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1. Overview  
  
The COVID 19 pandemic has thrust the world into an unprecedented crisis and the 
immediate priority for governments has been the preservation of life and sustaining 
basic standards of living and security for citizens.  As the crisis unfolds and in the post-
crisis era, numerous issues will need to be addressed, including importantly how existing 
AI systems should be re-calibrated to cope with the new environment in which they are 
to function. Fundamentally we need to ask the questions “Is the AI system still relevant 
and trusted for the purpose it was developed?” and “How should the AI system be 
modified or modify itself so that it continues to be relevant and trusted?”  
  
This paper highlights options for evaluating and addressing AI system changes, 
facilitating answers to those questions resulting from the pandemic and indeed other 
dramatic changes. It is a sequel to an earlier White Paper available from the website of 
the inaugural Validate AI conference, 2019 (https://validateai.org/2019-conference).   
  
The Validate AI initiative focusses on issues of AI system trustworthiness and 
maintenance, promoting the discussion of topics such as population drift and model 
sensitivity that historically have been considered more in the academic sector and less 
so in practitioner communities. On the other hand, some sectors have taken the lead in 
other areas, such as stress testing. Banking is one example where financial regulators 
have adopted stress testing to test banks’ resilience to economic downturn. Thus, we 
draw on both academic research and industry practice in considering AI validation 
methodology. In the case of the current pandemic, problems of trustworthiness in AI 
systems that predict human behaviour and outcomes are likely to occur. Examples 
include AI systems to predict risk relating to patient health, banking fraud or tax evasion. 
The risks may well be less evident in AI systems predicting automatic/mechanistic 
outcomes such as autonomous driving, assembly line failure etc.      
  
There is now an urgent need to provide practical solutions to address pandemic related 
AI system issues that can be tested and deployed quickly, as well as testing more novel 
complex methods that can be adopted later. This paper is intended to serve as a starting 
point, and we invite experienced academics and practitioners in the field to help develop 
a robust set of principles to maintain AI system relevance in a time of global crisis. 
Solutions need to consider changing data feeds impacting the relevance of existing 
model features and weights and to explore appropriate re-alignment, re-build, or 
replacement options. We intend to develop a flow chart to enable easier identification 
and adoption of the most appropriate techniques to address different AI system 
misalignment issues.  
 

 
We invite experts in the field as well as other interested parties to email Dr Anthony 
Bellotti in the first instance to progress topics highlighted in this paper for your 
organisation or as a part of the wider group discussion.    
  

 
This paper is organized as follows. In Section 2 we provide a detailed overview of the 
problem and then we address tackling the problem in three parts:- 

• Monitoring (Section 3) 
• Testing for Sensitivity (Section 4) 
• Remedial actions (Section 5) 

https://img1.wsimg.com/blobby/go/d35ef8cf-a492-4592-a8b7-732eb997b13e/downloads/Validate%20AI%20White%20Paper.pdf?ver=1578674152860%20
https://img1.wsimg.com/blobby/go/d35ef8cf-a492-4592-a8b7-732eb997b13e/downloads/Validate%20AI%20White%20Paper.pdf?ver=1578674152860%20
https://validateaiconference.com/
https://validateaiconference.com/
mailto:Anthony-Graham.Bellotti@nottingham.edu.cn
mailto:Anthony-Graham.Bellotti@nottingham.edu.cn
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2. Problem Definition  
  
If we are predicting through a crisis or social/economic regime shift, the central problem 
is that our predictive algorithm P is making predictions based on historical data from 
one distribution, call it 𝐻𝐻, for future observations following a different distribution, call it 
𝐹𝐹, that reflects some major change or response to events. The central question we pose 
is:   

How reliable will P be as a predictor under the distributional change?   

