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Abstract 
 In this report, I discuss the Support Vector Machine (SVM) models I have implemented 

help our fictional character Naitian choose the rights books to take with him on his trip to the 

Antarctic. Using data from Amazon’s large catalogue of book reviews, I have trained various 

types of SVMs to determine the books worth reading. There are four main sections to this report: 

Feature Extraction, Hyperparameter and Model Selection, Asymmetric Cost Functions and Class 

Imbalance and the Challenge. I use Python 3.9.1, scikit-learn 0.24, numpy 1.19, pandas 1.2.1 and 

matplotlib 3.3.3. All code can be found in appendix A. 

Feature Extraction 
To extract the features which would determine the dimensions of our set of training data, 

I used a dictionary to store the key-value pair of unique words and that word’s index (ordered by 

when it was found). These values were read in from only the reviews themselves and I removed 

any punctuation within them. I found there to be 7508 unique words in the data set; the word 

“the” appeared the most, 3894 times.  

To then test my model, I created feature matrices for each test review. They had a length 

equal to the number of words in the dictionary and had a value of 1 or 0 in to denote whether the 

word in that index appeared in this review. 

Hyperparameter and Model Selection 
Using the data I trained on in the previous section, I separate the reviews with binary 

labels, positive and negative (1 and -1, respectively). I use two different SVMs, linear and 

quadratic, to fit this data. I further consider 5 different performance metrics outlined below in 

Table 1 and, using a 5-fold cross-validation (CV) choose a value of ‘C’ that gives the best 

performance score. It is important to keep classification proportions across all subsets of the 

training data while splitting into k-folds so that each group is as generalized to the full group of 

data well as possible; it allows more consistency among post-processing statistical tests. 

Performance Measures C Performance Score 

Accuracy 0.0100       0.817000000 

F1-Score 0.0100       0.816003714 

AUROC 0.1000       0.904740000 

Precision 0.1000       0.825260644 

Sensitivity 0.0001       0.890000000 

Specificity 0.1000       0.828000000 

Table 1: 3.1.d The Best Setting for C for Each Performance Measure 
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It is of note that for higher values of C, the 5-fold variation will take longer to run on 

non-linearly separable data. This is precisely because a high value of C indicates that there is 

more penalty for misclassification, and this results in the soft-margin SVM becoming 

increasingly like a hard-margin SVM. Based on the data, I want to optimize for our AUROC 

metric. AUROC stands for Area Under the Receiver Operating Characteristic, this is a metric for 

discrimination. For unbalanced data, AUROC is more informative but can be over-optimistic 

about data sets with a larger number of negative examples. Our data do not happen to be that 

case. Here, our data are balanced. Table 2, below, shows the performance of each SVM given we 

use C = .1, the optimized value for the AUROC model. 

Performance Measures Performance Score 

Accuracy       0.816000000 

F1-Score       0.813309153 

AUROC       0.904740000 

Precision       0.825260644 

Sensitivity       0.803999999 

Specificity       0.828000000 

Table 2: Performance of SVM given AUROC optimized C = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another example of greater values of C turning our soft-margin SVM into a hard-margin 

SVM is on display in Figure 1 above, mainly since we note that the norm of the parameter vector 

converges to a single value for C values above C = 1. This means our model complexity 

converges. It is also of interest to know the ten most positive and negative words that our SVM 

has learned. This plot can be seen in Figure 2 on the next page. From this data, we can see how 

reviews can sometimes be extremely difficult for a classifier to judge correctly. For example, in 

this sentence, “I highly doubt that anyone has highly enjoyed reading this hot mess of a book,” I 

use for words which the SVM categorizes as positive words yet the sentence is obviously a 

negative one.  

Figure 1: L0-norm of our parameter vector (theta) plotted against C 
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For the hyperparameter selection of a quadratic kernel I used both a grid-search and a log 

of a random variable uniformly distributed over .001 and 1000. Again, we notice that the 5-fold 

CV performance is hurt with higher values of C since our soft-margin SVM is becoming stricter 

with the penalties it incurs. The ‘r’ value does not affect the performance of 5-fold CV since it is 

only a scalar by which the hyper-plane is shifted. We also note that grid search does a very good 

job of getting the breath of values in this range. It is exhaustive to the granularity of our 

choosing, which albeit is not very fine here. Nonetheless it out-performs the random search in 

this case since random search does a very good job a working more “fine grained” values it does 

not necessarily test any specific range of values and indiscriminately jumps around. 

