction
Factor

Mode
no.

Correction
Factor

1 1.0272 7 1.0203 13 1.0202
2 1.0073 8 1.0089 14 1.0122
3 1.0238 9 1.0148 15 1.0199
4 1.0256 10 1.0183 16 1.0098
5 1.0196 11 1.0175 17 1.0178
6 1.0210 12 1.0120 18 1.0125

Although the five reference parts show similar deviations between the simulation
and the measurement data, the deviations are not exactly the same. For analyzing the
quality of the correction factor method, one reference part was excluded and the correction
factors were averaged again from the remaining parts. Then, the factors were applied to
the simulated eigenfrequencies of the excluded part. Finally, the adapted simulation data
of the excluded part were evaluated again versus its measured frequencies, which led to
small residuals. Figure 9 shows this for the five reference parts, which are indicated with
the letters A to E. The data transformation from the simulation to the measurement world
is not perfect, but the remaining differences of the adapted simulation data to the measured
values are, in nearly all of the cases, in terms of amounts smaller than 0.1%, indicating a
good performance of the correction factor method.
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Figure 9. Relative deviations of initially simulated and then with correction factors adapted eigen-
frequencies to measured eigenfrequencies (the diagrams show the adaption for in each case one
reference part, that means for part A, B, C, D, or E, based on factors derived from the other parts).

To cover an imperfect data adaption by the correcting factors, three scenarios for the
synthetic ART training data were subsequently considered. The synthetic training data
were used directly for the ART training procedure. Additionally, uniformly distributed
random noise was applied to each frequency value of the synthetic training data, either in
the relative range from −0.1% to +0.1%, or from −0.3% to +0.3%, respectively. This was
executed to represent the uncertainty of the simulation data adaptation to the measurement
world, in an order of magnitude as it was observed or in an exaggerated way.
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3.2. ART Sorting Algorithm

The second step of our application scenario demonstration was the development of a
suitable ART sorting algorithm for defect detection (see Figure 1). This was carried out on
the synthetic ART training data, the generation of which was explained before.

For the classification task in this work, the specific model type or the selection of the
most powerful algorithm was not the focus. The model type itself was seen more as a
required tool for the demonstration and any suitable type satisfied our needs. Common
classification types were examined. The MATLAB® function fitcdiscr (fit discriminant
analysis classifier) was found to create suitable classification models, based on quadratic
discriminant analysis classification (name-value argument for model type: ‘DiscrimType’,
‘pseudoquadratic’). We created different classification models, using synthetic ART
training data either with or without additional noise, as well as with different sets of
predictor variables. All of the models were designed incorporating the remarks from
Section 2.5. Prior values were applied, which indicate a fifty-fifty chance for a part to be
good or to be defective with a completely even defect distribution. A cost matrix, which
controlled each of the training procedures through the assignment of cost values aiming
at a low sum of cost, was defined as follows: 0 cost score for the correct good/defect
classification; 1 cost score for confusing the good parts with defective ones or vice versa;
0.01 cost score for mixing-up the different defect classes.

