

NATIONAL SENIOR CERTIFICATE

GRADE 10

NOVEMBER 2019

MATHEMATICS P2 (EXEMPLAR)

MARKS: 100

TIME: 2 hours

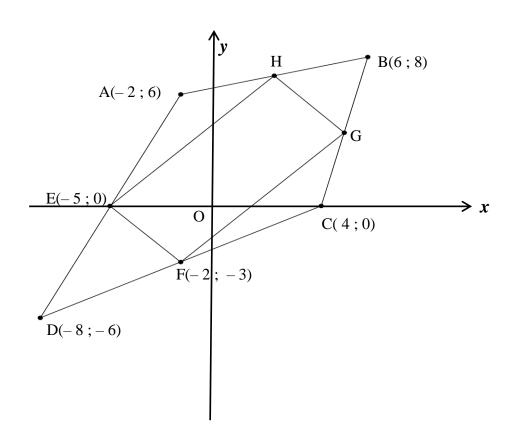
This question paper consists of 9 pages and an answer book of 15 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

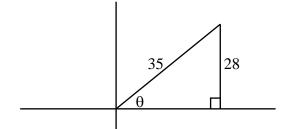
- 1. This question paper consists of 7 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write neatly and legibly.

1.1 A tuck shop at a particular school sells soft drink cans. The economic friendly club of this school collected soft drink cans for recycling for a period of 20 days. The number of cans collected was recorded and the data is given below:


48	50	52	59	60	68	73	76	76	76	
78	79	80	81	82	82	84	91	92	98	
1.1.1	Determine the median of the cans collected.							(1)		
1.1.2	Determine the value of the upper and lower quartiles.							(2)		
								(-/		
1.1.3	Calculate the interquartile (IQR) range of the data.								(2)	
1.1.4	Write down the minimum and maximum value of the data.							(1)		
1.1.5	Represent the 5 number summary on a box and whisker diagram.							(3)		
1.1.6	Comment on the box and whisker diagram.							(1)		

1.2 Telkom conducted a survey regarding the duration of telephone calls made by people in a certain community. The information was then tabulated as indicated below:

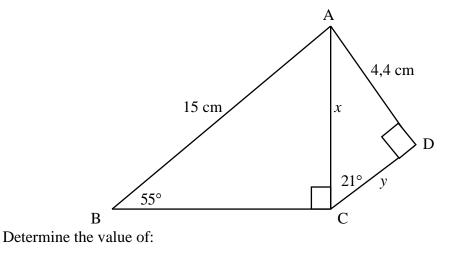
Duration (min)	No of calls (f_1)	Midpoint (x ₁)	$(f_1) \times (x_1)$
$2 \leq t < 5$	47	3,5	164,5
$5 \leq t < 8$	139	6,5	903,5
$8 \le t < 11$	211	9,5	2004,5
$11 \le t < 14$	102	12,5	1275
$14 \le t < 17$	58	15,5	899
$17 \le t < 20$	19	Α	В


1.2.1	Calculate the values of A and B .	(2)
1.2.2	Determine the approximate mean for the duration of the telephone calls.	(3)
1.2.3	In which interval does the 75 th percentile lie?	(2) [17]

In the diagram below, H and G are the midpoints of AB and BC respectively. The coordinates of A(-2; 6), B(6; 8), C(4; 0), D(-8; -6), E (-5; 0) and F(-2; -3) are given. The diagram is not necessarily drawn to scale.

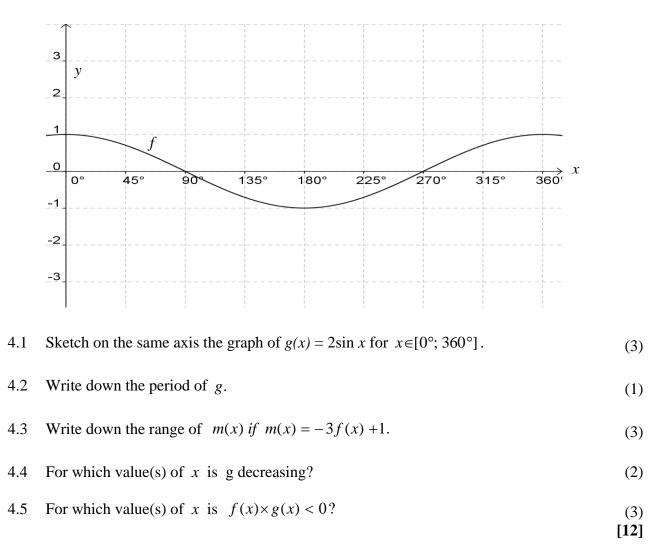
2.1	Show by calculation that $AB = BC$.	(5)
2.2	If it is further given that $AD = DC$, what type of quadrilateral is ABCD? Motivate your answer.	(2)
2.3	Determine the coordinates of G and H.	(5)
2.4	If line BD is drawn and it is also given that EH BD, prove that ΔAEH ΔCDB .	(4) [16]

