
A Comprehensive Taxonomy of Artificial 
Intelligence Agents: From Foundational 
Architectures to Modern Deployments
This document provides a systematic classification of artificial intelligence agents, exploring their core principles, 
architectures, implementation approaches, and societal implications. From simple reflex systems to complex 
agentic networks, this taxonomy offers researchers, developers, and decision-makers a comprehensive 
framework for understanding the diverse landscape of AI agents.

By: Rick Spair



Foundational Principles of AI Agents
The concept of an Artificial Intelligence (AI) agent lies at the heart of modern AI development, representing a shift 
from passive computational tools to active, goal-oriented entities. Understanding the classification of these 
agents requires first establishing a firm grasp of their fundamental principles, core characteristics, and underlying 
architectural components. These foundational elements provide the necessary vocabulary and conceptual 
framework to navigate the complex and varied landscape of agent types.

AI Agent

Autonomy

Rationality

Perception-Action

Goal-Orientation

AI agents represent a paradigm shift in how we conceptualize computational systems. Rather than viewing 
software as merely responding to commands, the agent framework positions these systems as autonomous 
entities that perceive their environment, reason about it, and take actions to achieve specific objectives. This 
conceptual model has proven remarkably versatile, applying equally well to physical robots navigating the real 
world and to purely digital entities operating within software environments.

The agent paradigm provides several advantages over traditional software design approaches. By clearly 
separating perception, reasoning, and action, it enables more modular development and clearer reasoning about 
complex system behaviors. It also establishes a common vocabulary that bridges multiple disciplines, from 
computer science and robotics to cognitive science and economics.



Defining the Agent: Core Characteristics
An AI agent is formally defined as a computational entity that perceives its environment through sensors and acts 
upon that environment through actuators. This simple but powerful definition establishes a clear boundary: an 
agent is not merely a program that processes data, but a system that actively engages with its surroundings to 
achieve a defined purpose. This engagement is governed by several core characteristics that are essential to its 
identity.

Autonomy

The most crucial characteristic is autonomy. An agent 
possesses the capacity to operate independently, 
making its own decisions and initiating actions without 
the need for continuous, direct human intervention or 
control. This autonomy is not random; it is directed 
toward pursuing specific objectives laid out by its 
human designers or other systems.

Rationality

This goal-directed behavior is underpinned by the 
principle of rationality. In the context of AI, a rational 
agent is one that consistently chooses actions 
expected to maximize its performance measure, given 
the sequence of percepts it has observed and any 
built-in knowledge it possesses. It strives to produce 
the best possible outcome based on its available 
information, making it a rational decision-maker rather 
than a pre-programmed automaton.

Goal-Orientation

Finally, agents are inherently goal-oriented. Their 
actions are not aimless but are deliberately calculated 
to achieve specific, predetermined goals. Whether the 
goal is as simple as maintaining a room's temperature 
or as complex as negotiating a multi-party business 
contract, the agent's entire operational logic is 
structured around the fulfillment of that objective.

These core characteristics distinguish AI agents from conventional software programs. While traditional software 
follows a predetermined sequence of instructions in response to user inputs, an agent continuously perceives its 
environment, evaluates different possible actions, and selects those most likely to advance its goals. This 
paradigm shift enables greater flexibility and adaptability in complex, dynamic environments where the optimal 
course of action cannot be entirely predetermined by programmers.



The Perception-Action Cycle: The 
Fundamental Operational Loop
The behavior of every AI agent, regardless of its complexity, is governed by a fundamental operational loop known 
as the perception-action cycle. This continuous, cyclical process dictates how an agent interacts with its 
environment and is composed of distinct stages:

This cycle is not merely a theoretical construct but forms the practical framework for implementing AI agents 
across diverse domains. The perception-action cycle provides a unifying architecture that applies equally well to a 
robot navigating a physical space, a chatbot engaging in conversation, or a financial algorithm trading in markets. 
While the specific implementation of each stage varies dramatically based on the agent's purpose and 
environment, the fundamental cycle remains consistent, serving as the operational backbone for all agent-based 
systems.

Perceive

The cycle begins with the agent 
gathering information4or 

percepts4from its environment. 
For physical agents, this is 

accomplished through physical 
sensors like cameras, 

microphones, or lidar. For 
software agents, perception 
occurs through digital inputs 
such as API responses, user-

provided text, database queries, 
or file uploads. This stage is the 

agent's sensory interface with its 
world.

Reason/Plan

Once percepts are collected, they 
are passed to the agent's core 
processing unit. Here, the agent 
analyzes the new information in 
the context of its current goals 
and its internal knowledge or 
model of the world. This is the 
cognitive hub of the agent, where 
it makes decisions, formulates 
plans, and determines the most 
rational course of action.

Act

Based on the outcome of its 
reasoning, the agent executes a 
chosen action through its 
actuators. For a physical agent, 
an actuator might be a motor that 
turns a wheel or a robotic arm 
that grasps an object. For a 
software agent, an actuator is a 
digital command that affects its 
environment, such as sending an 
email, writing data to a database, 
calling another API, or displaying 
a message to a user.

Learn

In more sophisticated agents, the 
cycle includes a fourth stage. 

After acting, the agent observes 
the outcome and the resulting 

change in the environment. This 
feedback is used to update its 
internal knowledge, refine its 
world model, and improve its 

future decision-making 
performance. This learning 

capability is what allows agents 
to adapt and evolve over time.



Key Components of Agent Architecture
The functional capabilities of an AI agent are realized through a set of distinct but interconnected architectural 
modules. While the specific implementation can vary significantly, a generalized agent architecture typically 
consists of the following components:

Architecture and Agent Program

At the highest level, an agent is the synthesis of its Architecture4the physical or virtual platform on which it 
operates (e.g., a robot's body, a server)4and its Agent Program, the software that implements the core 
decision-making logic.

Perception/Profiling Module

This module is responsible for interfacing with the environment's sensors or data inputs. It collects and 
pre-processes raw data into a format that the reasoning module can understand. In some contexts, this is 
also called a profiling module, as it helps the agent understand its role and the context of the data it 
receives.

Memory/Knowledge Module

This is the agent's internal repository of information. It stores the agent's current state, its history of past 
experiences (percept sequences), and its knowledge about the world, which can be a static set of rules or 
a dynamic, learned model. The presence and sophistication of this module are primary differentiators 
between simple and complex agents.

Planning/Reasoning Module

This is the "brain" of the agent, its core decision-making engine. It takes the processed percepts and the 
information from the memory module to determine the optimal action to take in pursuit of its goals.

Action Module

This module takes the decision from the planning module and translates it into a command for the agent's 
actuators, thereby executing the action in the environment.

The sophistication and implementation of these components vary greatly across different agent types. Simple 
reflex agents may have a rudimentary knowledge module with just a few condition-action rules, while advanced 
learning agents might employ complex neural networks for reasoning and extensive databases for knowledge 
storage. The specific design choices for each module directly influence the agent's capabilities, efficiency, and 
suitability for particular tasks.

This modular architecture provides several advantages. It allows for incremental development and improvement of 
individual components, enables clearer reasoning about the agent's behavior, and facilitates the integration of 
new capabilities. For instance, the same perception and action modules might be maintained while upgrading the 
reasoning component with more advanced algorithms, allowing the agent to tackle more complex problems 
without a complete redesign.



The LLM Revolution in Agent Reasoning

The foundational principles of agenthood4
perception, action, rationality4have been central to AI 
research for decades. The recent, dramatic surge in 
agent capabilities can be attributed not to a change in 
this fundamental structure, but to a revolutionary 
upgrade in one of its core components. The classical 
reasoning module, once built on symbolic logic or 
simpler statistical methods, is now frequently powered 
by a Large Language Model (LLM).

LLMs provide an unprecedented ability to understand 
natural language, perform complex reasoning, and 
generate sophisticated plans. By embedding an LLM 
as the core reasoning engine, developers have 
effectively put a far more powerful engine into a well-
established and theoretically sound architectural 
chassis. This explains the quantum leap in 
performance and why agents that were once 
theoretical constructs are now becoming practical, 
powerful tools.

The integration of LLMs into the agent framework 
represents a significant paradigm shift in AI 
development. Where traditional agents required 
explicit programming for each reasoning task, LLM-
powered agents can leverage their pre-trained 
knowledge and reasoning capabilities to handle a 
much broader range of scenarios without task-
specific engineering. This dramatically reduces the 
development effort required to create capable agents 
and opens up new possibilities for more generalized, 
flexible AI systems.

The LLM revolution has profoundly impacted every aspect of agent design. The perception module can now 
process and understand complex, unstructured natural language inputs. The knowledge module benefits from the 
vast information encoded in the LLM's parameters during pre-training. The planning module can generate 
sophisticated, multi-step plans expressed in natural language. And the action module can translate these plans 
into precise API calls or user-friendly explanations.

However, this integration also introduces new challenges. LLMs can hallucinate information, making reliability a 
concern. Their reasoning can be opaque, raising questions about explainability and accountability. And their 
general-purpose nature requires careful alignment with specific task objectives. Addressing these challenges 
remains an active area of research as the field continues to evolve and mature.



The Classical Taxonomy: Classification by 
Internal Architecture and Intelligence
The foundational classification scheme for AI agents, originating from seminal computer science literature, 
categorizes them based on the sophistication of their internal architecture and decision-making intelligence. This 
taxonomy forms a clear hierarchy, starting from the simplest reactive machines and progressing to highly adaptive 
learning systems. Each level builds upon the capabilities of the one before it, providing a crucial framework for 
understanding the internal logic that drives an agent's behavior.

Simple Reflex 
Agent

Model-Based 
Agent

Goal-Based 
Agent

Utility-Based 
Agent

Learning Agent

This classical taxonomy has endured for decades because it captures fundamental distinctions in how agents 
process information and make decisions. It provides both a theoretical framework for understanding agent 
behavior and a practical guide for designing agents with appropriate capabilities for specific tasks. The taxonomy 
represents a progression of increasing sophistication, with each level adding new capabilities while retaining 
those of the previous levels.

While this classification scheme originated in an era before the current advances in machine learning and LLMs, it 
remains remarkably relevant. Modern agents, regardless of their implementation technologies, can still be 
understood through this lens. Even the most sophisticated contemporary systems can be analyzed in terms of 
whether they maintain internal state, pursue explicit goals, optimize utility functions, or learn from experience.



Simple Reflex Agents

Definition

Simple reflex agents are the most basic form of 
intelligent agent. Their decision-making is based 
exclusively on the current percept, with no 
consideration for the history of past events or future 
consequences.

Characteristics

These agents operate on a collection of simple 
"condition-action" or "if-then" rules. For every 
perceivable state of the environment, there is a 
predefined action. They possess no internal memory 
of past states and no model of how the world 
functions. This simplicity makes them computationally 
inexpensive and extremely fast. However, their 
effectiveness is limited to environments that are fully 
observable, where the current percept contains all the 
information needed to make a rational decision. In 
partially observable or dynamic environments, their 
lack of memory can lead to suboptimal behavior or 
cause them to become trapped in infinite loops.