As an example, we may have a credit risk model that was built on training data over a 
period of time when unemployment rate was 2 to 4%. What would happen if the 
unemployment rate increases to 7% or even 25%? (There are some economic projections 
that 25% is a plausible scenario.) We can usefully distinguish between theory-driven 
(iconic, mechanistic) and data-driven (empirical) models. The former are based on some 
kind of understanding of the mechanisms underlying the process (e.g. disease 
progression models in medicine, econometric models in finance, human behaviour 
models in retail). The latter are based purely on observed relationships in empirical data. 
This means that the former are at risk from mis-specified theory, while the latter are at 
risk if the circumstances and the relevant distributions change. This latter is, of course, 
exactly the state we find ourselves in now, and is what prompted this paper. 
Vulnerability to changing distributions means that AI models have a fundamental 
brittleness. In some situations (e.g. the financial sector) proposals have been made to 
combine the two types of model to yield less vulnerable approaches (e.g. Hand et al, 
2008). For discussion of the role and specification of models in statistical analysis, also 
see Box and Hunter 1965, Lehmann 1990 and Cox 1990.  
 
The issue here is one of robustness. How robust is the performance of the predictive 
algorithm to changes in the underlying distribution of data? To answer this question, we 
need to monitor and measure robustness1. If we determine that the AI system is not 
robust, we need to take some remedial action. Sections 3 and 4 of this article address 
these two activities respectively. The financial industry is familiar with model risk and 
considering the robustness of a model over time. In particular, strategies involving 
scenario and stress testing that we list below are well-known, along with other model 
management strategies (Black et al. 2018). Nevertheless, model risk for AI systems and 
managing models through a crisis is not well understood. As Noel Quinn, Chief Executive 
of HSBC said, "The one thing that I have learned in 34 years in banking is that credit risk 
models and scorecards will work really, really well except when there is a significant 
abnormal shock." [White and Cruise, 2020].  
 
Some further considerations are given below.  
 
 
 
 

 
1 The word “robustness” is also used in a somewhat different way by statisticians to refer to how 
robust a model is to deviations from modelling assumptions. Alternatively, the word “sensitivity” is 
used in statistics. 
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  Notation used in this article. 
P   = Predictive algorithm; 
𝑦𝑦   = Label to be predicted by P; 
x   = Vector of features used by P to predict 𝑦𝑦; 
𝐻𝐻  = Distribution of historic data (known); 
𝐹𝐹   = Distribution of future data (unknown); 
𝐹𝐹∗ = Estimate of distribution 𝐹𝐹. 

 
2.1 Is it really a distributional change problem?   
  
We discuss the problem in terms of moving from distribution 𝐻𝐻 to 𝐹𝐹, to emphasize that 
the change could be sudden. More generally we could talk about a distribution 
parameterized by time, 𝐷𝐷(𝑥𝑥; 𝑡𝑡) say. Then 𝐻𝐻 and 𝐹𝐹 are snapshots of 𝐷𝐷 at different times. 
On the other hand, it may also be useful to deal with the marginal 𝑀𝑀 of 𝐷𝐷 across all time 
(covering the periods for 𝐻𝐻 and 𝐹𝐹). Dealing with the marginal 𝑀𝑀 is a useful device for 
applying many statistical methods. In particular, it makes sense to build a statistical 
model on 𝑀𝑀 and think of crisis events in terms of extreme values from 𝑀𝑀, such as Value-
at-Risk that is used in finance (e.g. see Bellotti and Crook 2013). This approach is just a 
different way to express distributional change over time.  
 

