

# **PROVINCIAL EXAMINATION**

# **JUNE 2022**

# **GRADE 11**

MATHEMATICS PAPER 2

TIME: 2 hours

**MARKS: 100** 

7 pages and 2 diagram sheets

2

#### INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of 3 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off the answers to TWO decimal places, unless stated otherwise.
- 7. Write your name and class grade on the diagram sheet, detach and hand them in with your ANSWER BOOK.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the answers correctly according to the numbering system used in the question paper.
- 10. Write neatly and legibly.

#### **QUESTION 1**

1.1 The points D(-1; 2), E(4; -2), F(-5; -3) are vertices of  $\Delta DEF$ .

Determine:

|                                                                     | 1.1.1 | The gradient of DF                                                              | (2) |
|---------------------------------------------------------------------|-------|---------------------------------------------------------------------------------|-----|
|                                                                     | 1.1.2 | If line DE is perpendicular to DF, write down the gradient of DE                | (1) |
|                                                                     | 1.1.3 | The equation of the line DE in the form $y = mx + c$                            | (3) |
|                                                                     | 1.1.4 | The equation of a line parallel to DE passing through point F in the form $y =$ | (3) |
|                                                                     | 1.1.5 | If $G(6; y)$ is a point on DE, determine the value of y                         | (2) |
|                                                                     | 1.1.6 | The length of DF is equal to DE. What type of triangle is $\Delta DEF$ ?        | (5) |
|                                                                     | 1.1.7 | The area of triangle DEF                                                        | (2) |
| Quadrilateral PQRS is drawn below and has the following properties: |       |                                                                                 |     |

• RQ || SR

1.2

- The coordinates of R(-4; 1) and S(10; 3) are given
- The coordinates of Q(-7; y) and P(x; -9) are partially given



#### Determine:

| 1.2.1 | What type of quadrilateral is PQRS?                               | (1)                  |
|-------|-------------------------------------------------------------------|----------------------|
| 1.2.2 | The value of x if $RS = 15$ units                                 | (5)                  |
| 1.2.3 | The co-ordinates of T, the midpoint of RS                         | (2)                  |
| 1.2.4 | The value of y                                                    | (3)                  |
| 1.2.5 | The coordinates of W, a point on SP such that PQRW is a rectangle | (3)<br>[ <b>32</b> ] |

### **QUESTION 2**

2.1 In the diagram, P is a point in the first quadrant such that  $5\sin(90^\circ - \theta) - 3 = 0$ . R(k; 6) is a point in the second quadrant such that  $P\hat{O}R = 90^\circ$ .

In the diagram below:

- $P\hat{Q}R = 90^{\circ}$  and  $P\hat{O}R = 90^{\circ}$
- R(k; 6) is a point in the quadrant 2
- P is a point in quadrant 1 such that  $5\sin(90^\circ \theta) 3 = 0$



Determine:

2.1.1 
$$\sin\theta$$

(3)

4

- 2.1.2 The value of k (3)
- 2.2 Simplify fully:

2.2.1 
$$\frac{\tan 315^{\circ} + \cos 300^{\circ}}{\sin 150^{\circ} + \tan 135^{\circ}}$$
 (6)

2.2.2 
$$\frac{\sin(180^\circ + x)\cos(180^\circ - x).\sin 50^\circ}{\tan(315^\circ).\cos^2(360^\circ - x).\cos 140^\circ}$$
(6)

2.3 If 
$$x \in [-180^\circ; 180^\circ]$$
, determine  $\sin(x+10^\circ) - \cos(x-30^\circ) = 0$ . (7)

| MATHEMATICS |          | 5 |
|-------------|----------|---|
| (Paper 2)   | GRADE 11 | • |

- 2.4 In the quadrilateral below:
  - $A\hat{B}C = 36^\circ$ ,  $C\hat{B}D = 80^\circ$ ,  $B\hat{D}C = 60^\circ$
  - Lines AB = 74 m and BC = 52 m



Calculate:

| 2.4.1 | The value of BCD               | (1)                  |
|-------|--------------------------------|----------------------|
| 2.4.2 | The length of line CD          | (2)                  |
| 2.4.3 | The length of diagonal AD      | (4)                  |
| 2.4.4 | The area of quadrilateral ABCD | (4)<br>[ <b>36</b> ] |

### **QUESTION 3**

3.1 In the sketch below, O is the centre of the circle. Chord PQ is perpendicular to OM at M.



Prove the theorem that states that the line drawn from the centre of the circle perpendicular to a chord will bisect the chord.

- 3.2 In the sketch below:
  - O is the centre of the circle
  - AB = 10 cm and is perpendicular to OC at point D
  - C is a point on the circumference of the circle
  - The radius of the circle = 13 cm



Calculate the length of line DC. (5)

3.3 Calculate the remaining area in the circle if the area of  $\Delta OAB$  is excluded.

(5)

(3)

- 3.4 In the sketch below:
  - PQRS is a cyclic quadrilateral
  - Line AB is a tangent to the circle at point S
  - PQ = QR
  - PR = SR
  - PQ || SR
  - $\mathbf{B}\mathbf{\hat{S}}\mathbf{R} = x$



|       |                                                                                    | [32] |
|-------|------------------------------------------------------------------------------------|------|
| 3.4.3 | Prove that $PS = QR$ .                                                             | (3)  |
|       | angles that are equal to $\hat{S}_1$ .                                             | (6)  |
| 3.4.2 | Calculate the value of $\hat{S}_1$ in terms of x as well as the value of TWO other |      |
| 3.4.1 | Determine, giving reasons, FIVE angles that are equal to BSR.                      | (10) |

**TOTAL: 100** 

| MATHEMATICS |          | 8 |
|-------------|----------|---|
| (Paper 2)   | GRADE 11 |   |

## DIAGRAM SHEET 1

## **QUESTION 3**



| MATHEMATICS |          | 9 |
|-------------|----------|---|
| (Paper 2)   | GRADE 11 | - |

### **DIAGRAM SHEET 2**