Thermostat

A simple thermostat that activates the heating 
system when the temperature sensor reading 
falls below a predefined threshold.

Email Spam Filter

Basic email spam filters that automatically 
move a message to the junk folder if it 
contains specific trigger words or phrases.

Early Autocorrect

Early autocorrect systems that used a static 
dictionary to suggest a replacement for a 
misspelled word based only on that word's 
characters.

The architecture of a simple reflex agent follows a straightforward pattern. The agent observes the current state 
of the environment through its sensors, matches this observation against its condition-action rules, and triggers 
the corresponding action. This process is entirely memoryless4the agent's behavior at any moment depends 
solely on the current input, with no influence from past experiences.

Despite their limitations, simple reflex agents remain relevant in many applications where the environment is 
sufficiently simple and the required behaviors are straightforward. Their computational efficiency makes them 
ideal for scenarios where response time is critical, and their deterministic nature ensures predictable behavior in 
well-defined situations. In industrial control systems, for instance, simple reflex agents continue to play vital roles 
in regulating processes that require immediate, consistent responses to specific conditions.



Model-Based Reflex Agents

Definition

Model-based reflex agents represent a significant 
step up in intelligence. They overcome the limitations 
of simple reflex agents by maintaining an internal 
model of the world. This model is an internal 
representation of the environment's state, allowing the 
agent to handle situations where the environment is 
only partially observable.

Characteristics

The key innovation in a model-based agent is its 
memory. It stores an internal state that is continuously 
updated based on the stream of percepts it receives. 
This internal state, which depends on the percept 
history, allows the agent to keep track of aspects of 
the world it cannot currently see, such as the location 
of an object that has moved out of its line of sight. The 
agent's decision-making is then based on a 
combination of the current percept and its internal 
model, still often guided by a set of condition-action 
rules. While more adaptable and robust than their 
simpler counterparts, they are still fundamentally 
reactive and limited in their ability to plan for the long 
term.

Examples

A robotic vacuum cleaner that builds and maintains 
a map of a room in its memory. This internal model 
allows it to know which areas have already been 
cleaned and to navigate around obstacles more 
efficiently.

A self-driving car's system for tracking other 
vehicles. Even when another car is temporarily 
occluded by a building, the agent's internal model 
maintains an estimate of its position and velocity.

Modern smartphone keyboards that use a 
language model to predict the next word. The 
language model is an internal model of language 
structure, making the system far more 
sophisticated than a simple reflex dictionary 
lookup.

The architectural advancement that defines model-based agents is the addition of an internal state module. This 
module maintains a representation of the unobservable aspects of the environment, which is updated based on 
both the current percept and information about how the environment evolves. For example, if a robot sees a ball 
rolling behind a couch, its internal state will represent the ball's continued existence and approximate position 
even though it's no longer directly observable.

This ability to maintain an internal model of the world significantly expands the range of environments in which the 
agent can operate effectively. Unlike simple reflex agents, model-based agents can function in partially 
observable environments where critical information may be temporarily unavailable. This makes them suitable for 
more complex real-world applications where complete information is rarely available at any single moment.



Goal-Based Agents

Definition

Goal-based agents introduce a new level of proactive 
behavior. Instead of just reacting to the environment, 
they make decisions based on explicit goals they are 
trying to achieve. Their actions are chosen by 
considering how they will lead to future states that are 
closer to the desired goal.

Characteristics

The defining feature of goal-based agents is their use 
of search and planning. Given a goal, they can explore 
various sequences of actions to find a path that leads 
to the goal state. This ability to "think ahead" makes 
them far more flexible and intelligent than reflex-
based agents. They can navigate complex 
environments and adapt their plans if circumstances 
change, as they are not tied to a single, pre-
programmed response for each situation. They are 
designed to always select the most efficient sequence 
of actions to reach their objective.

Examples

A GPS navigation application that calculates the 
most efficient route to a specified destination. It 
searches through possible road segments to find a 
sequence that minimizes travel time or distance.

A logistics agent tasked with optimizing delivery 
routes for a fleet of trucks. It plans the sequence of 
stops to fulfill all orders while minimizing fuel 
consumption.

A non-player character (NPC) in a strategy game 
that plans a series of moves to capture an 
opponent's piece or achieve a strategic objective.

Architecturally, goal-based agents build upon model-based agents by adding a goal formulation component and a 
planning system. The goal formulation component defines the desired outcome that the agent is trying to achieve. 
The planning system then uses the agent's world model to simulate the effects of different action sequences and 
identify those that will lead to the goal state.

This planning capability represents a fundamental shift in the agent's behavior. While reflex agents (both simple 
and model-based) are fundamentally reactive4responding to what is happening now4goal-based agents are 
proactive. They actively work toward desired future states. This shift enables them to handle much more complex 
tasks and environments, as they can reason about how to overcome obstacles and reach objectives that may 
require multiple, coordinated steps.

The introduction of goals also makes these agents more intuitive to work with from a human perspective. Rather 
than programming specific behaviors for every situation, humans can simply specify what outcome they want the 
agent to achieve, and the agent can determine how to accomplish it. This goal-oriented interface aligns well with 
how humans typically delegate tasks and has made goal-based agents particularly valuable in human-AI 
collaboration scenarios.



Utility-Based Agents

Definition

Utility-based agents are a refinement of goal-based 
agents. They are used when achieving a goal is not 
sufficient, and the quality of the outcome matters. 
These agents employ a utility function that assigns a 
numerical value of "happiness" or "desirability" to 
different states of the world, allowing them to make 
optimal choices among various paths to a goal.

Characteristics

A goal-based agent might see all paths to a goal as 
equally good. A utility-based agent can differentiate 
between them. It can handle conflicting goals and 
make trade-offs by selecting the action that leads to 
the state with the highest expected utility. For 
example, it can balance objectives like speed, safety, 
and cost. This makes them particularly well-suited for 
complex, real-world problems where there is no single 
"correct" solution, but rather a spectrum of better and 
worse outcomes.

Speed

Safety

Cost

Comfort

Efficiency

Examples

An autonomous vehicle navigating traffic. It 
doesn't just have the goal of reaching the 
destination; it must constantly make trade-offs that 
maximize a utility function combining factors like 
passenger comfort, safety margins, speed, and 
fuel efficiency.

A financial portfolio management agent that 
constructs an investment portfolio. Its utility 
function balances the competing factors of 
maximizing expected returns while minimizing 
financial risk and maintaining diversification.

A dynamic pricing agent for an e-commerce site or 
ride-sharing service. It adjusts prices not just to 
make a sale (the goal), but to maximize overall 
revenue or profit (the utility) by considering 
demand, competitor pricing, and inventory levels.

Architecturally, utility-based agents extend goal-based agents by replacing the binary goal (achieved or not 
achieved) with a more nuanced utility function. This function maps each possible state of the world to a numerical 
value representing its desirability. The planning system then aims to find action sequences that maximize 
expected utility rather than simply reaching a goal state.

This shift from goals to utility enables much more sophisticated decision-making in complex environments. 
Consider an autonomous vehicle: a goal-based implementation might simply aim to reach the destination, but a 
utility-based implementation can balance multiple factors4minimizing travel time, maximizing safety, optimizing 
passenger comfort, and reducing energy consumption. When these objectives conflict, as they inevitably do in 
real-world scenarios, the utility function provides a principled way to make trade-offs and select the best 
compromise.

Utility-based agents represent a significant step toward more human-like decision-making. Humans rarely pursue 
goals in isolation; we constantly balance multiple objectives and make nuanced trade-offs. By incorporating utility 
functions, these agents can model this aspect of human cognition and make decisions that better align with 
human preferences and values.



Learning Agents
Learning agents represent the pinnacle of the classical agent taxonomy, incorporating the ability to improve their 
performance over time through experience. Unlike the previous agent types, which rely solely on their initial 
programming, learning agents can adapt their internal models and decision-making processes based on feedback 
from their actions.

1

Learning Element

This is the core component responsible for making 
improvements to the agent's knowledge base and 
decision logic. It processes feedback and 
experiences to update the agent's internal models, 
decision rules, or utility functions.

2

Performance Element

This is the agent itself, which selects and executes 
external actions based on its current knowledge. It 
encompasses the perception, reasoning, and 
action modules of the standard agent architecture.

3

Critic

This component evaluates the agent's actions by 
comparing them to an external performance 
standard and provides feedback to the learning 
element. It determines how well the agent is 
performing and identifies areas for improvement.

4

Problem Generator

This component encourages exploration by 
suggesting novel actions that can lead to new and 
informative experiences, helping the agent to learn 
more effectively. It prevents the agent from 
becoming stuck in local optima by promoting the 
discovery of potentially better strategies.

Learning agents employ a range of machine learning techniques to achieve this adaptation. Supervised learning 
allows them to learn from labeled examples, such as human demonstrations or historical data with known 
outcomes. Unsupervised learning enables them to discover patterns and structure in unlabeled data, often 
revealing insights that were not explicitly programmed. Reinforcement learning, perhaps the most powerful 
approach for agents, allows them to learn optimal behaviors through trial and error, guided by rewards and 
penalties that signal the desirability of different outcomes.

Examples

An e-commerce recommendation engine that observes a user's browsing and purchasing history to refine its 
product suggestions, becoming more accurate over time.

An advanced customer service chatbot that analyzes the success of its past conversations to improve the 
relevance and accuracy of its future responses.

A game-playing AI like DeepMind's AlphaGo, which used reinforcement learning by playing millions of games 
against itself to discover strategies far beyond human comprehension.

The learning capability represents a fundamental shift in the agent paradigm. Rather than relying solely on the 
knowledge and algorithms encoded by their creators, these agents can discover new patterns, develop novel 
strategies, and adapt to changing environments on their own. This adaptability is crucial for operating in complex, 
dynamic real-world environments where pre-programmed responses quickly become inadequate.



The Hierarchical Nature of the Classical 
Taxonomy
While often presented as a list of distinct categories, the classical taxonomy is more accurately understood as a 
hierarchy of nested capabilities. A single, sophisticated modern agent is not just one of these types but often 
incorporates several of them as design patterns for its internal components.

For instance, consider a modern sales lead prioritization agent. At the highest level, its purpose is to improve its 
prioritization accuracy over time by observing which leads convert into sales, making it a Learning Agent. 
However, in its moment-to-moment operation of deciding which specific lead a sales representative should 
contact next, it does not have a simple binary goal. It must weigh and balance numerous factors4lead score, 
company size, website activity, engagement history4to find the optimal choice. This is an optimization problem, 
meaning its core decision-making logic is Utility-Based, as it seeks to maximize the "utility" or probability of a 
successful outcome.