2.2 How much change do we expect?   
  

While we may suppose we understand distribution 𝐻𝐻, at least from the empirical 
distribution of historical data, we may have very limited understanding of 𝐹𝐹. If we 
suppose we can know nothing, then no forecasts can be made. However, in reality, we 
might suppose that 𝐹𝐹 would have some resemblance to 𝐻𝐻. There are some 
characteristics we suppose would remain fairly steady, e.g. proportion of males/females 
in a population, whilst others we may imagine changing quite dramatically, e.g. 
unemployment rate. This sort of assumption is the first step in shifting from a purely 
data-driven model to a hybrid data/theory-driven model. Then, even though we may 
expect dramatic distributional changes, these changes could perhaps be estimated 
through economic models or through extrapolation from changes in distribution 𝐻𝐻 over 
time. These expectations of what 𝐹𝐹 will be like can be encapsulated in an expected 
distribution 𝐹𝐹∗ (at least theoretically).  We can then measure the discrepancy between 𝐻𝐻 
and 𝐹𝐹∗ using Kullback-Liebler Divergence or population stability index (see e.g. Wu and 
Olson 2010) or some other measure of distributional difference. However, we cannot 
quantify how far our expectation 𝐹𝐹∗ will deviate from 𝐹𝐹 so this will only be indicative of 
the difference between 𝐻𝐻 and 𝐹𝐹 itself.    
  
Of course, distributional change per se does not necessarily mean an impact on 
predictive performance, and mis-specified models can be as effective as appropriately 
specified models in some situations. This is nicely illustrated by the fact that Naïve Bayes 
models (also known as Idiot’s Bayes models) often yield excellent classification 
performance, even though they give biased estimates of class membership probabilities 
(see Hand and Yu, 2001). See also Qian (2020).  
  
On the optimistic side, there is evidence that predictive models can be resilient in many 
ways. The flat-maximum effect suggests that a broad range of modelling parameters 
based on fits to changing distributions often differ very little in terms of model fit and will 
lead to similar predictive outcomes (Overstreet et al. 1992).  
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2.3 Types of change that will affect the predictor  
  
A central question is what type of distributional changes will affect how P performs. 
There may be dramatic changes in distribution which have limited impact on predictive 
performance as well as small changes which have dramatic effect.  
   
Suppose, for example, that P's job is to predict some feature 𝑦𝑦 from a vector of features 
𝐱𝐱.   
  
We can think of marginal distributional change in 𝐱𝐱 or 𝑦𝑦.  These changes will affect P 
since values of 𝐱𝐱 and 𝑦𝑦 that are under-represented in 𝐻𝐻 will lead to less reliable 
predictions for those values. If those values become more frequent in 𝐹𝐹, then we will see 
P's overall performance decline overall. Additionally, if P is constructed on a model, the 
more mis-specified the model is, the more risk of error on under-represented values: 
another aspect of model risk. But can we quantify and forecast this decline in 
performance in some way?  We will describe augmented testing below as one way to 
answer this. 
  
We can also consider conditional distributional changes. In particular, 𝑦𝑦|𝐱𝐱. Such 
changes are much more problematic for P, since it means a change in the relationship 
that P is modelling. The hope here is that we can anticipate some of the changes in 
relationships between predictors and predictand, either through an understanding of the 
application area or perhaps through trends in 𝐻𝐻 (e.g. using time-varying coefficients in 
models of 𝐻𝐻; see Section 5.6).   
  
For a valuable discussion of these different types of perspectives, in the context of 
medical diagnostics, see Dawid (1976).  
  
Another type of change is when we stop receiving relevant data. An example of this can 
be found during the COVID pandemic, where certain items needed for calculating the 
RPI can no longer be collected. For example, surveys to collect prices are not being 
conducted (so straightforward missing values) and in other cases, such as restaurant 
meal prices, the things have ceased to exist - you can’t get a restaurant meal, so should 
it be included in the basket at all for RPI calculation? This is a particularly problematic 
type of change that can impact a predictor and can be for a wide variety of reasons, not 
just changes in human behaviour, ranging from instrument failure to changing definitions. 
The challenges arising from such dark data are described in Hand (2020), along with 
methods for tackling those challenges.  
 

2.4 Related statistical and machine learning topics 
 
The problem of robustness to changing distribution is related to the problem of 
population drift or concept drift (see e.g. Kelly et al, 1999; Adams et al, 2010; Webb et. al. 
2016). Typically, population/concept drift refers to gradual drift. However, we could also 
mean an abrupt change. Indeed, although this article considers predicting through a 
crisis, much of the discussion and methods proposed are relevant for any type of abrupt 
change, such as a sudden change in consumer behaviour due to the introduction of new 
technology or infrastructure (e.g. online grocery shopping). 
 