Tuning Scheme C R AUROC 

Grid Search 10.0 10.0 0.9060799 

Random Search   2.298928   1.134497 0.9011200 

Table 3: Best C & r values for AUROC after Grid & Random Search 

Imagine we had a feature mapping, 𝜙(�̅�), that maps from the data to the same feature 

space as the one implied here and has a kernel of the form:(�̅� ∙ �̅�′ + 𝑟)2. Then doing the reverse 

math 𝜙(�̅�) = [𝑥1
2 , 𝑥2

2 , √2𝑥1𝑥2 , √2𝑟𝑥1 , √2𝑟𝑥2 , 𝑟]𝑇. A kernel allows us, in one simple 

operation, to produce the result of the application of the feature vector without having to go into 

that higher dimensional space, thus saving computational resources. 

Further, there is an idea that instead of a quadratic SVM, we could simply map the data to 

this higher dimensional space via this mapping, 𝜙(�̅�), and then learn a linear classifier in this 

higher-dimensional space. This is an undesirable solution since the higher-dimensional space 

could be intractably large. In instances, it could even be infinitely large; this means that the space 

and computational overhead to map to this space to fit our data is not worth the trouble and is 

even sometimes infeasible. Thus, the kernel method, of using some 𝜙(�̅�) to map directly to our 

desired space is much preferable. 

Figure 2: Ten Most Negative and Positive Words according to trained SVM coefficients 
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Next, I looked at the L1 penalty function and the Squared Hing Loss to see how a 

different penalty (i.e. regularization term) and a loss function would affect the optimization 

problem. Table 4, below, reports my findings. Below that, in Figure 3, I again plot the L0-norm 

of the parameter vector against C. This graph has notably the opposite shape as Figure 1. This is 

explained by the gradients of each function. The norm of theta here is increasing because as C 

increases our model complexity increases. If we were to use the squared Hinge Loss Functions, 

as opposed to the Hing Loss Function, there would be a greater penalty for more incorrectly 

classified points. This means the program would likely take longer to run as it is trying to 

optimize more. This has the effect of bringing the final SVM closer to the optimal solution. 

C AUROC 

0.001 0.50000 

0.010 0.75582 

0.100 0.8865 

1.000 0.8901 

Table 4: Best C that Maximizes AUROC (grid search for given rang of C) 

 
Figure 3: L0-norm of our parameter vector (theta) plotted against C 

Finally, I compared the SVM classifier with one of the earliest classification algorithms – the 

Perceptron. I used a class size of 500 so that the data would be linearly separable and evaluated 

the decision boundary given by the perceptron algorithm by checking the sign of the dot product 

of �̅� and the feature matrices given by our testing data. The perceptron performs worse than the 

linear SVM since the SVM is trying to find the maximum margin between data points which 

makes the margin more generalizable. Meanwhile, the perceptron algorithm is just trying to find 

any boundary that satisfies the linearly separability of the data and not trying to generalize. 

Classifier Accuracy 

Perceptron 0.822 

Linear SVM 0.836 

Table 5: Perceptron performance vs. SVM performance 
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Asymmetric Cost Functions and Class Imbalance 
 Here I began to work with unbalanced data. To cope with the imbalance of positive and 

negative reviews in a data set we can weight each slack variable base on whether or not that 

feature is positive or negative. This formulation is described below in Equation 1: 

 
Equation 1: Asymmetric Cost Function Formulation 

Here, if 𝑊𝑛 is much greater than 𝑊𝑝, we will see more penalty given to the negative features. 

This means our algorithm will be trying to optimize more for classifying the negative values 

correctly over the positive values. This would in turn decrease our false negatives from our 

training set and thus increase our sensitivity. 