This layered understanding reveals that the classical types are not merely historical artifacts but are the essential 
architectural building blocks from which today's most complex and capable agents are constructed. A 
sophisticated modern agent might maintain an internal model of the world (Model-Based), use this model to plan 
paths to specific goals (Goal-Based), optimize among multiple competing objectives using utility functions (Utility-
Based), and improve its performance over time through experience (Learning).

The hierarchical nature of this taxonomy provides a powerful framework for analyzing and designing complex 
agents. By understanding which capabilities from each level are required for a particular application, developers 
can create more effective agent architectures that incorporate just the right level of sophistication for the task at 
hand.



Classical Agent Types: A Comparative 
Overview

Agent Type Core Principle Memory Planning/Rea
soning

Environment 
Suitability

Classic 
Example

Simple Reflex 
Agent

Acts on 
current 
percept only

None Condition-
Action Rules

Fully 
Observable, 
Static

Thermostat

Model-Based 
Reflex Agent

Acts on 
internal world 
model

Internal state 
of the world

Rules on 
internal state

Partially 
Observable

Robot Vacuum

Goal-Based 
Agent

Acts to 
achieve 
explicit goals

Internal state 
+ Goals

Search and 
Planning

Complex, 
Dynamic

GPS 
Navigation

Utility-Based 
Agent

Acts to 
maximize 
desirability

Internal state 
+ Utility 
Function

Utility 
Maximization

Conflicting 
Goals, Trade-
offs

Autonomous 
Vehicle

Learning 
Agent

Acts and 
improves over 
time

All of the 
above + 
Learning 
Mechanisms

ML 
(Supervised, 
Unsupervised, 
RL)

Unknown, 
Evolving

Recommendat
ion Engine

This comparative overview illustrates the progressive increase in capability and complexity across the agent 
taxonomy. Each agent type builds upon the previous ones, adding new features that enable it to handle more 
complex environments and tasks. The progression from simple reflex to learning agents represents a path of 
increasing sophistication, adaptability, and autonomy.

The simplest agents operate effectively only in fully observable, static environments where the current percept 
contains all necessary information. As we move up the hierarchy, agents gain the ability to handle partial 
observability (through internal models), complex environments (through planning), competing objectives (through 
utility functions), and even unknown or changing environments (through learning).

This framework provides a systematic way to analyze the requirements of a particular application and select the 
appropriate agent architecture. For simple, well-defined tasks in stable environments, a reflex-based approach 
may be sufficient and more efficient. For complex tasks in dynamic environments, higher-level capabilities 
become necessary, though they come with increased computational requirements and design complexity.



The Modern Paradigm: Agentic AI and Multi-
Agent Systems

The proliferation of powerful Large Language Models (LLMs) has catalyzed a paradigm shift in the field of AI 
agents. The focus is rapidly moving beyond the development of single, isolated agents toward the creation of 
complex, interconnected ecosystems of intelligent entities. This modern paradigm is best understood through the 
distinction between "AI Agents" as individual components and "Agentic AI" as a systemic framework, a concept 
deeply rooted in the academic theory of Multi-Agent Systems (MAS).

This paradigm shift represents a fundamental reconceptualization of how AI systems are designed and deployed. 
Rather than creating monolithic systems that attempt to handle all aspects of a complex task, the focus has shifted 
to developing specialized, modular agents that can work together in coordinated ensembles. This approach 
mirrors successful human organizational structures, where complex problems are addressed by teams of 
specialists rather than by individuals with universal expertise.

The emergence of LLMs has been a critical enabling factor for this transition. These models provide the cognitive 
foundation for individual agents, equipping them with sophisticated language understanding, reasoning 
capabilities, and domain knowledge. When combined with specialized tools, memory systems, and coordination 
protocols, they enable the creation of agent ecosystems with unprecedented capabilities for tackling complex, 
open-ended tasks.

This section examines the theoretical foundations and practical implementations of this new paradigm, exploring 
the distinction between individual AI agents and systemic Agentic AI, as well as the principles of Multi-Agent 
Systems that underpin these developments.



The AI Agent vs. Agentic AI Distinction
In contemporary discourse, a crucial conceptual distinction has emerged between the terms "AI Agent" and 
"Agentic AI," which separates the component from the system.

AI Agents (The Building Blocks)

An AI Agent, in the modern sense, is typically a single, 
modular system designed to perform a specific, often 
narrowly defined, task. While frequently powered by 
an LLM as its reasoning engine, it advances beyond 
simple generative AI by integrating a suite of tools 
(e.g., API callers, code interpreters), a form of memory 
(e.g., short-term context buffers), and explicit 
reasoning frameworks (e.g., ReAct loops). This 
transforms the underlying LLM from a passive content 
generator into an interactive problem-solver. These 
agents are often described in functional terms as 
"task executors" or akin to digital "employees 
awaiting instructions".

Agentic AI (The System)

Agentic AI represents a more advanced and holistic 
paradigm. It refers to a system composed of multiple, 
specialized AI agents that collaborate, communicate, 
and share knowledge to achieve complex, high-level 
objectives that would be unattainable for any single 
agent. Agentic AI is the broader architectural 
framework, while AI agents are the functional 
components operating within it. This paradigm is 
characterized by orchestrated autonomy, where a 
higher-level system coordinates the actions of 
subordinate agents; dynamic task decomposition, 
where complex problems are broken down and 
distributed among agents; and the potential for 
emergent behavior arising from the interactions of 
many agents. In the organizational analogy, if an AI 
Agent is an employee, the Agentic AI system is the 
Chief Operating Officer (COO) that directs the entire 
team.

AI Agents

AI Agents Agentic AI

Single 
purpose

System of 
agents

Shared 
Feature

s

LLM 
reasonin

g

This distinction is not merely terminological but reflects a fundamental shift in how we conceptualize and 
implement AI systems. AI Agents represent a more tactical approach, focusing on specific, well-defined tasks with 
clear boundaries. Agentic AI represents a strategic approach, addressing complex, open-ended challenges 
through coordinated systems of specialized components. This shift parallels developments in software 
engineering, where monolithic applications have given way to microservices architectures that offer greater 
flexibility, scalability, and resilience.



Key Differentiators Between AI Agents and 
Agentic AI
The key differentiators that mark the transition from a single AI Agent to an Agentic AI system are:

Architecture

Agentic AI necessitates an 
orchestration layer or a meta-
agent to manage workflows and 
inter-agent communication 
protocols, which are absent in a 
single agent. This orchestration 
layer is responsible for 
coordinating the activities of 
individual agents, ensuring they 
work together coherently 
toward common objectives, and 
handling the routing of 
information between them.

Autonomy

Agentic AI exhibits a higher level 
of strategic autonomy, capable 
of setting its own sub-goals to 
achieve a broad mandate. In 
contrast, an AI Agent possesses 
tactical autonomy, operating 
within the confines of a more 
narrowly defined task. This 
distinction in autonomy is 
fundamental4individual agents 
implement predefined 
workflows, while Agentic AI 
systems can design new 
workflows on the fly to address 
novel challenges.

Scope and Complexity

Agentic AI is designed to handle 
complex, multi-step, and often 
open-ended workflows that 
span multiple domains. AI 
Agents are typically optimized 
for specific, well-defined tasks 
within a single domain. This 
difference in scope means that 
Agentic AI can tackle problems 
that require diverse expertise 
and coordinated effort, while 
individual agents excel at depth 
within their specialized areas.

These differentiators are not binary but exist along a spectrum. As individual AI agents become more 
sophisticated, incorporating more complex reasoning, broader tool access, and richer memory systems, they 
begin to exhibit some characteristics of Agentic AI. Conversely, simple Agentic AI systems might involve just a few 
agents with limited coordination. The boundary between the two concepts is fluid and evolving as the technology 
advances.

Understanding these differentiators is crucial for organizations considering the deployment of agent-based 
systems. The choice between a single sophisticated agent or a coordinated multi-agent system depends on the 
nature of the problems being addressed, the complexity of the domain, and the desired level of autonomy and 
adaptability. For narrow, well-defined tasks, a single agent may be more efficient and easier to manage. For 
complex challenges that span multiple domains or require diverse capabilities, an Agentic AI approach is likely 
more appropriate.



Multi-Agent Systems (MAS): The Theoretical 
Foundation

The concept of Agentic AI, while new in terminology, is the practical and commercial realization of a long-standing 
field of academic research: Multi-Agent Systems (MAS). A MAS is formally defined as a system composed of 
multiple autonomous agents situated in a shared environment, which interact with one another to solve problems 
that are beyond their individual capabilities or knowledge. The principles of MAS provide the theoretical bedrock 
for understanding how Agentic AI functions.

Multi-Agent Systems research has developed a rich theoretical framework over several decades, addressing 
fundamental questions about how intelligent entities can effectively collaborate, compete, or coexist. This 
framework encompasses several key areas:

Agent Communication: How agents exchange information, negotiate, and develop shared understanding 
through standardized languages and protocols.

Coordination Mechanisms: How agents align their actions to achieve collective goals, including techniques for 
task allocation, resource sharing, and conflict resolution.

Distributed Problem Solving: How complex problems can be decomposed and distributed across multiple 
agents for more efficient processing.

Emergent Behavior: How the collective behavior of a multi-agent system can exhibit properties and 
capabilities that are not present in any individual agent.

Trust and Reputation: How agents can assess the reliability and capabilities of other agents to inform their 
interactions.

These theoretical foundations from MAS research are now being applied and extended in the development of 
commercial Agentic AI systems. The academic insights into agent communication protocols, coordination 
strategies, and emergent behavior are proving invaluable as developers work to create effective, scalable multi-
agent architectures powered by modern LLMs.



Interaction Patterns in Multi-Agent Systems
The interactions within a MAS can be categorized based on the agents' objectives:

Cooperative MAS

In this architecture, all agents 
work collaboratively toward a 
shared, common goal. They 
freely share information and 
coordinate their actions to 
maximize the collective 
outcome. A classic example is a 
team of disaster response 
drones that communicate their 
findings to collaboratively map a 
search area and locate 
survivors.

All agents share aligned 
objectives

Information is freely 
exchanged

Resources are allocated 
based on system-wide 
optimization

Agents coordinate actions to 
avoid conflicts

Competitive MAS

Here, agents have individual 
and often conflicting goals. 
They compete with one another 
for limited resources or to 
achieve a better outcome for 
themselves. Automated high-
frequency stock trading 
systems, where multiple agents 
compete to execute trades at 
the most favorable prices, are a 
prime example of this model.

Agents pursue individual 
utility maximization

Information sharing is 
strategic and limited

Resource allocation follows 
market-based principles

Game theory principles 
govern interactions

Mixed MAS

This hybrid model involves 
agents that may cooperate to 
achieve certain sub-goals while 
competing on others, reflecting 
the complexity of many real-
world scenarios.