The problem is also related to domain adaptation (see e.g. Redko et. al. 2020). In the field 
of machine learning for computer vision, it has been found that systems developed on 
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one set of image data do not always translate well to another (Farhadi and Tabrizi 2008). 
Hence, in general, domain adaptation is the problem of developing an AI system under 
one domain (we would say distribution), but applying to another.  
 
Techniques from studies of population drift and domain adaptation may prove useful for 
tackling robustness of AI systems to a crisis. 
 

3. Monitoring 
 
3.1 Dynamic performance monitoring and Dashboards  
 
A fundamental starting point is to build and deploy AI systems enabled with an interface 
to allow monitoring of performance over time. This way it is possible to manually check 
the AI dynamically and pre-empt any degradation or shift in performance. The 
performance measures used should be considered carefully and should fit with the 
required decision-support task of the system. Some common measures for regression 
are mean square error (MSE), mean absolute error (MAE) and mean percentage error 
(PE). Some common measures for classification are accuracy, the Kolmogorov-Smirnov 
(KS) statistic and the area under the ROC curve (AUROC or AUC)2. As discussed earlier, 
two common measures of distributional change are divergence measures and 
population stability index (PSI). It is also important to consider measures specifically 
designed around the application; e.g. cost-based loss measures or using utility functions. 
A good discussion of business-specific measures can be found by Fawcett and Provost 
(2013). It is advisable to use an array of different measures, rather than relying on just one 
and using a dashboard helps visualize this information.  

An example of a dashboard for monitoring is shown in Case Study 1. 

 
2 The AUC is a popular measure both in industry and academia, along with Gini which is a linear transformation 
of AUC. However, it is worth mentioning that AUC has a fundamental flaw in being an incoherent measure and 
the authors do not recommend its use. Alternatives such as H-measure or KS statistic are available. For further 
information see Hand (2009) and Hand (2010). 
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Case Study 1: Monitoring AI using a Performance Dashboard 
 
A dashboard of diagnostics would be highly recommended in monitoring AI model 
performance. For example, a bank would typically monitor the performance of its 
classification models to predict personal loan default and develop such a system to help with 
this over time. This approach would be applicable in many other settings. Tax authorities is 
another example, used to maintain AI model performance to predict taxpayer non - 
compliance. Here are two example outputs from the dashboard user interface: 

The first figure shows change in distribution of scores output by the model over a six-month 
period. This shows these are largely unchanged but with a small reduction in high scores 
over time. The second figure shows a range of measures of performance over time for a 
classifier including KS and Gini for class discrimination, and log-odds (LNODDS) for 
probability calibration. In particular, the log-odds graph suggests a shift in the bias of 
probability estimation over time which may require further investigation. 
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4. Approaches to evaluating AI Systems through a crisis 
 

4.1 Augmented Testing  
  
Re-evaluate predictive algorithms taking account of the expected new distributional 
structure. The predictive algorithm would have been developed under 𝐻𝐻, but data from 
this distribution can be reweighted to emulate the distribution 𝐹𝐹∗ (our expectation of 𝐹𝐹). 
In particular, we consider reweighting of historical observations in test data to allow for a 
different marginal distribution over the predictor variables 𝐱𝐱 so as to be closer to 𝐹𝐹∗.  

 

+  Advantage: Allows the performance of the predictive algorithm to be assessed 
under novel conditions, so we see how good or bad it is under those conditions.   

 
- Disadvantage: Augmented testing depends on how accurate our expectation 𝐹𝐹∗ 

of 𝐹𝐹 is.   

- Disadvantage: The accuracy of the test depends on how much past data (from 𝐻𝐻) 
looks like 𝐹𝐹∗. This can however be measured using effective sample size (ESS) 
(Kish 1965) and this can be factored into the measure of our uncertainty in P.  