Although the application scenario aimed to differentiate between the good and defec-
tive parts and not between the different defect sizes or positions, each virtual part or data
row within the training data was labeled according to a multiple class-system, covering
one good class and many defect classes. This was chosen to ensure a solid classification
functionality, after understanding the heterogeneous effects of the defect size or its position
to the eigenfrequencies of a part. This led to the knowledge that the defective parts do not
form a single well-defined class that unambiguously differs from the good class. To put it
clearly, defining the multiple defect classes should ensure that each class contains parts that
have the most homogenous defect impact characteristics. The various defect sizes of the
defective trainings parts were directly used for the labeling. Then, the labels were extended
with information about the part subdomain in which the defect was located. Figure 10
visualizes the defined defect subdomains while taking into account the part symmetry. Both
of the cylinder rings were divided into six subdomains each, with the bar area consisting of
seven subdomains. Bringing all of the combinations of the defect sizes and subdomains to-
gether, the final class system covers a total of 552 classes (1 good class + 551 defect classes,
with 29 defect sizes and 19 subdomains). We assumed that more classes may allow clearer
results. However, the amount of classes was limited by two factors. First, an increasing
computing power requirement was recognized, as more classes were used. Second, the
classification can abruptly become very bad, which is likely due to the fact that there were
too few training parts in each class to properly predict a large amount of the classification
model coefficients.
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The input or predictor variables used for the classification models comprised the
available 18 eigenfrequencies of each part, as well as the geometric data as an optional input.
When implementing the geometry, either the full eight geometric parameters were used, or
only half of them (the inner cylinder ring diameters dR1 and dR2, the bar width wB, and the
bar height hB). The square roots from all of the possible pairwise product terms regarding
the geometry were calculated as further optional input terms of some of the models,
resulting in a maximum of 28 (full geometry) or six (half geometry) optional predictor
variables. Other terms were not taken into account, because this could have led to poor
classification results due to too many inputs, which would have required even more training
data than actually available, as a countermeasure. In addition, higher polynomial terms
may have resulted in an over-fitted model that was no longer suitable for the application
to the noisy measurement data. Since using the eigenfrequency interactions would have
resulted in too many predictor variables (actually 153 interaction terms) for a sufficient
model prediction, we did not consider them. For the distinct description of the classification
models depending on the predictor variable configurations, we introduced short model
identifiers. The letters F, G, and g indicate if the eigenfrequencies, the full geometry, or only
half of the geometric information were considered for a model, respectively. Additionally,
the numbers 1 or 2 show if the geometry data were only used directly (1) or if additional
interactional terms occurred (2). For example, F describes that the eigenfrequencies alone
were implemented, and F-G2 denotes a model that is based on the eigenfrequencies, plus
the full geometric data including interactions.

Before applying the final classification models to the machine-made validation parts,
the theoretical classification limits were analyzed with the help of new virtual parts or
synthetic validation data. These synthetic data comprise 1000 defect-free parts from the
basic population. In addition, many defective parts with the same geometric dimensions,
but having a through-hole of 1 mm, 1.5 mm, 2 mm, 2.5 mm, or 3 mm either in one of the
cylinder rings or in the bar area, were considered. Altogether, three times 1000 parts per
defect size were fully simulated and not enhanced as within the training data generation to
reach the most realistic defect behavior. The correction factors were applied to the simulated
eigenfrequencies. This fitting to the measurement data allowed the synthetic validation
data to be put directly into the calculated classification models, instead of recalculating the
models. Figure 11 shows the results for the classification models F and F-G2, both derived
with the help of the synthetic ART training data without additional random noise.

Each diagram in Figure 11 visualizes the classification results of the 1000 virtual parts
and each single data point represents one part. The title indicates the classification model
used, as well as the true quality state of the parts. The x-axis specifies the defect size that
is connected with the predicted defect class, whereby the parts classified as good were
plotted at a defect size 0 mm. The y-axis indicates the mean geometric deviation, which
is calculated by averaging the absolute percentage deviations of the measured geometric
dimensions in relation to the geometrically mean part. This metric, among others, was
originally selected to evaluate if the classification results depend on the magnitude of the
geometric scatter. We did not find such a relationship, but kept the metric for visual reasons.
The model using additional geometric input data classified all of the parts accurately. The
other model made several misclassifications of the defective parts with a through-hole in
any cylinder ring. Furthermore, the more complicated model always roughly classified the
defective parts with regard to the correct defect size, but the simpler model led to more
classification scatter. In the end, Figure 11 illustrates a significantly better classification
power of model F-G2 versus model F. However, this is only a small snapshot of all of
the results.