Agents form coalitions 
around shared interests

Cooperation and competition 
coexist at different levels

Complex negotiation 
protocols manage 
interactions

Most closely mirrors human 
organizational dynamics

The viability of any MAS hinges on communication and coordination. Agents must be able to exchange 
information, negotiate, and align their actions. This is often achieved through standardized agent communication 
languages (ACLs), such as those defined by the Foundation for Intelligent Physical Agents (FIPA), and various 
coordination protocols, like auction-based mechanisms for resource allocation or consensus-based algorithms for 
joint decision-making.

These interaction patterns are not merely theoretical constructs but have direct practical implications for the 
design of Agentic AI systems. The choice of interaction model4cooperative, competitive, or mixed4profoundly 
influences the system's architecture, communication protocols, and governance mechanisms. For example, a 
cooperative system might emphasize shared memory and consensus-building protocols, while a competitive 
system might focus on secure information boundaries and market-based coordination mechanisms.



Hierarchical Agents: A Specialized MAS 
Structure
A particularly common and effective architecture for MAS is the hierarchical agent system. This structure 
organizes agents into multiple tiers, creating a command-and-control-like system.

Definition

In a hierarchical architecture, high-level "master" or 
"orchestrator" agents are responsible for strategic 
decision-making and task decomposition. They break 
down a complex, high-level goal into smaller, more 
manageable sub-tasks, which are then delegated to 
lower-level "subordinate" or "worker" agents.

Characteristics

This structure mirrors the organization of many human 
institutions, from corporations to military units. It 
provides a powerful method for managing complexity 
by enabling decision-making at appropriate levels of 
abstraction. High-level agents deal with strategic 
planning, while low-level agents focus on tactical 
execution. Information flows up the hierarchy in a 
summarized form, preventing the master agent from 
being overwhelmed with detail.

Examples

A large-scale drone delivery network where a central fleet management agent (high-level) monitors weather 
and demand to assign delivery missions to individual drone navigation agents (low-level).

An automated manufacturing system where a central production planning agent (high-level) coordinates the 
actions of numerous specialized machine control agents (low-level) on the factory floor.

Hierarchical agent systems offer several advantages in complex environments. They allow for effective division of 
labor, with different agents specializing in different aspects of the overall task. They provide a natural way to 
manage complexity through abstraction, with higher-level agents handling broad strategy while lower-level agents 
focus on specific details. And they enable efficient information flow, with data being aggregated and filtered as it 
moves up the hierarchy.

This architecture has proven particularly effective for modern LLM-based agent systems. High-level orchestrator 
agents can leverage the broad knowledge and reasoning capabilities of LLMs to handle strategic planning and 
coordination, while specialized worker agents can apply more focused expertise to specific sub-tasks. This 
combination of breadth and depth enables these systems to tackle complex problems that would be beyond the 
capabilities of any single agent.



The Convergence of Theory and Technology
The emergence of the term "Agentic AI" is a direct consequence of technological advancement meeting 
established theory. The academic field of Multi-Agent Systems has, for decades, laid out the foundational 
principles of distributed intelligence, specialized agent roles, and inter-agent communication protocols. The 
recent explosion in the capabilities of LLMs provided the crucial missing ingredient: a powerful, flexible, and easily 
programmable reasoning engine for the individual agents within such a system.

MAS Theory

LLM Technology

Agentic AI

As developers began to harness this new technology, they naturally started combining multiple LLM-powered 
agents to solve problems of greater complexity, creating practical systems with orchestrators, collaborative 
workflows, and shared memory. This new wave of applied, LLM-based MAS required a commercially viable and 
accessible term, which became "Agentic AI".

Therefore, a deep understanding of Agentic AI is impossible without appreciating the underlying principles of 
MAS. The "new" paradigm is built directly upon the theoretical foundations of the old, with LLMs serving as the 
powerful catalyst that has brought these concepts from the research lab to the marketplace.

This convergence of theory and technology represents a significant milestone in the evolution of artificial 
intelligence. The theoretical frameworks developed in academic MAS research provide the architectural blueprints 
for how intelligent agents should interact, coordinate, and collaborate. The emergence of powerful LLMs provides 
the computational engine to implement these frameworks with unprecedented levels of language understanding, 
reasoning, and adaptability. Together, they enable the creation of agent systems that can tackle complex, open-
ended tasks that were previously beyond the reach of automated systems.



Comparing AI Agents and Agentic AI: A 
Dimensional Analysis

Dimension AI Agent (Single, Task-Specific) Agentic AI (Multi-Agent, 
Systemic)

Architecture Monolithic or modular single 
system, often LLM-driven.

Ensemble of specialized agents 
with an orchestration layer.

Autonomy Tactical autonomy within a 
defined task scope.

Strategic, orchestrated autonomy 
to achieve high-level goals.

Scope & Complexity Handles specific, well-defined, 
and often narrow tasks.

Manages complex, multi-step, 
open-ended workflows across 
domains.

Memory Typically short-term memory or 
simple context buffers.

Persistent, shared memory 
architectures (episodic, 
semantic).

Planning Simple planning for a single task 
(e.g., ReAct loop).

Dynamic, multi-stage planning 
and task decomposition.

Communication Primarily user-to-agent 
communication.

Rich inter-agent communication 
and coordination protocols.

Key Challenge Hallucination, brittleness, 
planning limitations.

Coordination failure, emergent 
negative behavior, scalability.

Typical Application Customer support chatbot, email 
filtering, data summarization.

Research automation, robotic 
coordination, adaptive workflow 
management.

This dimensional analysis highlights the significant differences between single AI agents and multi-agent Agentic 
AI systems across various aspects of their design, capabilities, and applications. These dimensions are not 
independent but interconnected4the architectural choices influence memory capabilities, which in turn affect 
planning complexity, and so on. Understanding these interrelationships is crucial for effective system design.

It's important to note that the distinctions presented here are not absolute but represent general tendencies. As 
the field evolves, the boundaries between these categories are likely to blur. Individual agents may incorporate 
more complex planning and memory capabilities, while Agentic AI systems may become more streamlined and 
efficient. The future will likely see a continuum of approaches tailored to specific application requirements rather 
than a rigid dichotomy.

From a practical perspective, this analysis provides a framework for organizations to assess their needs and 
select appropriate agent architectures. For simpler, well-defined tasks where reliability and efficiency are 
paramount, single-agent approaches may be more suitable. For complex challenges requiring diverse expertise 
and adaptability, multi-agent Agentic AI systems offer significant advantages despite their greater complexity and 
coordination challenges.



Classification by Implementation and 
Operational Environment
Beyond the internal logic and systemic organization of agents, a highly practical and crucial method of 
classification is based on their implementation and the environment in which they operate. This dimension of 
taxonomy addresses how an agent is embodied and where it executes its tasks, directly answering the need to 
categorize agents found in real-world deployments such as web browsers and application-specific code. This 
classification reveals fundamental trade-offs between reliability, flexibility, and generality.

Physical Agents

API-Based

Software Agents

GUI-Based

API-Based Software 
Agents

(e.g., Web Crawlers)

API-Based Physical 
Agents

(e.g., IoT Sensors)

GUI-Based Software 
Agents

(e.g., Chatbots)

GUI-Based Physical 
Agents

(e.g., Robotic Arms)

This classification approach focuses on the practical aspects of how agents are implemented and deployed, 
rather than their internal architecture or intelligence. It addresses questions like: Does the agent have a physical 
presence in the world? How does it interact with other software systems? What domain is it designed to operate 
in? These questions are particularly relevant for organizations making decisions about agent deployment in 
specific operational contexts.

The implementation and operational environment of an agent significantly influence its capabilities, limitations, 
and appropriate use cases. Physical agents must contend with the complexities and uncertainties of the real 
world, while software agents operate in more structured digital environments. API-based agents offer reliability 
and predictability but are limited to pre-defined interfaces, while GUI-based agents provide greater flexibility but 
with reduced reliability. Understanding these trade-offs is essential for selecting the right agent architecture for a 
particular application.



The Physical-Software Dichotomy
The most fundamental distinction in implementation is whether an agent exists purely in the digital realm or has a 
physical presence in the real world.

Software Agents

These agents are computer programs that exist and 
operate entirely within digital environments like 
computer networks, databases, or software 
applications. Their perception of the environment 
comes from digital inputs like API calls, file data, 
network packets, or user commands entered via a 
keyboard. Their actions, or actuation, are similarly 
digital: they write to files, update databases, send 
messages, or display information on a screen. The 
vast majority of AI agents in use today are software 
agents.

Examples:

Web Crawlers: Agents that systematically browse 
the World Wide Web to index content for search 
engines.

Email Filtering Agents: Programs that scan 
incoming emails and sort them into categories like 
"inbox," "spam," or "promotions".

Financial Trading Bots: Agents that monitor market 
data and execute buy or sell orders based on 
algorithmic strategies.

System Monitoring Agents: Agents that run on 
servers to track performance metrics, detect 
anomalies, and report issues.

Physical Agents (Embodied AI / Robotics)

Physical agents, also known as embodied AI or simply 
robots, possess a physical body and interact directly 
with the tangible, physical world. Their sensors are 
physical devices like cameras, lidar, sonar, 
microphones, and tactile sensors. Their actuators are 
physical components like motors, wheels, robotic 
arms, and grippers that allow them to move and 
manipulate objects in their environment.

Examples:

Autonomous Vehicles: Self-driving cars are 
complex physical agents that perceive their 
surroundings with a suite of sensors and act by 
controlling steering, acceleration, and braking.

Manufacturing Robots: Autonomous arms on an 
assembly line that perform tasks like welding, 
painting, and component assembly.

Robotic Vacuum Cleaners: Household agents that 
use sensors to navigate a physical space and 
motors to move and clean.

Autonomous Delivery Drones: Unmanned aerial 
vehicles that navigate physical airspace to 
transport packages.

This dichotomy represents a fundamental distinction in how agents interact with the world. Software agents 
operate in digital environments that are typically more structured, deterministic, and controllable than the physical 
world. Physical agents must contend with the messiness, uncertainty, and continuous nature of real-world 
environments, which presents significant additional challenges for perception, actuation, and decision-making.

However, the boundary between these categories is becoming increasingly blurred with the rise of cyber-physical 
systems and the Internet of Things (IoT). Many modern agents are hybrids that combine aspects of both software 
and physical agents, such as cloud-based AI systems that control physical devices or robots that offload complex 
processing to remote servers. This convergence is creating new possibilities for agents that can seamlessly 
operate across both digital and physical domains.



The Interaction Modality: API-Based vs. GUI-
Based Agents
For software agents, a critical distinction lies in how they interact with other software systems. This choice of 
interaction modality represents a core architectural decision with profound implications for the agent's reliability 
and flexibility.