- Disadvantage: Since the goal is to reweight so that the marginal distribution over 
predictor variables 𝐱𝐱, this does mean that this method will not be affective for 
conditional changes in the relationship between 𝐱𝐱 and the outcome variable 𝑦𝑦. 

- Condition: Augmented testing will not work if the data change is due to a change 
in the way data is measured (e.g. measuring unemployment using a different 
formula). This type of change would need to be dealt with by a data 
transformation / conversion between the two measurement types, if that is 
possible. 

The term augmentation has different senses in statistics. The term as used here refers to 
the augmentation method to re-weight observation from one distribution to match that 
of another, as used within credit scoring models to adjust for selection bias (Crook and 
Banasik, 2005).  

  

4.2 Scenario testing  
  
The augmentation approach can be refined to test a model based on past data for some 
specific scenario, rather than the whole 𝐹𝐹∗ (for example, we might want to know how the 
model performed just on people who were unemployed if we are expecting 
unemployment rate to rise). A novel approach to scenario testing is given, eg, by Pesenti 
et al. (2019).  

 + Advantage: Allows focus on particularly important or sensitive cases.  
 + Advantage: Does not require a projection 𝐹𝐹∗ of 𝐹𝐹.  

  
-  Disadvantage: Requires sufficient historical data that looks like the scenario, but 

again ESS can be used to measure this.  

Even if insufficient data is available for a particular scenario, projections of predictions 
could be made from similar scenarios along with error on predictions. Consider the 
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simplified example in Figure 1. This shows estimates for some factor for different income 
bands. If we do not have sufficient data to infer an estimate for income band 96K+, 
projecting the estimates from the graph may suggest a point estimate around 10.2 with 
confidence intervals +/-3.0.   
 
 

 

Figure 1. Factor estimate by income bands (simulated data). The black line is a point 
estimate and the grey bands are 99% confidence intervals.  
  
 

  
Example: Augmented and Scenario Testing 
  
Suppose our original distribution 𝐻𝐻 includes only 4% unemployed people. After or 
during a crisis we expect (𝐹𝐹∗) this will increase to 12%. Then apply augmented testing 
by reweighting all unemployed people in the Test Data by 3, relative to employed 
people, when computing the performance measure. The following table shows 
results. We can see that with the augmented test where we anticipate a new 
distribution, the mean absolute error rises to 0.148 from 0.116. 
 

Example Employed Unemployed Test under 𝐻𝐻 
(unaugmented) 

Augmented 
test, under 𝐹𝐹∗ 

N 960 40 960 : 40 880 : 120 

Mean 
Absolute 
Error 

0.1 0.5 0.116 0.148 

 
The mean absolute error of 0.5 recorded in the 3rd column is a simple scenario test for 
data covering just unemployed people, demonstrating how poorly this model 
performs for this group (relative to the employed group). 
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4.3 Metamorphic Testing  
  
Test the model with extreme cases, such as scenario testing, and determine if the results 
are sensible based on some given rules (e.g. if tax revenue is being predicted and the 
model predicts a negative value under some circumstance, this suggests some problem 
with the model). See Xie et al. (2009) and Segura et al. (2018).  

+  Advantage: Does not require outcomes for test cases and if a predictive algorithm 
passes the metamorphic test it suggests it is behaving within realistic bounds. 

+    Does not require projection 𝐹𝐹∗ of 𝐹𝐹. 
  

-  Disadvantage: Requires a prior set of rules for the test. Expert judgement can be 
used for this purpose.  

  

4.4 Stress Testing  
  
Project how the model will behave and predict in future scenarios (e.g. a drop in GDP). 
This is slightly different from the scenario testing described above since scenario testing 
is based on historical data. In contrast, a stress test is a projection forward with new data 
(see eg Bellotti and Crook 2013 and Breeden 2016).  
  

+  Advantage: Gives us a useful indication of how future outcomes will look under 
different scenarios, such as crisis or downturn period.  
  