Performance Measures Performance Score 

Accuracy          0.824000 

F1-Score          0.828125 

AUROC          0.904176 

Precision          0.809160 

Sensitivity          0.848000 

Specificity          0.800000 

Table 6: Performance of SVM using arbitrary class weights 

Like predicted, the sensitivity of this SVM with a weighted cost formulation was the most 

dramatically affected. Noticeably, AUROC was changed very little; this was also to be expected 

since the weights applied gave made the SVM optimize more for the negatively classified points 

which are still all under the curve. 

Class Weights Performance Measures Performance Score 

𝑊𝑛 = 1, 𝑊𝑝 = 1 Accuracy          0.840000 

𝑊𝑛 = 1, 𝑊𝑝 = 1 F1-Score          0.902913 

𝑊𝑛 = 1, 𝑊𝑝 = 1 AUROC          0.880200 

𝑊𝑛 = 1, 𝑊𝑝 = 1 Precision          0.877358 

𝑊𝑛 = 1, 𝑊𝑝 = 1 Sensitivity          0.930000 

𝑊𝑛 = 1, 𝑊𝑝 = 1 Specificity          0.480000 

Table 7: Performance of SVM with Imbalanced Data 

 From table 7, we note the sensitivity has drastically increased which means the number of 

false negatives has decreased. The F1-score also increased drastically which means the general 

accuracy of the SVM increased. These changes are attributed to the fact that there are not more 

true positives in the data than there were. Of further interest is the AUROC score which has 

decreased slightly and the specificity which has been absolutely slashed. This is due to the fact 

that there are now more true positives in the set than there were before. 
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Class Weights Performance Measures Performance Score 

𝑊𝑛 = 2.5, 𝑊𝑝 = 0.1 Accuracy          0.7660000 

𝑊𝑛 = 2.5, 𝑊𝑝 = 0.1 F1-Score          0.8389875 

𝑊𝑛 = 2.5, 𝑊𝑝 = 0.1 AUROC          0.8593437 

𝑊𝑛 = 2.5, 𝑊𝑝 = 0.1 Precision          0.9330113 

𝑊𝑛 = 2.5, 𝑊𝑝 = 0.1 Sensitivity          0.7625000 

𝑊𝑛 = 2.5, 𝑊𝑝 = 0.1 Specificity          0.7800000 

Noting here that we have mitigated the specificity problem by putting a greater weight on the 

negative classifications. Thus, the SVM places a higher price on their misclassification and now 

performs better. This has the unfortunate consequence of hurting other scores however. This is 

why, in the AUROC graph below, we notice that the Wp = Wn = 1 case outperforms my custom 

case. This can be attributed to the unbalanced dataset; in my trying to optimize the classifier for 

getting more true negatives the true positives went down considerably and thus hurt the overall 

accuracy and the AUROC score.  

 

 
Figure 4: AUROC Curve Comparison 

 

Challenge 
 For this part I categorized reviews as good, neutral, or negative, (1, 0, -1 respectively). I 

re-implemented, get_multiclass_training_data() as get_multiclass_training_data_custom() and 

get_heldout_reviews() as get_heldout_reviews_custom() so as to be able to break up the 

sentences into n-grams. This allows me to parse the sentences in by not only the individual 

words but also phrases within them. The user is able to specify how many words they want in a 

phrase. The purpose of this is to gain a greater understanding of how phrases of words effect the 

classification of reviews. For example, the words “best” and “worst” mean one thing on their 
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own (positive and negative, respectively) but together in an example of a 3-gram, “best of the 

worst,” has a neutral meaning. Thus, I hoped to glean more information about the review in this 

way.  

I further implemented a functionality that lets the user choose to discard words in the 

dictionary that are used over a defined percentage and under a certain percentage. For example, a 

word like “the” does not really tell us all that much even though it is the most used word from 

the Feature Extraction section of this report. This feature and other like it could obscure our data 

and throw off the classifier, thus the user may want to discard it. Further a word that is only used 

once may be considered an outlier since contexts are hard to glean from a single usage. Thus, 

selected a quadratic kernel to give the classifier another degree of freedom. 

 I selected my parameters based on the data used in dataset.csv. I trained my classifier on 

a subset of that data then tested on the other and optimized for accuracy. This is obviously not 

the most accurate for our dataset of heldout.csv but it is a decent guess-timate. I used the one-

versus-rest classifier. This splits my multi-class classificatier into one binary classification 

problem per class. I did this because, a binary classifier is trained on each binary classification 

problem and predictions are made using the model that is the most confident. 