The distinction between API-based and GUI-based interaction represents a fundamental trade-off in agent design. 
API-based interaction offers higher reliability, better performance, and greater security but is limited to 
applications that expose the necessary APIs. GUI-based interaction provides greater flexibility and can work with 
any application that has a visual interface but sacrifices reliability and performance. This trade-off is central to 
many design decisions in agent implementation.

In practice, many sophisticated agent systems employ a hybrid approach, preferentially using APIs when available 
but falling back to GUI-based interaction when necessary. This hybrid approach maximizes both reliability and 
flexibility, allowing agents to operate across a wider range of applications while maintaining high performance for 
critical tasks. The development of more robust GUI-based interaction technologies, powered by advances in 
computer vision and multimodal AI, is gradually reducing the reliability gap between these two approaches.



API-Based Agents
These agents interact with other software through Application Programming Interfaces (APIs). An API provides a 
structured, predictable, and programmatic way for different software components to communicate. The agent 
sends a request to a specific API endpoint with the required parameters, and the target system performs the 
action and returns a structured response. This is the dominant and most robust method for building enterprise-
grade agents.

High Reliability

API-based interactions follow well-defined 
specifications, making them highly predictable 
and less prone to errors. The structured nature 
of API calls ensures consistent behavior across 
different executions.

Performance Efficiency

Direct API calls avoid the overhead of rendering 
and interpreting visual interfaces, resulting in 
faster execution times and lower computational 
requirements.

Enhanced Security

APIs typically implement robust authentication 
and authorization mechanisms, allowing for 
fine-grained access control and better security 
governance.

Limited Scope

The agent's capabilities are strictly bounded by 
the set of available APIs. If a desired action is 
not exposed through an API, the agent is 
powerless to perform it.

Examples

An agent that schedules a meeting by making a call to the Google Calendar API.

A procurement agent that creates a purchase order by interacting with an SAP or Oracle API.

A customer service agent that retrieves a customer's order history by querying a CRM's API.

API-based agents are particularly well-suited for enterprise environments where reliability, security, and 
performance are paramount. They integrate seamlessly with existing systems that expose well-documented APIs, 
allowing for robust automation of business processes. Their predictable behavior makes them ideal for mission-
critical applications where errors could have significant consequences.

However, their dependence on pre-existing APIs also represents their primary limitation. They can only interact 
with systems that explicitly provide API access, and they are constrained by the specific functionality those APIs 
expose. This makes them less adaptable to new or unsupported applications and may require significant 
development effort to integrate with systems that lack comprehensive API coverage.



GUI-Based Agents
A newer and more revolutionary class of agents interacts with software by observing the Graphical User Interface 
(GUI) and simulating human actions. Powered by advanced multimodal LLMs that can interpret visual information, 
these agents "look" at a screen, identify elements like buttons, text fields, and menus, and then generate 
commands to move a mouse cursor, click, or type text.

Characteristics

The primary advantage of GUI-based agents is their 
extraordinary flexibility and generality. In theory, they 
can operate any piece of software that a human can, 
without needing a pre-built API. This opens up 
automation possibilities for legacy systems or any 
application where APIs are not available. However, this 
flexibility comes at the cost of reliability. GUIs can 
change unexpectedly, and visual elements can be 
ambiguous, leading the agent to make errors. They are 
generally slower and more brittle than their API-based 
counterparts.

Technical Implementation

GUI-based agents typically employ computer vision 
techniques to analyze screen contents, identify 
interactive elements, and understand the state of the 
application. They then use operating system 
automation APIs to simulate mouse movements, 
clicks, and keyboard input. The integration of 
multimodal LLMs has significantly advanced this field 
by enabling better understanding of complex visual 
interfaces and more intelligent decision-making about 
how to interact with them.

Examples

OpenAI's Computer-Using Agent (CUA), which 
powers their Operator agent, is designed to 
perform tasks by directly interacting with the GUI 
of web browsers and operating systems.

Agents used for automated software testing, which 
navigate through an application's UI to test its 
functionality.

General-purpose desktop assistants that can 
automate workflows across multiple applications 
by mimicking human clicks and keystrokes.

GUI-based agents represent a significant breakthrough in agent flexibility. They can potentially interact with any 
software that has a visual interface, regardless of whether it was designed for automation or provides API access. 
This makes them particularly valuable for automating workflows that span multiple applications, especially legacy 
systems or third-party software that lacks API integration capabilities.

However, their reliance on visual perception and interpretation makes them inherently more prone to errors than 
API-based agents. Changes in the visual appearance of an application, such as UI redesigns or even simple color 
changes, can confuse these agents. They also tend to be slower, as they must process visual information and 
physically move a cursor rather than making direct API calls. These limitations make them less suitable for critical 
enterprise applications where reliability and performance are essential.



The Operational Domain
Agents can also be classified by the primary domain in which they are designed to operate.

Web-Based Agents

These are software agents specifically designed to 
operate on the World Wide Web. Their environment is 
the vast, semi-structured collection of websites, and 
their tools are web browsers. They can be built for 
information retrieval (e.g., scraping data) or for 
transactional purposes (e.g., making online 
purchases).

Examples:

WebVoyager: A research agent that can navigate 
live websites like Amazon and Google Maps to 
answer complex user queries.

Shopping Bots: Agents that can search multiple e-
commerce sites, compare prices for a product, and 
even complete the checkout process on behalf of a 
user.

Travel Agents: Agents that can find and book 
flights, hotels, and rental cars by interacting with 
various travel websites.

Application-Specific Agents

These agents are designed to be embedded within 
and tightly integrated into a particular software 
application or a unified enterprise ecosystem. They 
leverage the unique context, data models, and internal 
APIs of that specific platform to perform tasks with a 
high degree of relevance and efficiency.

Examples:

Microsoft 365 Copilot Agents: Agents that operate 
within the Microsoft ecosystem to manage emails 
in Outlook, create presentations in PowerPoint, or 
summarize documents in Word.

Salesforce Einstein Agents: Agents that work 
within the Salesforce CRM to update customer 
records, generate sales forecasts, and automate 
service workflows.

SAP Business AI Agents: Agents embedded in 
SAP's enterprise resource planning (ERP) systems 
to manage supply chains, automate procurement, 
and analyze financial data.

The operational domain of an agent significantly influences its design, capabilities, and limitations. Web-based 
agents must deal with the diversity and unpredictability of the open web, requiring robust navigation, parsing, and 
error-handling capabilities. They typically operate with incomplete information and must adapt to varying website 
structures and behaviors. In contrast, application-specific agents operate in more controlled, predictable 
environments where they can leverage deep integration with the host application's data and functionality.

Web-based agents offer greater flexibility and broader scope, able to access and integrate information from 
across the internet. Application-specific agents provide deeper functionality within their domain, with higher 
reliability and performance due to their tight integration with the host platform. The choice between these 
approaches depends on whether breadth or depth is more important for the specific use case.



Specialized Agent Paradigms
Beyond these primary classifications, several specialized agent paradigms address specific computational 
challenges.

Mobile Agents

A mobile agent is a unique type of software agent defined by its ability to migrate. It can suspend its 
execution on one host computer, transport its own code and its current execution state (e.g., variable values) 
across a network to a different host, and then resume its execution from the point it left off. The core benefit 
of this paradigm is that it allows the computation to move to the data source, rather than moving large 
amounts of data across a network to the computation, thereby reducing network load and latency.

While this was a very active area of research in the 1990s and early 2000s, widespread commercial adoption 
was hindered by significant security challenges (e.g., a malicious agent attacking a host, or a malicious host 
tampering with an agent). However, the underlying concept is experiencing a renaissance in modern 
distributed computing, particularly in the context of edge computing and the Internet of Things (IoT), where 
deploying lightweight, containerized, and mobile computational agents to edge devices for local data 
processing is a highly efficient architecture.

0

30

60

90

Traditional Agents Mobile Agents OS Agents AIOS
Research Activity Commercial Adoption

Mobile agents represent a distinctive approach to distributed computing that prioritizes code mobility over data 
movement. Their ability to migrate across a network, carrying their state and execution context, enables unique 
applications in areas like distributed data processing, autonomous monitoring, and adaptive service deployment. 
Although security concerns have limited their widespread adoption, the fundamental principles of mobile agents 
are increasingly relevant in modern edge computing architectures.

The resurgence of interest in mobile agent concepts within IoT and edge computing contexts demonstrates how 
specialized agent paradigms can evolve and find new applications as technology landscapes change. The ability 
to deploy intelligent processing closer to data sources addresses critical challenges in latency, bandwidth 
utilization, and network resilience for distributed systems.



Operating System (OS) Agents
The term "OS Agent" has evolved and now carries a dual meaning that reflects the history and future of agent 
technology.

Traditional OS Agents

In classic systems administration, an OS agent is a 
lightweight, continuously running background process 
(often called a daemon or service) that performs low-
level system tasks. Examples include SNMP agents 
that report network device status, patch management 
agents that apply software updates, and security 
agents that monitor for intrusions. These agents are 
typically not intelligent in the AI sense but are 
autonomous background processes.

Characteristics

Run with system privileges to access low-level 
resources

Often start automatically at system boot

Operate invisibly in the background

Typically have minimal user interaction

Focus on specific system maintenance tasks

AI Operating System (AIOS)

This is a new and emerging concept representing a 
fundamental shift in how agents are managed. An 
AIOS is a specialized operating system or a kernel-
level abstraction layer designed specifically to 
manage the lifecycle, resources, and execution of 
modern, LLM-based AI agents. It provides essential 
services such as an agent scheduler, context and 
memory managers, secure tool management, and 
inter-agent communication channels. The goal of an 
AIOS is to provide a robust, secure, and efficient 
environment for running complex, concurrent multi-
agent systems, much like a traditional OS does for 
standard computer processes.

Traditional OS agents represent a well-established paradigm in systems administration, providing critical services 
for monitoring, maintaining, and securing computer systems. While they lack the advanced reasoning capabilities 
of modern AI agents, they exemplify the core principle of autonomous operation, performing their designated 
tasks without direct human supervision.

The emerging concept of AI Operating Systems (AIOS) represents a significant evolution in how AI agents are 
deployed and managed. By providing a dedicated infrastructure for agent execution, memory management, and 
inter-agent communication, an AIOS addresses many of the challenges associated with building complex, reliable 
multi-agent systems. This approach acknowledges that as agents become more sophisticated and numerous, 
they require specialized infrastructure to manage their interactions and resource utilization efficiently.

The development of AIOS platforms may represent the next major frontier in agent technology, potentially 
enabling more complex, robust, and secure agent ecosystems. Just as traditional operating systems enabled the 
proliferation of general-purpose computing applications, AIOS platforms could similarly accelerate the 
development and deployment of sophisticated agent-based systems across various domains.