- Disadvantage: Assumes the underlying model is reliable and is suitable for 
projecting outcomes for new scenarios. However, augmented and scenario 
testing can be conducted to test the reliability of the model. Additionally, 
measuring uncertainty in the prediction can be used to adjust the outcome 
projected by the predictive algorithm to allow for conservatism. For example, a 
simplified example: if in some circumstances, a model predicts tax revenue from 
a particular source to be $10 million but our measure of uncertainty suggests an 
error of up to +/-20% then it may be preferable to provide a conservative 
prediction of $8 million.  
 

- Disadvantage: The results of a stress test cannot be empirically tested (since the 
outcome, typically, is never measured). However, metamorphic testing and 
expert judgement can be used to ensure projected outcomes are sensible.  
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Case Study 2: Stress Test of Dairy Lenders in New Zealand  
  
New Zealand has a large dairy farming sector and financial institutions lending to dairy 
farms are vulnerable to changes in the dairy market. Therefore in 2015, the Reserve 
Bank of New Zealand conducted a stress test to determine dairy lenders’ vulnerability 
(RBNZ 2016).   
  
Historic data could be used to associate default with break-even price for milk and 
loan-to-value ratio (LVR), which form the basis of a credit rating model. Two scenarios 
were considered to explore plausible downturn scenarios in the dairy market: scenario 
1 involves a 20% drop in land prices and a market value for milk below $5.25/kgMS 
(milk solid) until 2018; scenario 2 was more severe with a 40% drop in land price and 
market value for milk remaining below $5.25 until 2019. These two factors affect the 
credit rating, based on the historic association with break-even price and LVR. Hence 
through the course of each scenario, the distribution of credit ratings changes with 
these changing economic values, leading to projected default rates reflecting these 
changes.   
  
The figure below illustrates average credit rating projecting dairy loans through each 
scenario (grades CCC, B, BB and BBB represent high to lower relative risk).  
  

 

The outcome of the stress test was that scenario 1 projected to generate 3% bad debt 
expense (as percentage of exposure), whilst the more severe scenario 2 projected to 
generate 8% bad debt expense. Knowing this helped the Reserve Bank and the dairy 
lenders plan ahead, in particular in setting aside sufficient capital reserves.  
  

  

For stress testing, it is important to consider the uncertainty inherent in the model. After 
all, the model is itself just an estimate of reality. During normal conditions, the effect of 
this uncertainty may be minimal. However, during a crisis, with a significant change in 
distributions, model uncertainty may exacerbate poor predictive performance. In a 
recent study, Wang et al. (2020) used a Bayesian approach, treating model parameters 
as random objects, showing that extreme risk measures (e.g. 99% VaR) is extremely 
under-estimated if model uncertainty is not taken into account. 
 

 

 

  
Figure  2 . Stress test  results taken   from RBNZ (2016).   
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5.  Remedial solutions for AI Systems through a crisis 
 

Once we have evaluated an AI system, we can consider alternative remedial solutions 
depending on how well or badly the system is expected to behave during the crisis and 
resources available. Several responses are described below. 

We may be anticipating a crisis, in the middle of one or coming out of one. If we are 
entering a crisis period it certainly makes sense to take some remedial action. However, 
if we have already gone through and are coming out of a crisis, the horse has already 
bolted and perhaps it is too late to take action. However, it is important to recognise that 
coming out of the crisis may lead to another distributional change (𝐻𝐻 → 𝐹𝐹 → 𝐺𝐺) and we 
should also anticipate and adapt to these new conditions. 

 

5.1 Expert judgement  
  
We can expect models to become less reliable over time, hence we can draw on the 
judgement of experts who work in the application field to help determine how we may 
expect future trends to play out.  

+  Advantage: Experts will have broad experience across time and can apply their 
knowledge to determine future expectations. 

+  Advantage: It is less important to have an accurate estimate 𝐹𝐹∗ of 𝐹𝐹 as some of the 
other analytic methods that follow. A human expert can make a decision with less 
precise expectations. 
  

- Disadvantage: Experts can be subjective and do not always agree, or may miss 
the consequences of new developments.  