I tried to implement scaling of the features based on their usage (how many times the 

word/phrase is used) instead of just a binary 0 or 1, but I had difficulty integrating this new 

weight method into the existing infrastructure given the time constraints. 

Conclusion 
I leave this report with a discussion of the greater implications of ML and NLP. If I were 

to implement this model on a news article comment section bias could arise in a lot of different 

forms. To name a few, if the sight is a predominantly left-leaning political organization the 

overwhelming majority of comments could vilify people with conservative views. Worse even, 

the comment section could be filled with internet trolls who spew hate-speech. In both of the 

situations the learned model will be biased to classify the contrarian views as negative. Thus, the 

classifier would perpetuate and reinforce the hate-speech and/or vilification that happens in these 

comment sections. 

This is why it is of the utmost importance for us computer (science) engineers to 

understand the dataset we are training on. The naïve way to mitigate this problem would be to 

train on as much data as possible so as to have the extreme views “drowned out” by the centrist 

ones. However, this is not fool-proof. More systematically, if a system were in place to classify 

the reviews as extreme, then these reviews could be excluded from training. This meaning the 

classifier could be shipped already having trained on hate-speech/vilifying comments and be able 

to toss out comments that are too similar to this category. But then this of course brings to light 

the issue of how to initially train. 
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[ ]: # EECS 445 - Winter 2021
# Project 1 - project1.py
# Due Friday Feb 12, 2021
# Dino Mastropietro

import pandas as pd
import numpy as np
import itertools
import string
import queue

from sklearn.model_selection import cross_val_score

from sklearn.svm import SVC, LinearSVC
from sklearn.model_selection import StratifiedKFold
from sklearn import metrics
from matplotlib import pyplot as plt

from helper import *

## for challenge
from sklearn.feature_extraction.text import CountVectorizer

def extract_dictionary(df):
"""
Reads a pandas dataframe, and returns a dictionary of distinct words
mapping from each distinct word to its index (ordered by when it was found).
Input:

df: dataframe/output of load_data()
Returns:

a dictionary of distinct words that maps each distinct word
to a unique index corresponding to when it was first found while
iterating over all words in each review in the dataframe df

"""
##our dictionary
word_dict = {}
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##used to find the number of occurances of each word
##word_occr = {}

exclist = string.punctuation
## remove punctuations and digits from old review
table_ = str.maketrans(exclist, ' '*len(exclist))

i = 0;
for sentence in df['reviewText']:

S = sentence.translate(table_)
s = S.lower()
for w in s.split():

if (w not in word_dict):
word_dict[w] = i
##word_occr[w] = word_occr.get(w, 0) + 1
## "the" occurs 3894 times, the most of any word in the␣

↪→training set
i += 1

return word_dict

def extract_dictionary_advanced(df, n_gram=2, max_occr=1.0, min_occr=0.0):
"""
Reads a pandas dataframe, and returns a dictionary of distinct words &␣

↪→phrases
mapping from each distinct word(s) a pair of values:
[its index (ordered by when it was found), number of occurances of the␣

↪→phrase/word]
This is essntially a paired back version of sklearn.feature_extraction.text.

↪→CountVectorizer
Input:

df: dataframe/output of load_data()
n: number of tokens to define N-grams
max_occr: % above which to ignore words, eg: "the" tells us nothing but␣

↪→occrs alot
min_occr: % below which to ignore words, eg: if "rug" only appears once␣

↪→it won't tell us too much
Returns:

a dictionary of distinct words that maps each distinct word
to a unique index corresponding to when it was first found while
iterating over all words in each review in the dataframe df

"""
##our dictionary
word_dict = {}
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##used to find the number of occurances of each word
word_occr = {}

## remove punctuations and digits from old review, keep apostrophes
exclist = '''!()-[]{};:"\, <>./?@#$%^&*_~''' + string.digits
table_ = str.maketrans(exclist, ' '*len(exclist))

i = 0;
for sentence in df['reviewText']:

S = sentence.translate(table_)
s = S.lower()
for w in s.split():

if (w not in word_occr):
word_occr[w] = 1
i += 1

else :
word_occr[w] += 1

if(n_gram > 1) : ## phrases can be powerful
words = s.split()
for g in range(0, len(words)-(n_gram-1), 1):

phrase = " ".join(words[g:g+n_gram])
if (phrase not in word_occr):

word_occr[phrase] = 1
#i += 1

else :
word_occr[phrase] += 1

print ("total words: ", i)
j = 0;
for w in word_occr :

if not (((word_occr[w] / i ) > max_occr) or ((word_occr[w] / i ) <␣
↪→min_occr)):

word_dict[w] = [j, word_occr[w]]
j+=1

print("kept words & phrases: ", j)
return word_dict

def generate_feature_matrix_custom(df, word_dict, n_gram = 1, n = 0):
"""
Reads a dataframe and the dictionary of unique words
to generate a matrix of {1, 0} feature vectors for each review.
*****ADDED**************
if n is specified to be non zero, the user chooses to generate a matrix␣

↪→that uses the # of
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occurances instated of just 1 or 0
**************************
Use the word_dict to find the correct index to set to 1 for each place
in the feature vector. The resulting feature matrix should be of
dimension (# of reviews, # of words in dictionary).
Input:

df: dataframe that has the ratings and labels
word_dict: dictionary of words mapping to indices

Returns:
a feature matrix of dimension (# of reviews, # of words in dictionary)

"""
number_of_reviews = df.shape[0]
number_of_words = len(word_dict)
feature_matrix = np.zeros((number_of_reviews, number_of_words))

## remove punctuations and digits from old review, keep apostrophes
exclist = '''!()-[]{};:"\, <>./?@#$%^&*_~''' + string.digits
table_ = str.maketrans(exclist, ' '*len(exclist))

i = 0
for sentence in df['reviewText']:

S = sentence.translate(table_)
s = S.lower()
for w in s.split():

if w in word_dict:
## add a 1 to the right spot in feature matrix [i][j]
feature_matrix[i][word_dict[w][0]] = word_dict[w][1] if not (n␣

↪→== 0) else 1

if(n_gram > 1) : ## phrases can be powerful
words = s.split()
for g in range(0, len(words)-(n_gram-1), 1):

phrase = " ".join(words[g:g+n_gram])
if (phrase in word_dict):

feature_matrix[i][word_dict[phrase][0]] =␣
↪→word_dict[phrase][1] if not (n == 0) else 1

i+=1

return feature_matrix

def generate_feature_matrix(df, word_dict):
"""
Reads a dataframe and the dictionary of unique words
to generate a matrix of {1, 0} feature vectors for each review.
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Use the word_dict to find the correct index to set to 1 for each place
in the feature vector. The resulting feature matrix should be of
dimension (# of reviews, # of words in dictionary).
Input:

df: dataframe that has the ratings and labels
word_dict: dictionary of words mapping to indices

Returns:
a feature matrix of dimension (# of reviews, # of words in dictionary)

"""
number_of_reviews = df.shape[0]
number_of_words = len(word_dict)
feature_matrix = np.zeros((number_of_reviews, number_of_words))

## remove punctuations from old review
exclist = string.punctuation
table_ = str.maketrans(exclist, ' '*len(exclist))

i = 0
for sentence in df['reviewText']:

S = sentence.translate(table_)
s = S.lower()
for w in s.split():

if w in word_dict:
## add a 1 to the right spot in feature matrix [i][j]
feature_matrix[i][word_dict[w]] = 1

i+=1

return feature_matrix

def performance(y_true, y_pred, metric="accuracy"):
"""
Calculates the performance metric as evaluated on the true labels
y_true versus the predicted labels y_pred.
Input:

y_true: (n,) array containing known labels
y_pred: (n,) array containing predicted scores
metric: string specifying the performance metric (default='accuracy'

other options: 'f1-score', 'auroc', 'precision', 'sensitivity',
and 'specificity')