The Reliability-Flexibility Trade-off
The distinction between API-based and GUI-based agents illuminates a fundamental and critical trade-off in agent 
design: reliability versus flexibility. An enterprise seeking to automate a mission-critical financial reconciliation 
process, where accuracy and predictability are paramount, will almost certainly choose an API-based agent that 
interacts with the financial software's stable and well-documented backend. In contrast, a consumer wanting a 
general-purpose assistant to plan a vacation must interact with a multitude of disparate websites for flights, 
hotels, and reviews, many of which lack public APIs. For this task, only a flexible GUI-based agent can provide the 
required generality.

Low Flexibility

Low Reliability

High Flexibility

High Reliability

GUI-Based Consumer 
Agents

Legacy Scripted 
Automation

Hybrid Approach - 
Future State

API-Based Enterprise 
Agents

This trade-off is not merely theoretical but has profound implications for agent deployment in different contexts. In 
enterprise environments, where errors can have significant financial or operational consequences, reliability 
typically takes precedence over flexibility. These organizations are willing to invest in API development and 
integration to ensure that their agents operate predictably and securely. In consumer applications, where the 
range of potential tasks is broader and the consequences of occasional errors are less severe, flexibility is often 
prioritized to provide a more versatile user experience.

The reliability-flexibility dichotomy also explains much of the historical evolution of agent technologies. Early 
agents were predominantly API-based, focusing on reliability in well-defined domains. The recent emergence of 
more flexible GUI-based agents has been enabled by advances in computer vision, natural language 
understanding, and multimodal AI, which have improved their ability to interpret and interact with visual interfaces 
reliably. However, even with these advances, the fundamental trade-off remains, reflecting the inherent 
challenges of designing agents that are both highly reliable and highly flexible.



The Future: Hybrid Tool-Selection Strategy
This apparent conflict points toward the most probable future for robust, general-purpose agents: a hybrid, 
hierarchical tool-selection strategy. A truly universal assistant must be capable of both modes of interaction. Its 
internal planning module would be designed to approach a task with a prioritized list of tools. First, it would check 
if the task can be accomplished using a high-reliability tool, such as a documented internal or external API. If no 
such API exists, it would then fall back to the lower-reliability but higher-flexibility tool of GUI interaction. This 
hybrid approach resolves the tension between the two modalities, leveraging the strengths of each while 
mitigating their weaknesses, representing the most viable path toward building agents that are both powerful and 
trustworthy.

Task Analysis

The agent analyzes the user's request to understand 
the required actions and target systems.

Tool Selection

The agent evaluates available tools for the task, 
prioritizing high-reliability API-based methods when 
available.

API Execution

If suitable APIs exist, the agent uses them for 
reliable, efficient task execution.

GUI Fallback

If no APIs are available, the agent falls back to GUI-
based interaction with appropriate monitoring and 
error handling.

This hybrid approach represents a pragmatic solution to the reliability-flexibility dilemma. By prioritizing API-
based interaction when available but maintaining the capability for GUI-based interaction when necessary, these 
agents can achieve both broad applicability and high reliability for critical tasks. The key innovation is not in either 
interaction modality itself but in the intelligent orchestration of multiple interaction methods based on the specific 
requirements of each task.

The implementation of such hybrid agents presents significant technical challenges. It requires sophisticated 
planning systems that can evaluate the trade-offs between different interaction methods, robust error detection 
and recovery mechanisms for GUI-based interactions, and efficient coordination between different interaction 
modalities. However, recent advances in LLM-based planning and decision-making are making these hybrid 
architectures increasingly feasible.

As this hybrid approach matures, we can expect to see the emergence of general-purpose agents that combine 
the reliability of enterprise automation with the flexibility of consumer assistants. These agents will be able to 
navigate seamlessly between structured and unstructured environments, using the most appropriate tools for 
each specific task while maintaining overall coherence and reliability.



Classification by Implementation: A 
Comparative Overview

Classification 
Axis

Agent Type Definition Key 
Characteristics

Representative 
Examples

Embodiment Software Agent Exists and acts 
within a digital 
environment.

No physical body; 
interacts via code, 
APIs, files.

Chatbot, Web 
Crawler, Financial 
Bot

Embodiment Physical Agent Has a physical 
body and acts in 
the real world.

Interacts via 
physical sensors 
and actuators.

Self-Driving Car, 
Manufacturing 
Robot, Drone

Interaction 
Modality

API-Based Agent Interacts with 
systems via 
programmatic 
interfaces.

High reliability, 
speed, 
predictability; 
limited by API 
availability.

Enterprise 
automation agents 
(SAP, Salesforce)

Interaction 
Modality

GUI-Based Agent Interacts with 
systems by 
simulating human 
UI actions.

High flexibility, 
generality; lower 
reliability, more 
brittle.

OpenAI's 
Computer-Using 
Agent (CUA)

Operational 
Domain

Web-Based Agent Operates on the 
World Wide Web.

Navigates 
websites, scrapes 
information, 
performs online 
transactions.

WebVoyager, 
Shopping/Travel 
Bots

Operational 
Domain

Application-
Specific Agent

Embedded within 
a particular 
software 
application or 
ecosystem.

Tightly integrated 
with platform data 
and tools.

Microsoft 365 
Copilot, 
Salesforce 
Einstein

Mobility Stationary Agent Executes on a 
single host or 
platform.

The standard 
model for most 
current agents.

Most web and 
application 
agents.

Mobility Mobile Agent Can migrate its 
code and state to 
other hosts.

Reduces network 
load by moving 
computation to 
data; has security 
challenges.

Edge computing 
agents, early 
research agents 
(Aglets)

System Locus Application-Level 
Agent

A standard 
application 
running on a host 
OS.

The most 
common 
deployment 
model.

A Python script 
running an agent, 
a chatbot 
application.

System Locus OS-Level / AIOS 
Agent

A system-level 
service or an 
agent managed 
by a specialized 
AIOS.

Provides core 
resource 
management for 
other agents.

System 
monitoring 
daemons, agents 
running on an 
AIOS

This comprehensive overview illustrates the diverse ways in which agents can be classified based on their 
implementation and operational characteristics. Each classification axis represents a different perspective on 
agent architecture, highlighting important distinctions in how agents are embodied, how they interact with other 
systems, where they operate, and how they are deployed.

These classifications are not mutually exclusive but intersect to create a multidimensional space of possible agent 
implementations. A single agent might be simultaneously a software agent (embodiment), API-based (interaction 
modality), application-specific (operational domain), stationary (mobility), and application-level (system locus). 
Understanding these various dimensions helps in analyzing existing agents and designing new ones that are 
appropriate for specific use cases and environments.

As agent technology continues to evolve, we can expect to see innovation along each of these axes. Physical 
agents will become more capable and widespread as robotics and IoT technologies advance. GUI-based 
interaction will become more reliable as computer vision and multimodal AI improve. Web-based agents will 
become more versatile as they incorporate more sophisticated navigation and interaction capabilities. And new 
paradigms like AIOS will create novel deployment models that enhance agent reliability, security, and 
performance.



Classification by Function and Human 
Interaction
Classifying AI agents based on their intended function and their designed mode of interaction with humans 
provides a user-centric perspective that is critical for product strategy and design. This taxonomy focuses not on 
the agent's internal workings but on what it does for the user and how that relationship is structured. These 
distinctions have profound implications for trust, risk, and user experience.

Information Agents

Transactional 
Agents

Interface 
Agents

Reactive 
Agents

Proactive 
Agents

This functional perspective is particularly valuable for organizations developing or deploying agent-based 
systems, as it directly addresses key business considerations: What value does the agent provide to users? What 
level of authority should it have? How should it engage with users? These questions are often more immediately 
relevant to product strategy than technical details about the agent's internal architecture or implementation.

The function and interaction mode of an agent significantly influence its design requirements, user trust 
dynamics, and potential risks. Information agents that merely retrieve and present data pose minimal risks and 
require lower trust thresholds than transactional agents that can commit resources or make binding decisions. 
Similarly, reactive agents that respond only to explicit commands present different design challenges than 
proactive agents that anticipate user needs and take initiative.

Understanding these functional distinctions helps ensure that agents are designed with appropriate capabilities, 
safeguards, and interaction patterns for their intended purpose and authority level. This user-centric classification 
complements the more technical taxonomies discussed earlier, providing a holistic view of how agents fit into 
human workflows and organizational processes.



Information vs. Transactional Agents
One of the most significant functional distinctions is whether an agent is designed merely to provide information 
or is empowered to execute binding transactions.

Information Agents

These agents, sometimes called "search agents" or 
"monitoring agents," have the primary function of 
finding, gathering, filtering, collating, and presenting 
information to a user. Their actions are typically non-
binding and do not create legal or financial obligations 
for the user. Their purpose is to augment the user's 
knowledge and awareness.

Examples:

A personalized news agent that scours the web to 
assemble a daily briefing tailored to a user's 
interests.

An academic research assistant that searches 
through databases like PubMed or arXiv to find 
relevant papers for a literature review.

A competitive intelligence agent that continuously 
monitors the websites and social media of rival 
companies and reports on new product launches 
or marketing campaigns.

Transactional Agents

Transactional agents are granted a higher level of 
authority. They are empowered to perform actions on 
behalf of the user that result in a binding commitment, 
often with financial or legal consequences. This 
category represents a significant escalation in 
delegated responsibility and is fraught with complex 
issues of liability and trust.

Examples:

An e-commerce shopping agent that not only finds 
a product but proceeds to use the user's stored 
payment information to complete the purchase.

An autonomous travel agent that books and pays 
for non-refundable airline tickets or hotel rooms 
based on high-level user preferences.

A stock trading agent that is authorized to execute 
buy or sell orders in a user's brokerage account 
when certain market conditions are met.

A procurement agent that can autonomously solicit 
bids from suppliers and sign contracts on behalf of 
a company.

This functional distinction represents a critical threshold in terms of agent authority, risk, and trust requirements. 
Information agents operate in a relatively low-risk domain where errors or inaccuracies may lead to inconvenience 
or inefficiency but rarely cause significant harm. Transactional agents, by contrast, operate in a high-stakes 
environment where errors can have substantial financial, legal, or operational consequences.

The transition from information to transaction fundamentally changes the risk profile and trust requirements for an 
agent system. Organizations deploying transactional agents must implement robust safeguards, including 
rigorous testing, comprehensive audit trails, explicit authorization protocols, and potentially human-in-the-loop 
verification for high-value transactions. Users, in turn, must develop sufficient trust in the agent's reliability, 
security, and alignment with their interests before delegating transactional authority.

This distinction also has significant implications for regulatory compliance and liability. Transactional agents may 
be subject to financial regulations, contract law, consumer protection statutes, and other legal frameworks that 
don't apply to purely informational systems. Understanding these implications is essential for responsible 
development and deployment of agent-based systems.



Interface Agents
Interface agents represent a specific mode of human-agent interaction. They are a distinct class of software 
agent designed to operate directly within a user's interactive interface, working alongside the user as a proactive 
and collaborative partner.