This approach can be supplemented by economic models and psychological models to 
provide some objective content to expert decisions.   

+  Advantage: Economic models are theory-driven models rather than empirical 
models, so may be less vulnerable to changes in data distribution.  

+ Experts and/or economic models can be hybridized with existing empirical 
predictive models (e.g. Hand et al. 2008). 

 
- Disadvantage: May miss changes in behaviour due to economic regime shift or 

major societal changes.  

A popular approach is to apply conservatism to automated decision making. For 
example, when assessing individuals for credit, set a more risk-averse threshold than 
would normal be applied based on a credit risk model output. This approach is 
especially appropriate when there is a lack of good information (i.e. 𝐹𝐹∗ cannot be 
estimated reliably) and, in particular, during the uncertain initial phases of a crisis. For 
example, considering the effects of COVID-19 on its credit card users and projecting a 
large drop in income, Capital One in the USA cut credit limits, making a conservative 
decision and essentially over-riding their automated credit limit algorithms (Picchi 2020). 
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5.2 Revert to simpler statistical models or use bagging  
  
Simpler models with less model structure and fewer parameters will be more robust to 
changes; whereas complex models may be more vulnerable. Simpler models will 
express general features and be less misled by local patterns in 𝐻𝐻. 

 + Advantage: Potentially more robust in the presence of change.  
  

-  Disadvantage: May be insufficiently rich to capture functionality of the predictive 
system. It will underperform a more complex algorithm, at least on the given data 
at the time of model development.  

Some complex models may actually be more resilient under change. In particular, 
bagging and ensemble approaches may be robust since they average across several 
underlying predictors. Therefore, this leads to another strategy which is to use bagging 
or ensemble models to supplement existing predictive algorithms.  

For further discussion and experiments in the context of Deep Learning and ensembles, 
see Qian et al. (2020).  
 

5.3 Augmentation  
  
If the existing predictive algorithm is quite poor, it may require a rebuild. Typically this 
will involve retraining a model. Typically only historical data, from 𝐻𝐻, will be available. 
However, the distribution can be reweighted to resemble the target expected 
distribution 𝐹𝐹∗ of 𝐹𝐹 (Crook and Banasik 2005), rather like with augmented testing 
described earlier.   

+  Advantage: We may hope that the model will give better predictive performance 
under the new future distribution following this update.  
  

- Disadvantage: Requires a rebuild of the model.  
- Disadvantage: This depends on how accurate our expectation 𝐹𝐹∗ of 𝐹𝐹 is.   
- Disadvantage: The training depends on how much past data (from 𝐻𝐻) looks like 

𝐹𝐹∗. This can however be measured using effective sample size (ESS) which can be 
factored into our understanding of the uncertainty in the predictive algorithm.  

- Caution: As with augmented testing, this will not work if the data change is due to 
a change in the way data is measured. 

 

5.4 Use of proxy data  
  
If insufficient data is available (or low ESS) for any of the methods outlined above, 
external data can be used as a proxy; e.g. in testing or model build. For example, if we 
want to test a novel GDP fall of 2% or more and this has already occurred in another 
country or region, then data can be borrowed from this region to supplement native data.  
This approach is also referred to as knowledge transfer learning within the domain 
adaptation community (Redko et. al. 2020). 

+  Advantage: More data means more predictive power. Essentially, the predictive 
algorithm is learning from experiences in other locations.  
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-  Disadvantage: This relies strongly on supposing that the proxy data is like the 
native population we are predicting on; i.e. that the distribution of the proxy data 
is sufficiently similar to H or F in some sense. For example, if I wish to predict 
credit risk amongst people in Massachusetts, it might make sense to use a proxy 
data set from New York, which is geographically close; but not from New Delhi. 

 
A good example of the use of alternative data was given by Church and Lucas (2020) 
who discussed economic forecasts through the COVID-19 crisis in UK. The official 
unemployment figures from the Office of National Statistics are lagged and hence 
unemployment affects due to the COVID-19 lockdown were not immediately apparent. 
Instead, HMRC payroll data was used which is up-to-date and hence does reveal 
unemployment effects due to COVID-19 lockdown.  