3.1 In the diagram below, the value of $\sin \theta = \frac{28}{35}$


- 3.1.1 Without calculating the value of θ , determine the value of $\cos \theta$. (3)
- 3.1.2 Hence, or otherwise, prove that: $\sin^2 \theta + \cos^2 \theta = 1$ (3)
- 3.2 If $37\sin\theta + 35 = 0$ and $\tan\theta > 0$, determine with the help of a diagram, the value of $24\sec\theta 70\cot\theta$. (6)
- 3.3 Solve for x, if $x \in [0^\circ; 90^\circ]$. Give your answer correct to 1 decimal place.
 - $3.3.1 \quad 8\cos(x+10^\circ) = 5 \tag{3}$

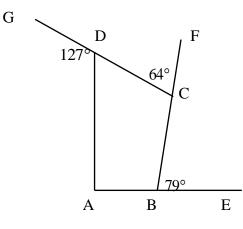
3.3.2
$$\operatorname{cosec} 2x = 2$$
 (3)

3.4 Prove the following without the use of a calculator:

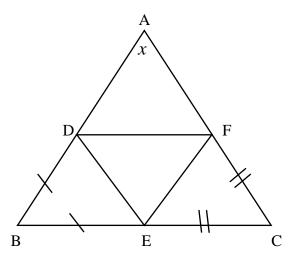

$$\frac{\sin 30^{\circ} \times \tan 60^{\circ}}{\tan 30^{\circ} \times \cos 60^{\circ}} = 3$$
(5)

3.5 In the diagram below, $\hat{ACB} = 90^\circ$, AB = 15 cm, AD = 4.4 cm, $\hat{B} = 55^\circ$, $\hat{ACD} = 21^\circ$ and $\hat{ADC} = 90^\circ$.

3.5.1 x (2) 3.5.2 y (2)

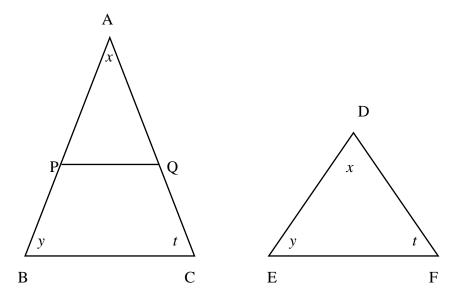

In the diagram below, the graph of $f(x) = \cos x$ is drawn for $x \in [0^\circ; 360^\circ]$

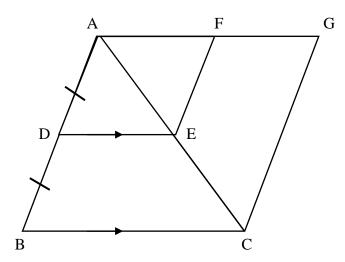
Give reasons for all statements and calculations in QUESTIONS 5 and 6.


QUESTION 5

5.1 The sides of a quadrilateral ABCD are produced such that AB is produced to E, BC is produced to F and CD is produced to G.

If $\hat{EBC} = 79^\circ$, $\hat{FCD} = 64^\circ$ and $\hat{GDA} = 127^\circ$, calculate the value of \hat{BAD} . (4)

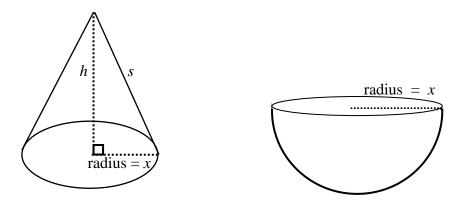

5.2 In \triangle ABC, D, E and F lie on sides AB, BC and CA respectively, so that BD = BE and CE = CF.


If $\hat{A} = x$, showing all calculations, determine the size of \hat{DEF} in terms of x. (4)

[8]

6.1 In the diagram below, $\triangle ABC \parallel \mid \triangle DEF$. ($\hat{A} = \hat{D} = x$, $\hat{B} = \hat{E} = y$ and $\hat{C} = \hat{F} = t$).

- 6.1.1 If it is further given that AP = DE and AQ = DF, prove that $\Delta APQ \equiv \Delta DEF$. (3)
- 6.1.2 Hence, or otherwise, prove that $PQ \mid\mid BC.$ (3)
- 6.1.3 If it is further given that AP = 3,5 cm, PB = 4 cm and AC = 8 cm, determine the length of DF.
- 6.2 In the diagram below, D is the midpoint of AB and DE || BC.


- 6.2.1 Give a reason why E is the midpoint of AC.
- 6.2.2 If it is further given that F is the midpoint of AG, ADEF is a parallelogram and that $BD = \sqrt{32}$, determine the length of CG. (5)

[16]

(1)

(4)

A fowl run is designed in the shape of a cone. A hemispherical bowl of water is placed close by for the chickens to drink from it. The cone and the hemisphere are drawn as shown below.

Total surface area of a cone = $\pi r^2 + \pi r s$, where *s* is the slant height of the cone. Total surface area of the hemisphere = $3\pi r^2$.

The radius of both the cone and the hemisphere is given as x units and it is further given that the total surface area of the cone = total surface area of the hemisphere . Find an expression for h, the height of the cone, in terms of x. (4)

[4]

TOTAL: 100