Returns:
the performance as an np.float64

"""
if metric == "auroc":

return metrics.roc_auc_score(y_true, y_pred)

tn = metrics.confusion_matrix(y_true, y_pred)[0][0]
fn = metrics.confusion_matrix(y_true, y_pred)[1][0]
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fp = metrics.confusion_matrix(y_true, y_pred)[0][1]
tp = metrics.confusion_matrix(y_true, y_pred)[1][1]

if metric == "accuracy":
return ((tp + tn) / (tp + tn + fp + fn))

elif metric == "f1-score":
return 0 if ((2*tp + fp + fn) == 0) else ((2 * tp) / (2*tp + fp + fn))
## maybe use built in fuction if errors occur

elif metric == "precision":
return (tp / (tp + fp))

elif metric == "sensitivity":
return (tp / (tp+fn))

elif metric == "specificity":
return (tn / (tn+fp))

## This is a very useful function
## See the sklearn.metrics documentation

def cv_performance(clf, X, y, k=5, metric="accuracy"):
"""
Splits the data X and the labels y into k-folds and runs k-fold
cross-validation: for each fold i in 1...k, trains a classifier on
all the data except the ith fold, and tests on the ith fold.
Calculates the k-fold cross-validation performance metric for classifier
clf by averaging the performance across folds.
Input:

clf: an instance of SVC()
X: (n,d) array of feature vectors, where n is the number of examples

and d is the number of features
y: (n,) array of binary labels {1,-1}
k: an int specifying the number of folds (default=5)
metric: string specifying the performance metric (default='accuracy'

other options: 'f1-score', 'auroc', 'precision', 'sensitivity',
and 'specificity')

Returns:
average 'test' performance across the k folds as np.float64

"""
##StratifiedKFold makes subsets of roughly equal size for us
scores = []
skf = StratifiedKFold(n_splits=k)

for train_index, test_index in skf.split(X,y):
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X_train, X_test = X[train_index], X[test_index] ## populate arrays with␣
↪→inicies of training/

y_train, y_test = y[train_index], y[test_index] ## testing data for␣
↪→both data and labels

clf.fit(X_train, y_train) ## fit the svm model to this data
if (metric == "auroc"):

y_pred = clf.decision_function(X_test)
else :

y_pred = clf.predict(X_test)

##Put the performance score of the model of each fold in the scores␣
↪→array

scores.append(performance(y_test, y_pred, metric))

## this is the real CV implementation
## used in testing to verify my implementation
## only checks for 'accuracy' metric
## check = cross_val_score(clf, X, y, cv=k)

return np.array(scores).mean()

def select_classifier(penalty='l2', c=1.0, degree=1, r=0.0,␣
↪→class_weight='balanced'):

"""
Return a linear svm classifier based on the given
penalty function and regularization parameter c.
"""
if degree == 1:

if penalty == 'l2':
## will not use LinearSVC function here to match with classes␣

↪→implementation
clf = SVC(kernel='linear', C=c, degree=degree, coef0=r,␣

↪→class_weight=class_weight)
else :

clf = LinearSVC(penalty='l1', dual=False, C=c,␣
↪→class_weight='balanced', max_iter=10000)

elif degree == 2 :
clf = SVC(kernel='poly', C=c, degree=degree, coef0=r,␣

↪→class_weight=class_weight, gamma='auto')

return clf

def select_param_linear(X, y, k=5, metric="accuracy", C_range = [],␣
↪→penalty='l2'):
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"""
Sweeps different settings for the hyperparameter of a linear-kernel SVM,
calculating the k-fold CV performance for each setting on X, y.
Input:

X: (n,d) array of feature vectors, where n is the number of examples
and d is the number of features
y: (n,) array of binary labels {1,-1}
k: int specifying the number of folds (default=5)
metric: string specifying the performance metric (default='accuracy',

other options: 'f1-score', 'auroc', 'precision', 'sensitivity',
and 'specificity')

C_range: an array with C values to be searched over
Returns:

The parameter value for a linear-kernel SVM that maximizes the
average 5-fold CV performance.