 

5.5 Recalibration  
  
Recalibration is already a popular technique to adjust models in the light of changing 
distributions. If a model rebuild using augmentation, or other method, is not plausible 
then the model can be recalibrated by applying a simple rule to adjust the output of P 
(typically a linear rule), so that the average outcome across different risk groups matches 
reality under the new distribution 𝐹𝐹. It is illustrated by the following example. 

 

  
Recalibration of probability estimates  
  
The following figure shows probability calibration. For different risk groups, the red 
graphs show average estimated probability of outcome (x-axes) against observed 
outcome (y-axes). The closer these are, the more reliable the predictor. Hence the 
diagonal blue line shows the target of a perfectly behaving predictor. We see how 
predictor P behaves under 𝐻𝐻 (left) and how it behaves under 𝐹𝐹∗ (centre) with a clear 
shift to under-estimating outcomes. We apply some transformation to the output of P 
and  get a better calibrated outcome (right).  
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Recalibration is useful if we are interested in the probability estimates given by the 
predictor. If we are only interested in scoring or rank ordering of observations it will not 
have any impact. In particular, for applications where the predictor is used to make 
decisions for observations giving a score above a certain threshold, recalibration will not 
have an impact; e.g. in automated loan application approval. Also, probability calibration 
in itself does not guarantee a good model. For example, suppose I have a data set of 
observations where 80% of them are type A and 20% are type B. If I have a very simple 
predictor that outputs probability 0.8 for being type A for all observations, it is perfectly 
calibrated but it will be useless for classification. Therefore, probability calibration should 
not be a stand-alone measure: a suite of measures are needed (see Case Study 1). 

 

5.6 Time-varying models  
  
Many of these methods may be good for dealing with unconditional distributional 
change (i.e. on 𝐱𝐱 or 𝑦𝑦), but may not be so successful on conditional distributional change 
(𝑦𝑦|𝐱𝐱). Proxy data may be useful for this, since some external data may already reflect 
future changes in risk factors. A more ambitious method is to model the predictive 
algorithm’s parameters over time and then project their development into the future. 
Such statistical methods exist, such as the use of time-varying coefficients in models 
(Djeundje and Crook 2019).  

 + Advantage: Allows projection of changes of risk factors into the future scenarios.  
  

- Disadvantage: Assumes that the transition from 𝐻𝐻 to 𝐹𝐹 is smooth and such 
projection can be made. If the change is expected to be abrupt, the change may 
not be possible to project.  

- Disadvantage: Requires sophisticated modelling techniques and historical data 
over a long time period.  

 

6. Summary 
 
We have discussed the problem of deploying predictive algorithms through a crisis, 
evaluating performance and robustness and suggested several remedial methods in 
anticipation of performance degradation. Solutions need to consider changing data 
feeds impacting the relevance of existing model features and weights and to explore 
appropriate re-alignment, re-build or replacement options. We would advocate a three-
pronged solution to a live AI system: 

1) The monitoring of existing system performance 
2) Remedial actions to address AI system instability 
3) Checking for robustness to mitigate future risks 

Careful consideration also needs to be taken in the commissioning of new AI systems as 
the condition that the ‘future will resemble the past’ (the inductive principle or the 
“uniformity of nature”) is an assumption and we may find that pre- and post- crises such 
as COVID-19, data may well be substantially different. 
 
This paper has, of course, been motivated by the COVID-19 crisis. Note, however, that 
the observations made in this paper are not the full story and there other facets of the 
problem of predicting through a crisis that we have not been able to explore. We are 
learning more as the crisis develops and affects users of predictive algorithms. We hope 
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the paper can form a point for further discussion and we welcome comments and 
feedback. We also hope that this paper will lead to further engagement with interested 
practitioners and academics in the form of workshops and webinars. 
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