Figure 12 summarizes the results that were achieved with the different classification
models, based on the synthetic training data with different noise levels. The obtained
TNR (true negative rate) and TPR (true positive rate) values, which indicate the amount of
correct classifications for the good parts and for the defective ones, vary slightly with the
random number sequences used for the geometric definitions and for applying noise. The
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TPR values were averaged over the three times 1000 virtual parts with a through-hole each.
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Figure 11. Classification results for 1000 virtual connecting rods each being either undamaged (IO) or
featuring a 2 mm through-hole anywhere in the smaller cylinder ring (NIO/R1), the larger cylinder
ring (NIO/R2), or the bar area (NIO/B), based on the classification models F and F-G2 both derived
from training data without additional noise (blue: classified correctly, red: misclassified).
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From Figure 12, it can be seen that the good parts were classified correctly in all of
the considered cases. In contrast, the classification results for the defective parts depend
strongly on the classification model configuration and on the noise level of the synthetic
training data. The additional use of the geometric data as linear or even interactional model
input significantly improved the detectability of the smaller defects, but the defect detection
became worse the more noise that was applied to the training data. Depending on this, an
acceptable defect detection with a detection rate of at least 95% is given for defects of 1 mm
or smaller, or only for defects significantly above 3 mm size. For the training data set with
the medium noise level, the theoretical defect detection limit is between 1.5 mm and 3 mm,
depending on the applied model configuration. Although improved modeling, such as
including higher polynomial eigenfrequency terms, implementing more frequencies, or
even using other classification types, may slightly improve the defect detection, there may
be a limit when using the eigenfrequencies alone. This is because the spectral shifts are not
only an indication of a defect, but they are also caused by tolerable structure configurations.
This makes it challenging from a certain point to find a clear quality conclusion from a
given set of eigenfrequencies without any further component information. Nevertheless,
the results achieved on the virtual parts indicate a good chance of separating the defective
machine-made parts from the good ones, at least above a certain defect size.

3.3. Validation on Machine-Made Parts

The third step of our application scenario demonstration covers the validation of the
derived ART sorting algorithms for defect detection (see Figure 1). This is pointed out on
the two dozen machine-made validation parts and their measurement data.

Before applying the final classification models to the machine-made parts, we derived
some illustrative visualizations for the separation task between the good parts and the
damaged ones. The related idea is to predict the eigenfrequencies of a part from the
individual component structure data being variable within a population from part to part,
meaning from the full geometric information in the case examined here. The deviations
between the predicted and the actual eigenfrequencies of an undamaged part should
be close to zero, provided that the frequency predictions are reliable. In contrast, large
deviations in the frequencies can indicate that the actual eigenfrequencies of a part are
affected by a structural impact, such as a macroscopic defect. The MATLAB® function
fitlm (fit linear regression model) with the model option quadratic was selected for the
eigenfrequency predictions. The eight geometric parameters of the part type served as
predictor variables. The model calculations were performed on the data of the defect-free
5000 virtual training parts, featuring uniformly distributed geometric variations in the
extended ranges compared to the basic population. Thereby, the eigenfrequency data were
transformed to the measurement world with the correction factors, but no additional noise
was applied. The measured geometric dimensions of the machine-made parts were put
into the final regression functions. Finally, the deviations of the resulting eigenfrequency
predictions versus the ART measured frequencies were calculated.

Figure 13 visualizes the derived eigenfrequency deviations depending on the part
number and quality state. The y-axis of each diagram indicates the mean eigenfrequency
deviation, which is averaged from the absolute percentage deviations of the measured
eigenfrequencies relative to the associated regression model predictions. The first diagram
includes all of the 24 machine-made validation parts before implementing the through-hole
defects. Three parts (no. 2, 8, and 20) show a significantly larger mean eigenfrequency
deviation, which indicates that they are affected by a structural anomaly, but which is
unknown in detail. These three parts have already been identified as suspicious in terms
of the deviations between the measured and related simulated eigenfrequencies, as de-
scribed in our previous publication. The available data, especially the similar behavior
in cross-comparison, imply that a human mistake may have been made in production,
such as the use of a material from another batch, despite an agreement to the opposite
with the manufacturer. The further diagrams of Figure 13 once again contain the mean
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eigenfrequency deviation values of the defect-free states, but the suspicious parts were
left out, due to reasons of visualization. In addition, the corresponding deviation values
derived after cutting or enlarging a through-hole in some parts are plotted. There is an
overlap in the case of a 1 mm defect size. Nevertheless, for the defect sizes of 1.5 mm or
larger, there is a clear separation between the good and defective conditions, indicating
that an ART defect detection based on the undamaged virtual training parts or synthetic
training data alone is achievable.
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Figure 13. Deviations of model-like predicted eigenfrequencies of machine-made connecting rods
versus their ART measured eigenfrequencies depending on part no. and quality state.