"""

best_C_val=0.0
best_performance=0.0

for c in C_range :
clf = select_classifier(penalty, c)
perf = cv_performance(clf, X, y, k, metric)
print (" - C:", '{0:5}'.format(c), " perf: ", '{0:5}'.format(perf)) ##␣

↪→debug output
if perf > best_performance : ## only record stricly better performances

best_C_val = c
best_performance = perf

print (metric, "C: ", best_C_val, " Perf: ", best_performance) ## debug␣
↪→output

return best_C_val

def test_SVM(X_train, Y_train, X_test, Y_test, C, penalty = 'l2',␣
↪→metric="accuracy", class_weight='balanced'):

clf = select_classifier(penalty=penalty, c=C, class_weight=class_weight)
clf.fit(X_train, Y_train)
y_pred = clf.predict(X_test) if (metric!="auroc") else clf.

↪→decision_function(X_test)

return performance(Y_test, y_pred, metric)

def eval_decision_boundary(THETA, X_test, Y_test, metric="accuracy"):

y_pred = []
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for feat_vec in X_test:
pred = np.dot(THETA, feat_vec)
if pred > 0 :

y_pred.append(1)
else :

y_pred.append(-1)

return performance(Y_test, y_pred, metric)

def train_SVM(X_train, Y_train, C, dict_bin, penalty = 'l2', metric="accuracy"):

clf = select_classifier(penalty, C)
clf.fit(X_train, Y_train)
word_list = list(dict_bin.keys())

cpys = clf.coef_[0] ## need to cpy because sorted() will perform operation␣
↪→in place

idxs = range(len(cpys))
manm = sorted(cpys)
maxAndmin = [idxs for _,idxs in sorted(zip(cpys,idxs))]

words = ['']*20
vals = []

maxidxs = maxAndmin[-10:]
minidxs = maxAndmin[:10]

print("METRIC: ", metric)
for i in range(0,20):

if (i < 10) :
words[i] = word_list[minidxs[i]]
vals.append(manm[i])

else :
words[i] = word_list[maxidxs[i-10]]
vals.append(manm[len(manm)-20+i])

print("Plotting the number of 10 Most Negative and Positive SVM␣
↪→coeficients")

vals = np.round(vals,decimals=3)
fig, ax = plt.subplots()

width = 0.75 # the width of the bars
ind = np.arange(len(vals)) # the x locations for the groups
ax.bar(ind, vals, width, color="blue")
ax.set_xticks(ind+width/2)
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ax.set_xticklabels(words, minor=False)

for i, v in enumerate(vals):
ax.text(i, v, str(v),rotation=70)

plt.xlabel('Words')
plt.ylabel('SVM coeficients')
plt.title('10 Most Negative and Positive SVM coeficients')
plt.bar(range(len(vals)), vals)
fig.autofmt_xdate()
plt.savefig('Extremes-'+penalty+'_penalty.png')
plt.close()

def plot_weight(X,y,penalty,C_range):
"""
Takes as input the training data X and labels y and plots the L0-norm
(number of nonzero elements) of the coefficients learned by a classifier
as a function of the C-values of the classifier.
"""

print("Plotting the number of nonzero entries of the parameter vector as a␣
↪→function of C")

norm0 = np.empty(len(C_range), dtype=np.float64)

## Here, for each value of c in C_range, I append to norm0 the L0-norm of␣
↪→the theta

## vector that is learned when fitting an L2- or L1-penalty, degree=1 SVM␣
↪→to the data (X, y)

i = 0
for c in C_range:

clf = select_classifier(penalty, c)
cv_performance(clf, X, y, 5, "auroc")
norm0[i] = np.linalg.norm(clf.coef_[0], ord=0)
i+=1

#Plotting
plt.plot(C_range, norm0)
plt.xscale('log')
plt.legend(['L0-norm'])
plt.xlabel("Value of C")
plt.ylabel("Norm of theta")
plt.title('Norm-'+penalty+'_penalty.png')
plt.savefig('Norm-'+penalty+'_penalty.png')
plt.close()
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def train_perceptron(X_train, Y_train):
"""
Takes in an input training data X and labels y and
returns a valid decision boundary theta, b found through
the Perceptron algorithm. If a valid decision boundary
can't be found, this function fails to terminate.

