

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2017 GRADE 11

MATHEMATICS PAPER 2

TIME: 2 hours

MARKS: 100

8 pages + 3 diagram sheets + 1 answer sheet

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS (Paper 2)

Time: 2 hours Marks: 100

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of SIX questions. Answer ALL the questions.
- Number your answers according to the numbering system that is used in the question paper.
- Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 4. Round-off the answer correctly to TWO decimal places, unless instructed otherwise.
- 5. Show ALL calculations, diagrams, graphs, etc. that were used in determining the answers.
- 6. Answers only will not necessarily be awarded maximum marks.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Reasons MUST accompany statements made in QUESTIONS 4, 5 and 6.
- 9. Question 3.1 must be answered on the ANSWER SHEET provided on Page 9. Detach this page and insert it into your ANSWER BOOK.
- 10. It is in your interest to write legibly (in blue ink) and present all answers neatly and logically.
- 11. Use the diagram sheets on pages 10, 11 and 12 to assist you in answering Questions 4, 5 and 6 respectively.

MATHEMATICS		3
Paper 2	GRADE 11	

QUESTION 1 [25]

In the diagram below, points P (-2; 4), R and M are the vertices of Δ PMR. Line MR passes through the origin. The angle between lines PR and MR is θ and PR||MS. The equation of line MS is given as y - 5x + 14 = 0.

1.1	Determine the equation of line MR.	(3)
1.2	Calculate the equation of line PR.	(4)
1.3	Calculate the size of θ , rounded-off to TWO decimal places.	(5)
1.4	Show that the coordinates of point R can be given as $(-4, -6)$.	(4)
1.5	Calculate the length of line MR, in simplified surd form.	(2)
1.6	If the area of $\Delta PMR = \frac{1}{2} PR.MR.\sin\theta$, calculate the area of ΔPMR .	(5)
1.7	Write down the coordinates of point S, given that PMSR is a parallelogram.	(2)

QUESTION 2

[26]

2.1 If $\cos \theta = -\frac{7}{25}$, and $\theta \in (180^\circ; 360^\circ)$ calculate the value of

14 tan θ ,

with the aid of a diagram and WITHOUT the use of a calculator.

(4)

2.2 Simplify WITHOUT the use of a calculator:

$$\frac{\cos(90^{\circ} + x).\sin(180^{\circ} + x)}{\tan 225^{\circ} - \cos^{2}(-x)}$$
 (6)

2.3 Determine the general solution of

$$2\cos 2\theta = -0.44. \tag{6}$$

2.4 Prove that

$$\frac{\tan\theta - \sin\theta}{1 - \cos\theta} = \tan\theta. \tag{5}$$

2.5 If $\alpha + \beta = 90^{\circ}$, determine WITHOUT the use of a calculator

$$\frac{\cos 700^{\circ}}{\sin 70^{\circ}} - \frac{\sin \alpha}{\sin(90^{\circ} - \beta)}.$$
 (5)

QUESTION 3

[14]

Given $f(x) = 2 \cos x + 1$ and $g(x) = 1 - \sin x$

3.1 Use the ANSWER SHEET provided on Page 9, and sketch the graphs of f and g for the interval $x \in [-90^\circ; 360^\circ]$.

(6)

3.2 Write down the amplitude of f.

(2)

3.3 Determine the values of x for which f(x) - g(x) = 0.

(6)

1 3
RADE 11

STATEMENTS AND REASONS ARE REQUIRED WHEN ANSWERING QUESTIONS 4, 5 AND 6.

QUESTION 4

[13]

4.1 Using the diagram below, prove that the line drawn perpendicular from the centre of a circle to a chord will bisect the chord.

(5)

4.2 In the diagram below, BD is the diameter of the circle with centre O. AB = AC, $\hat{O}_1 = 40^{\circ}$, CD = 40 mm and AB = 15 mm.

Calculate

4.2.1 \hat{B} . (2)

4.2.2 \hat{D} . (2)

4.2.3 the length of line AE. (4)

MATHEMATICS		7
	GRADE 11	
Paper 2	GREED	

QUESTION 5

[10]

Points J, K, L, M and N are on the circumference of the circle drawn below. JK = KL and JN = MN.

JL, JM and KN are straight lines. $\hat{J}_1 = x$ and $\hat{J}_3 = y$.

5.1 Write down TWO other angles, equal to x.

(3)

5.2 Prove that
$$\hat{Q}_2 = \hat{P}_2$$
.

(4)

5.3 Prove that
$$JQ = JP$$
.

(3)

71.00		8
MATHEMATICS	GRADE 11	G
Paper 2		

QUESTION 6

Two circles of different radii are drawn such that they intersect at points K and T respectively. Point P is the centre of the smaller circle and is also a point on the circumference of the larger circle. Line CP is produced to point A.

Prove that

$$6.1 \quad \hat{K}_2 = \hat{C}$$

(3)

6.2
$$\hat{K}_1 = 2\hat{T}_2$$

(4)

6.3
$$\hat{P}_4 = 2\hat{C} + \hat{K}_1$$

(5)

TOTAL: 100