Finally, the classification models from the previous subsection were applied to the
machine-made validation parts. The three suspicious parts were classified as defective
in the majority, although they did not (yet) feature a through-hole, but rather a different
anomaly. Figure 14 presents the classification decisions for the parts in terms of the TNR
and TPR, indicating the amount of correct classifications. Thereby, the suspicious parts
were excluded, resulting in a reduced amount of 21 good parts and 13 defective parts.

When reviewing Figure 14, it must be taken into account that the percentage values
are based on a few parts only and are therefore not trustworthy from a statistical point
of view. Additionally, the defect position is not evenly distributed, because roughly half
of the defective parts feature a through-hole in the bar area. However, the results for the
good parts are poor when performing the classification based on the noiseless training
data, except for the model F, based on the eigenfrequencies alone. For example, model
F-G2 recognized even the smallest defect size perfectly, but misclassified nearly all of
the good parts. This is because the inevitable noise effects within the measurement data
are interpreted as defect impacts, which arises when the geometric data were used to
compensate for the frequency variations caused by the geometric scatter. In contrast, the
noisiest training data set led to a perfect detection of the good parts, but significantly poorer
results for the detective parts. It is obvious that the amount of training data noise controls
the classification border between the good parts and the defective ones. The most satisfying
results were achieved with the training data noise in the realistic range from −0.1% to
+0.1%. All of the good parts were classified correctly by all of the models and many of
the defects were recognized accurately. For example, model F detected the parts with
defect sizes from 2.5 mm, using the eigenfrequencies alone. In contrast, the models F-g2 or
F-G2 reached an improved defect detection from 2.0 mm or 1.5 mm in size on the basis of
additional half or full geometric data, including interactions. The results are very satisfying,
even in comparison with the results achieved on the synthetic validation data.
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Figure 14. Overview of the classification results for machine-made connecting rods being either
undamaged or featuring a defect anywhere in the part with a size between 1 mm and 3 mm, based
on various classification models derived from training datasets with different noise levels.

4. Discussion

The demonstration of our defect detection strategy, using synthetic ART training data
based on simulation techniques, led to very satisfying results. For the presented application
scenario aiming to detect a through-hole defect within two dozen machine-made parts by
ART, a detection limit between 1.5 mm and 2.5 mm was achieved. The results depend on
the implemented classification model predictor variables. In addition, three parts with
an unexpected and systematical behavior, most likely caused by an unknown structural
anomaly, were rejected. This also indicates a strong classification performance.