Definition

An interface agent observes a user's actions within a 
GUI (e.g., mouse movements, clicks, text input) and, 
without being explicitly commanded, proactively 
offers assistance, provides suggestions, or critiques 
the user's workflow. They operate concurrently and 
autonomously, aiming to reduce the user's cognitive 
load by anticipating their needs in real-time.

Characteristics

What distinguishes an interface agent from a simple 
chatbot or a back-end process is its tight integration 
with the UI and its ability to act in parallel with the 
user. The user and the agent can both be interacting 
with the interface simultaneously. To foster a more 
natural and engaging interaction, these agents are 
often given an anthropomorphic representation, such 
as an animated character or avatar, which can help 
build a social rapport with the user.

Examples

Letizia: A classic research prototype from the MIT 
Media Lab, Letizia was an interface agent that 
observed a user's web browsing behavior and, in a 
separate window, proactively suggested other 
pages the user might be interested in, based on an 
analysis of the links on the current page.

Intelligent Tutoring Systems: Systems that monitor 
a student's problem-solving process in an 
educational application and provide real-time hints 
or feedback directly within the learning interface.

In-App Onboarding Assistants: Modern software 
applications often feature embedded widgets or 
characters that provide contextual tips and 
guidance to new users as they navigate the 
dashboard for the first time, helping them discover 
features and complete setup tasks.

Interface agents represent a distinctive approach to human-agent interaction that blurs the line between tool and 
collaborator. Unlike traditional agents that respond to explicit commands, interface agents observe the user's 
behavior, infer their goals, and proactively offer assistance. This creates a more fluid, natural interaction pattern 
that can reduce the user's cognitive load and enhance productivity.

The design of effective interface agents presents unique challenges. They must strike a delicate balance between 
being helpful and being intrusive, offering assistance when needed without disrupting the user's workflow. They 
must also be able to accurately infer the user's intentions from their actions, which requires sophisticated models 
of user behavior and task understanding. And they must communicate their suggestions in a way that is 
noticeable but not distracting, integrated seamlessly into the existing interface.

Despite these challenges, interface agents represent a promising direction for human-agent interaction, 
particularly in complex software environments where users may not be aware of all available features or optimal 
workflows. By observing user behavior and offering contextual assistance, these agents can help bridge the gap 
between novice and expert users, accelerating the learning curve and enhancing overall productivity.



Reactive vs. Proactive Agents
This is a broad behavioral classification that cuts across many other categories and describes an agent's 
fundamental stance toward taking action.

Reactive Agents

These agents are fundamentally responders. Their 
actions are triggered by stimuli from the environment 
or by direct commands from a user. They do not take 
initiative or plan for the long term; they simply react to 
the present situation. The Simple Reflex and Model-
Based Reflex agents from the classical taxonomy are 
quintessentially reactive.

Characteristics

Wait for explicit commands or environmental 
triggers

Focus on immediate response to current conditions

Typically simpler architecture with fewer 
components

Lower risk of unwanted or unexpected behavior

Less cognitive load on users who maintain control

Proactive Agents

These agents are initiators. They do not wait to be told 
what to do but instead take the initiative to formulate 
and execute plans to achieve their long-term goals. 
They anticipate future conditions and act to shape 
them in their favor. Goal-Based, Utility-Based, and 
Learning agents are all inherently proactive, as their 
core function involves planning and striving toward a 
desired future state.

Characteristics

Anticipate needs and take initiative without explicit 
commands

Formulate and pursue long-term goals

More complex architecture with planning 
components

Higher risk of misaligned actions or unexpected 
behavior

Potential to reduce user cognitive load by handling 
routine tasks

The distinction between reactive and proactive behavior represents a fundamental trade-off in agent design. 
Reactive agents are simpler, more predictable, and maintain a clearer locus of control with the user. Proactive 
agents can be more helpful and reduce user cognitive load but introduce greater complexity and risk of 
misaligned actions. This trade-off is particularly important in the context of human-agent interaction, where the 
balance between agent initiative and user control directly influences the user experience.

Most practical agent systems incorporate elements of both reactive and proactive behavior, often implementing a 
graduated approach that increases proactivity as user trust is established. For example, an agent might begin with 
purely reactive behavior, responding only to explicit commands. As the user becomes more comfortable with its 
performance, it might introduce limited proactive suggestions. Eventually, with explicit user permission, it might 
transition to more autonomous proactive behavior for routine tasks, while still maintaining reactive responses for 
novel or high-stakes situations.



The Trust-Capability Threshold
The functional distinction between an Information Agent and a Transactional Agent is more than a simple technical 
categorization; it marks a critical trust-capability threshold. The level of risk associated with an agent's failure 
changes dramatically between these two classes. An information agent that makes a mistake4for instance, by 
providing an inaccurate summary of a news article4causes an inconvenience. In contrast, a transactional agent 
that makes a mistake4such as booking a non-refundable flight to Paris, Texas, instead of Paris, France4can 
cause a significant financial and logistical disaster.

Transactiona
l Execution

Controlled 
Actions

Basic 
Verification

Info Retrieval

The potential for harm is orders of magnitude greater for agents that can execute binding transactions. 
Consequently, a user or an organization will not delegate transactional authority to an agent without a very high 
degree of trust in its reliability, security, and alignment with their intentions. This reality has profound implications 
for product design. To bridge this trust gap, developers of transactional agents must build in robust features that 
provide the user with a strong sense of control and safety, even while the agent operates autonomously.

These features include mandatory "human-in-the-loop" approval steps for critical actions, clear and concise 
summaries of the actions the agent intends to take before execution, and straightforward mechanisms for users to 
cancel or reverse transactions, a feature that is not just good practice but is also mandated by commercial laws 
like the Uniform Electronic Transactions Act (UETA) in certain scenarios. This demonstrates a direct and 
unbreakable link from the agent's designated function to its required UI/UX and safety architecture.

The trust-capability threshold also explains the typical evolutionary path of agent deployment in organizations. 
Most begin with low-risk information agents to establish trust and familiarity before progressing to transactional 
agents in limited, well-defined domains. Only after building substantial confidence in the agent's reliability and 
alignment do they expand to more critical or complex transactional capabilities. This gradual progression reflects 
the fundamental principle that trust must be earned incrementally, especially when the stakes are high.



A Socio-Technical Classification: Autonomy 
and Liability
As AI agents become more capable and autonomous, they move from being mere tools to active participants in 
complex societal and economic activities. This transition necessitates a classification framework that extends 
beyond purely technical specifications to encompass the socio-technical implications of their deployment. The 
most critical of these is the question of liability: when an autonomous agent causes harm, who is responsible? A 
taxonomy based on the agent's level of autonomy provides a structured lens for addressing this challenge, 
drawing valuable lessons from legal frameworks developed for other autonomous technologies.

This socio-technical perspective acknowledges that agents do not exist in a technical vacuum but operate within 
complex social, legal, and economic systems. As agents take on more autonomous decision-making roles, they 
raise profound questions about responsibility, accountability, and risk allocation that cannot be addressed through 
technical design alone. These questions require interdisciplinary approaches that bridge computer science, law, 
ethics, and organizational theory.

The autonomy-based classification framework presented here provides a structured way to think about these 
issues, drawing parallels with existing legal frameworks for autonomous vehicles and other autonomous 
technologies. By establishing clear distinctions between different levels of agent autonomy and their 
corresponding liability implications, this framework helps developers, organizations, and regulators navigate the 
complex landscape of agent deployment in a responsible and legally defensible manner.

This classification is particularly important as agents move beyond controlled, experimental settings into 
mainstream business and consumer applications where their actions can have real-world consequences. 
Understanding the relationship between autonomy and liability is essential for building agent systems that are not 
only technically sophisticated but also socially responsible and legally compliant.



A Framework for Agent Autonomy
An effective way to structure the discussion of liability is to classify AI agents along a spectrum of autonomy, 
analogous to the levels established for Autonomous Vehicles (AVs) in regulations like the UK's Automated 
Vehicles Act. Such a framework categorizes agents based on the degree of human oversight required and the 
extent of control a user can realistically exercise. A five-level model serves this purpose well:

1

Low Autonomy (Levels 1-
2)

The agent performs narrowly 
defined, specific tasks under 
substantial user supervision. 
The user initiates most actions 
and has direct control over how 
the task is executed. The agent 
is essentially a sophisticated 
tool.

Level 1: Requires constant 
human supervision and 
confirmation for each action.

Level 2: Can execute simple 
sequences independently 
but requires approval for key 
decision points.

2

Intermediate Autonomy 
(Levels 3-4)

The agent demonstrates more 
advanced decision-making 
capabilities and can handle 
more complex workflows. At 
Level 3, the user is still expected 
to monitor the agent and be 
ready to intervene. At Level 4, 
the agent can operate without 
supervision in specific, well-
defined domains, but the user 
may still have the ability to 
override it. Control and 
responsibility are shared 
between the user and the 
system.

Level 3: Operates 
independently but expects 
human monitoring and 
intervention when needed.

Level 4: Functions 
autonomously within specific 
domains without supervision 
but has clear operational 
boundaries.

3

High Autonomy (Level 5)

The agent can independently 
decide upon and execute 
complex, open-ended tasks with 
minimal or no human 
intervention required. It can 
operate in open environments 
and adapt its strategies 
dynamically. The system, not 
the user, is effectively in control.

Level 5: Full autonomy 
across multiple domains with 
strategic decision-making 
capabilities and minimal 
human oversight.

This autonomy framework provides a structured way to think about the relationship between agent capabilities 
and human oversight. Lower autonomy levels represent systems where humans maintain significant control and 
decision-making authority. As autonomy increases, more responsibility shifts to the agent, with humans playing 
progressively smaller roles in direct oversight and control.

The framework is not merely descriptive but has normative implications for how agents should be designed and 
deployed at different autonomy levels. Lower autonomy agents should have interfaces that emphasize user 
control and visibility into agent actions. Intermediate autonomy agents should include robust monitoring tools and 
intervention mechanisms. High autonomy agents require comprehensive safety measures, extensive validation, 
and clear operational boundaries.

This graduated approach to autonomy allows for responsible advancement of agent capabilities while maintaining 
appropriate human oversight based on the agent's sophistication and the risk profile of its domain. It provides a 
roadmap for incrementally increasing agent autonomy as technology matures and trust is established, rather than 
making a binary leap from simple tools to fully autonomous systems.



The Shifting Locus of Responsibility
The core principle that emerges from this autonomy-based classification is that as agent autonomy increases, the 
locus of legal and financial liability shifts away from the user and toward the developer, provider, or integrator of 
the AI system. This is a direct consequence of the changing balance of control.

At the lower levels of autonomy (1-2), the user is clearly "in charge" and makes the critical decisions, so they 
would logically bear the primary responsibility for the agent's actions. As autonomy moves to the intermediate 
levels (3-4), responsibility becomes more ambiguous and is likely to be shared. Courts and regulators would need 
to examine the extent to which the user could have prevented the harm versus the extent to which the harm was 
caused by a flaw in the agent's design.