A model part type with a parameterizable geometry, a well-finished surface, and a
homogeneous material was examined. It was possible to control and to preset these and
other application features, such as the geometric scatter or the defect type. As is typical
for research works, we had extensive methods as well as plenty of time and equipment.
This is all the more challenging for a series application, as complicated geometries, difficult
material structures, or rough surface textures can occur. The time and methods are also
limited in practice. The application of this work to a series application requires, of course, a
part and a defect type of interest both being suitable for an application of ART. The derived
findings are, moreover, particularly useful if significant variations in the tolerable parts’
eigenfrequencies occur. Thereby, the eigenfrequency variations can be caused by geometry
or material. There is also a minimal requirement for a series-integrated ART rig, as well
as having a simulation tool for the generation of synthetic ART training data. It is noted
that the general idea of our strategy may be suitable for any ART sorting tasks, besides
structural defect detection. This covers applications regarding potential material mix-ups,
the identification of invalid geometry shapes, or the detection of microstructural anomalies.
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Our main approach to separate between the good parts and the defective ones is
based on a classification model trained with synthetic data, covering both the good and the
defective parts. This can allow a classification using eigenfrequencies alone. Additional
geometric or material a priori information about each specific part may help to improve
the classification power, but this is optional and even isolated information about the part
structure may add extra value. However, the application of the simulation-based ART
training data is not straightforward for real series parts. The synthetic training data have to
be representative. This means that they have to cover tolerable and random part variations
in geometry or materials, as well as possible defect types or other unacceptable structural
conditions, in a realistic manner. This is challenging towards a simulation modeling from
a physical view, especially regarding the modeling of real defects. For example, cracks
may not only cause a local stiffness reduction, but also result in nonlinear effects. The real
defects may also be complicated in their shape and more than one defect per part can occur.
We assumed only variations in geometry in this study, but the material properties can also
vary from part to part. In this case, the variable material properties must also be considered
during the data generation procedure. Moreover, the part-to-part variations or the defect
specifications appearing within a series production, including all of the relevant probability
distributions, need to be quantitatively known. This is connected with many experimental
analyses, if the information is not already known. Since the simulated data show inevitable
offsets to corresponding measurements, for example, due to idealized and systematically
erroneous material properties, a method for making the simulation data valid is also
needed. Within this work, this was addressed with correction factors derived from five
machine-made reference parts or from a comparative analysis of the extensive simulation
and measurement data derived from them, respectively. Although one single reference
part is sufficient in principle to access the systematic deviations from the simulation to the
measurement world, more parts may lead to more reliable results. Most recently, further
extensively characterized machine-made parts enabled the validation of an ART sorting
model derived from synthetic data, before applying it to a series process. However, the
required characterizations are connected with a significant workload and a need for suitable
experimental technology. If additional a priori information, such as geometric data, should
be included in a series quality evaluation, this will also require integrated measurement
techniques. Thereby, it must be ensured that all of the measurement data associated with a
specific part are correctly merged, which can be a major challenge in a production line.

Another important issue is drifting component structures, for example, due to tool
abrasion or material batch influences, which occur in a series production. This may be
solved either with adaption steps from time to time, for example, with correction factors
that are specific for each material batch. Alternatively, training data and sorting algorithms
that cover wide structural part variations, including systematic variations in the material
properties, could be designed. However, these points are a general challenge for ART, and
not particular to the use of synthetic trading data. The same holds true for the temperature
effects or production-specific perturbations.

We have also carried out an analysis showing that an ART defect detection can be
implemented, based on synthetic training data that comprise good part conditions alone.
The idea is to predict the eigenfrequencies of a part from its structural data with a model
derived from synthetic training data. The test decision is subsequently made by an eval-
uation of the frequency predictions versus the measured ART data. The disadvantage is
that a powerful prediction algorithm is required, as well as the full specific data about the
structural parameters varying from part to part. This may be hard to achieve in practice,
or even impossible due to the limited data availability. This is especially the case if not
only a geometric characterization, but also a reliable analysis with regard to a complicated
material variations from part to part is mandatory. Even if the materials were constant
within a batch and if only large geometric scatter occurred, the question arises whether
the geometry could be captured completely with sufficient quality during a production
process. A high-performance surface scanning system would be imaginable to completely
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acquire non-parametric shapes. Unfortunately, this may be very time-consuming, making
it unachievable within a high-capacity series production. In addition, there are likely other
limitations that prevent a complete geometric characterization, such as a rough surface
finish. Although the approach may ultimately be limited to special cases, it is connected to
advantages. On the one hand, the required training data amount is reduced, because only
the good training parts are involved. No complicated defect modeling, as addressed above,
is necessary. On the other hand, the approach assumes no explicit defect training and is
therefore universal with respect to any type of structural defect or anomaly.

Despite all of the challenges, synthetic ART training data entail many benefits. Batch
effects or constructive component changes are quite easy to adapt to the simulation data and
no completely repeated training data collection is needed. Although setting up the synthetic
data requires knowledge and effort too, it may be less expensive and more flexible compared
to the conventional experimental procedure. Furthermore, the simulation-based approach
allows for the production of much larger training datasets, covering many thousands of
parts. This may enable an ART application where too few experimental training data
are available. Additionally, a large training datasets may enable the derivation of high-
performance defect detection or sorting algorithms, based on artificial intelligence (AI) or
machine learning methods, which require a very large data basis. Additional simulation
data also allow the theoretical estimation of application-specific ART detection limits.