At the highest level of autonomy (5), the user has very limited ability to foresee or prevent an error made by the 
agent. In this scenario, the entity that designed, built, and deployed the highly autonomous system4the developer 
or provider4bears a much greater share of the liability. For agents at this level performing high-risk activities, this 
could even meet the legal threshold for the application of strict liability, where the provider is held responsible for 
harm regardless of fault, simply because they introduced a potentially dangerous system into the world.

This shifting responsibility pattern has precedent in other domains where autonomous systems have been 
deployed. In aviation, for example, responsibility for accidents has shifted over time from pilots to manufacturers 
and system designers as autopilot systems have become more sophisticated. Similar patterns are emerging in 
autonomous vehicle regulation, where manufacturers assume increasing liability as vehicles move up the 
autonomy scale from driver assistance to full self-driving capabilities.



Design and Governance Implications
This predictable shift in liability creates powerful economic and legal incentives that directly influence the design, 
development, and governance of AI agents. "Responsible AI" ceases to be a purely ethical consideration and 
becomes a critical risk management strategy.

Incentivizing Technical 
Safeguards

To mitigate their potential 
liability, developers of high-
autonomy agents are strongly 
incentivized to build in robust 
safety and control mechanisms. 
These are no longer optional 
features but essential 
components of a defensible 
product. Such safeguards 
include real-time monitoring 
dashboards for human 
overseers, mandatory "human-
in-the-loop" approval workflows 
for high-stakes or irreversible 
actions, comprehensive and 
immutable audit logs of the 
agent's decisions and actions, 
and reliable emergency override 
or "kill switch" capabilities.

Guiding Regulatory 
Frameworks

An autonomy-based taxonomy 
provides a clear and rational 
basis for regulators to classify 
different types of AI agents and 
apply proportionate rules. It can 
help determine which agents fall 
under the definition of "high-
risk AI systems" in regulations 
like the EU AI Act and inform the 
development of future 
legislation for "frontier AI" 
models.

Enabling Insurance and 
Risk Transfer

A standardized classification of 
agent autonomy allows the 
insurance industry to develop 
new, specialized products to 
cover the risks associated with 
AI agents. This enables a 
functioning market for risk 
transfer, where organizations 
can insure against potential 
liabilities, and provides a 
mechanism for prompt victim 
compensation.

The rapid technical evolution of AI agents is on an inevitable collision course with the slower, more deliberate 
evolution of legal frameworks for liability. The engineering decisions made in a lab today4how much autonomy to 
grant an agent, what safeguards to build in, how to log its decisions4will be the very evidence scrutinized in a 
courtroom tomorrow. This dynamic transforms the abstract principles of "responsible AI" into concrete, pragmatic 
risk management imperatives. The classification of an agent is no longer a mere technical specification; it is a 
declaration of a legal and strategic position.

The purely technical pursuit of greater autonomy is now inextricably bound to the practical necessity of ensuring 
legal defensibility and maintaining public trust. This forces engineering teams and technology strategists to think 
not just like innovators, but also like risk managers and even lawyers, fundamentally changing the calculus of 
agent design and deployment.

Autonomy Level Description of 
Agent Capability

Locus of Control 
(User vs. System)

Primary Locus of 
Liability

Example Agent

Level 1 Assists with 
specific, user-
initiated tasks. 
Follows explicit 
instructions.

User User A simple script 
that automates a 
single command.

Level 2 Handles narrow, 
predefined tasks 
with significant 
user oversight. 
User must 
confirm actions.

Primarily User User An email agent 
that drafts replies 
but requires the 
user to press 
"send".

Level 3 Can execute a full 
task workflow in a 
limited domain, 
but expects 
human monitoring 
and intervention.

Shared Shared (User and 
Developer)

A procurement 
agent that can 
find suppliers and 
fill out order 
forms, but a 
human must 
approve the final 
purchase.

Level 4 Fully autonomous 
within a specific, 
bounded domain. 
Does not require 
human 
supervision for its 
core tasks.

Primarily System Developer/Provide
r

An autonomous 
inventory 
management 
agent that can 
reorder stock 
from approved 
suppliers when 
levels are low 
without human 
approval.

Level 5 Fully autonomous 
in open-ended 
environments. 
Can set its own 
sub-goals and 
dynamically plan 
across multiple 
domains.

System Developer/Provide
r

A general-
purpose financial 
agent that can 
independently 
research 
investments, 
rebalance a 
portfolio, and 
execute trades to 
meet a high-level 
goal like 
"maximize 
retirement 
savings".



Synthesis and Future Outlook
The multifaceted nature of Artificial Intelligence agents defies any single, simple classification. A truly nuanced 
understanding requires a synthesized, multi-axis framework that integrates the various taxonomies4from internal 
intelligence to operational environment to societal impact. This holistic perspective not only provides a 
comprehensive map of the current landscape but also illuminates the trajectory of future developments in this 
transformative field.

Agent Types

Implementation Approaches

Intelligence Types

System Architectures

Autonomy & Liability

As we have explored throughout this document, AI agents can be classified along multiple dimensions: by their 
internal intelligence and architecture (from simple reflex to learning agents), by their system organization (single 
agents vs. multi-agent systems), by their implementation and operational environment (physical vs. software, API-
based vs. GUI-based), by their function and interaction mode (information vs. transactional, reactive vs. 
proactive), and by their autonomy level and associated liability implications.

Each of these classification schemes highlights different aspects of agent design and behavior, providing 
complementary perspectives that together form a comprehensive understanding of the agent landscape. No 
single taxonomy is sufficient on its own, as each addresses different questions and concerns relevant to different 
stakeholders4from technical developers to product strategists to legal and regulatory experts.

The synthesis of these multiple dimensions reveals the rich diversity of agent systems and the complex interplay 
between technical capabilities, user experience, and societal implications. It also provides a roadmap for future 
development, highlighting the key decision points and trade-offs that shape the evolution of agent technology.



A Unified Multi-Axis Framework and Future 
Trends
To fully characterize any given AI agent, it must be located along several orthogonal axes of classification 
simultaneously. No single label is sufficient. This multi-faceted approach provides the richest and most complete 
description of an agent's design, capabilities, and role.

Consider, for example, an advanced autonomous delivery drone used by a logistics company. It can be 
comprehensively classified using the unified framework as follows:

Classical Taxonomy 
(Internal Intelligence)

The drone is a Learning, 
Utility-Based Agent. It is a 
Learning Agent because it 
continuously improves its 
performance by analyzing data 
from past deliveries to refine 
its navigation and battery 
management models. It is a 
Utility-Based Agent because 
its moment-to-moment 
decisions are not about a 
simple goal (e.g., "reach 
destination") but about 
maximizing a complex utility 
function that balances 
competing factors like delivery 
speed, energy consumption, 
flight path safety, and 
adherence to air traffic 
regulations.

System Architecture 
Taxonomy

The drone is a component 
within a Hierarchical Multi-
Agent System. It acts as a 
subordinate "worker" agent 
that receives its delivery 
missions from a high-level 
"master" fleet management 
agent. This central 
orchestrator makes strategic 
decisions for the entire fleet, 
while the drone focuses on the 
tactical execution of its 
assigned task.

Implementation & 
Environment Taxonomy

It is a Physical, API-Based 
Agent. It is Physical because it 
has a body with sensors and 
motors to interact with the real 
world. It is API-Based because 
it communicates with the 
central fleet management 
server through a secure, 
structured API to receive 
instructions and report its 
status, ensuring high reliability 
for its mission-critical 
operations.

Functional Taxonomy

It is a Transactional Agent. By successfully 
completing a delivery, it fulfills a service contract 
between the company and the customer, a clear 
transactional outcome.

Socio-Technical Taxonomy (Autonomy 
& Liability)

The drone operates at Level 4 or 5 Autonomy. It 
flies its route without direct human piloting (Level 
4) and may even be capable of dynamically 
rerouting around unforeseen obstacles or weather 
conditions without intervention (approaching Level 
5). Consequently, the primary liability for any 
accident or failure rests not with a remote "pilot" 
but with the developer and operator of the 
autonomous system.

Emerging Trends and the Future of Agentic Computing

The field of AI agents is evolving at a breakneck pace, driven by advances in foundation models and a clear 
market demand for automation. Several key trends are shaping the future of agentic computing:

Convergence and 
Hybridization

The distinct lines between agent 
classifications are beginning to 
blur. The future of robust agents 
lies in hybrid models. The rigid 
separation between API-based 
and GUI-based interaction will 
dissolve, replaced by agents 
that use a hierarchical tool-
selection strategy4preferring 
reliable APIs when available but 
falling back to flexible GUI 
interaction when necessary. 
Similarly, the distinction 
between Web-Based and 
Application-Specific agents will 
fade as AI Operating Systems 
(AIOS) and other orchestration 
frameworks provide a unified 
environment for agents to 
seamlessly interoperate across 
the open web and proprietary 
enterprise applications.

The Rise of General-
Purpose Agents

The ultimate ambition for many 
researchers and companies is 
the creation of a universal 
personal agent. This agent 
would be capable of performing 
nearly any digital task a human 
can, moving fluidly between 
browsing the web for 
information, using specific 
desktop applications to create 
content, and communicating 
with other people and agents to 
coordinate activities. The 
development of such agents 
represents a grand challenge for 
AI, requiring breakthroughs in 
reasoning, memory, and 
trustworthy autonomous action.

The Agent-Driven 
Ecosystem

The long-term vision extends 
beyond individual agents to a 
global, interconnected 
ecosystem of agentic systems. 
In this future, agents acting on 
behalf of individuals, 
corporations, and other entities 
will negotiate, transact, 
collaborate, and compete with 
one another in a digital 
landscape. This could 
fundamentally reshape the 
nature of digital commerce, 
information exchange, and 
labor. Instead of humans 
navigating websites and 
applications, our agents will 
interact with their agents, 
creating a new, automated layer 
of the economy. This vision 
presents both immense 
opportunities for efficiency and 
personalization, as well as 
profound challenges related to 
governance, security, and 
ensuring that this agent-driven 
world remains aligned with 
human values and objectives.

As these trends converge, we are moving toward a future where AI agents become ubiquitous, versatile tools that 
transform how humans interact with digital systems and with each other. The taxonomies and frameworks 
discussed in this document provide a foundation for understanding and navigating this evolving landscape, 
helping developers, organizations, and policymakers make informed decisions about how to harness the potential 
of agent technology while addressing its challenges and risks.

The comprehensive taxonomy presented here serves not only as a map of the current state of AI agents but also 
as a guide to their future development4highlighting the key dimensions along which innovation will continue to 
unfold and the critical considerations that will shape the responsible advancement of this transformative 
technology.