In conclusion, we would like to state that using synthetic ART training data is very
promising, although the full potential has not yet been exhausted. Within the study, a
fictitious application scenario was addressed. Although the real measurement data from
the machine-made parts were used, the demonstration focused on a simple defect type,
only one defect per part was considered, and the material was assumed to be constant.
Transferring the approach to a real series application is still an unsolved task that could
not be achieved during the study. However, the demonstration of the model-like problem
is an important intermediate step. A series transfer requires further research due to the
challenges in terms of a realistic simulation modeling of the component structures, and
complicated or multiple defects. Challenges, such as the availability and merging of
measurement data from various measurement systems in a series production, production-
specific perturbations, or batch effects, must be considered. In the long-term, a vision
could be aimed at, in which all of the data and information accumulated during a whole
production process are mapped by means of a digital part twin. Such a twin could serve
for an improved part-structure modeling during subsequent simulations and could finally
lead to more realistic synthetic ART training data. The twin data could also be evaluated in
a multimodal way to optimize the sorting power of an ART algorithm. In addition, we see
great potential in terms of modern sorting algorithms in general.

AI or machine learning methods may permit further progress to a reliable ART. Such
algorithms may be useful for the isolated evaluation of the acoustic data, as well as for
the multimodal data analysis, including structural or process information. For studies
on this, the extensive dataset generated during this work would be an excellent starting
point. Furthermore, the AI methods may also be useful in the context of generating
synthetic training data, for example, for the modeling of component variations or defect
impacts. Approaches, such as GAN (Generative Adversarial Networks) [38–40], may be
useful. A specific implementation of such a method is surely not straightforward and we
did not research the possibilities and limitations regarding the special requirements for
ART. Possibly, such methods can partly replace FEM as a method for data generation or
enhance the FEM datasets to a much larger sample size. The very accurate adaption of
simulated data to the measurements may be another aspect that could be addressed with
such algorithms.
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5. Conclusions

This article addresses a simulation-based generation of synthetic ART training data
for the separation of undamaged and defective parts, as well as the subsequent training
procedure leading to an ART sorting algorithm. For the development and demonstration,
a model-like part type and an application scenario were defined. Tolerable geometric
part-to-part variations, constant material properties as far as possible, and an optional
through-hole defect at a random position were taken into account. The application aim was
to classify whether there is a defect in any of altogether two dozen machine-made parts by
means of the measured eigenfrequencies of those parts.

The implementation started with FEM eigenfrequency simulations of the required
extensive synthetic data, covering many good virtual training parts and defective ones,
both featuring geometric scatter. These data were enhanced analytically to a wide range of
defect sizes. They were then adapted to measured data via correction factors derived from
some additional machine-made reference parts. Using the resulting synthetic ART training
data, classification models were created. These models were applied to the measurement
data of two dozen machine-made validation parts, some of them featuring a through hole
enlarged stepwise. Thereby, a model using the eigenfrequencies alone led to a perfect
separation of the undamaged parts and the parts with a through-hole from 2.5 mm in size.
More complicated models, involving the half or the full geometric part data in the sense
of additional a priori information, showed a defect detection limit of 2 mm or 1.5 mm,
respectively. In addition, we described a second defect detection strategy based on the
undamaged training parts alone, but requiring the full geometric data of an object. The
positive study results indicate that the simulation-based ART training data generation offers
extensive potential to overcome the limitations associated with a conventional experimental
training data approach. Thus, the developments can add significant value to ART and its
application on series parts.

Further unsolved research tasks cover a transfer of our strategy to a real ART series
application, which is accompanied by practice-relevant challenges. Digital part twins
representing comprehensive data from an entire series production may thereby be the basis
of generating synthetic ART training data. In addition, the collected twin data may be
used directly for a powerful multimodal classification by evaluating the eigenfrequencies
together with further part or process data. We see a great opportunity through AI or
machine-learning methods for ART. Moreover, the data from this study provide an excellent
basis for advanced AI model-building approaches, which require large training data.
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