# NOTE: use the first 500 points of the dataset
# provided & this functions should converge
"""

k = 0
theta = np.zeros(X_train.shape[1])
b = 0
mclf = True
while mclf:

mclf = False
for i in range(len(X_train)):

if Y_train[i] * (np.dot(theta, X_train[i]) + b) <= 0:
theta = theta + 0.1 * (Y_train[i] - np.dot(theta, X_train[i]))␣

↪→* X_train[i]
b += Y_train[i]
mclf = True
k += 1

return theta, b

def select_param_quadratic(X, y, k=5, metric="accuracy", param_range=[]):
"""

Sweeps different settings for the hyperparameters of an␣
↪→quadratic-kernel SVM,

calculating the k-fold CV performance for each setting on X, y.
Input:

X: (n,d) array of feature vectors, where n is the number of examples
and d is the number of features

y: (n,) array of binary labels {1,-1}
k: an int specifying the number of folds (default=5)
metric: string specifying the performance metric (default='accuracy'

other options: 'f1-score', 'auroc', 'precision',␣
↪→'sensitivity',

and 'specificity')
param_range: a (num_param, 2)-sized array containing the

parameter values to search over. The first column should
represent the values for C, and the second column should
represent the values for r. Each row of this array thus
represents a pair of parameters to be tried together.
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Returns:
The parameter values for a quadratic-kernel SVM that maximize
the average 5-fold CV performance as a pair (C,r)

"""
best_C_val,best_r_val = 0.0, 0.0
best_performance = 0.0

## Random Search :
## Log-Uniform Distribution
## p2 = np.random.default_rng().uniform(0,1000,(25,2))
## param_range = np.log10(p2)

for p_r in param_range :
## Grid Search :
clf = select_classifier('l2', p_r[0], 2, p_r[1],'balanced')
perf = cv_performance(clf, X, y, k, metric)
#print (" - C:", '{0:5}'.format(p_r[0]), " r: ", '{0:5}'.

↪→format(p_r[1]), " perf: ", '{0:5}'.format(perf))
if perf > best_performance :

best_C_val = p_r[0]
best_r_val = p_r[1]
best_performance = perf

# print (metric, "C: ", best_C_val, "r: ", best_r_val, " Perf: ",␣
↪→best_performance)

# This is very similar to select_param_linear, except
# the type of SVM model
return best_C_val,best_r_val

def get_multiclass_training_data_custom(class_size=750, n_gram = 1 , max_occr =␣
↪→1.0, min_occr = 0.0, n = 0):

"""
Reads in the data from data/dataset.csv and returns it using
extract_dictionary and generate_feature_matrix as a tuple
(X_train, Y_train) where the labels are multiclass as follows

-1: poor
0: average
1: good

Also returns the dictionary used to create X_train.
Input:

class_size: Size of each class (pos/neg/neu) of training dataset.
"""
fname = "data/dataset.csv"
dataframe = load_data(fname)
neutralDF = dataframe[dataframe['label'] == 0].copy()
positiveDF = dataframe[dataframe['label'] == 1].copy()
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negativeDF = dataframe[dataframe['label'] == -1].copy()
X_train = pd.concat([positiveDF[:class_size], negativeDF[:class_size],␣

↪→neutralDF[:class_size]]).reset_index(drop=True).copy()
dictionary = project1.extract_dictionary_advanced(X_train, n_gram = n_gram␣

↪→, max_occr = max_occr, min_occr = min_occr)
Y_train = X_train['label'].values.copy()
X_train = project1.generate_feature_matrix_custom(X_train, dictionary,␣

↪→n_gram = n_gram, n = n)

return (X_train, Y_train, dictionary)

def get_heldout_reviews_custom(dictionary, n_gram = 1, n = 0):
"""
Reads in the data from data/heldout.csv and returns it as a feature
matrix based on the functions extract_dictionary and generate_feature_matrix
Input:

dictionary: the dictionary created by get_multiclass_training_data
"""
fname = "data/heldout.csv"
dataframe = load_data(fname)
X = project1.generate_feature_matrix_custom(dataframe, dictionary, n_gram =␣

↪→4, n = 0)
return X

def main():

#############################
#### ####
#### Feature Extraction: ####
#### ####
#############################

X_train, Y_train, X_test, Y_test, dictionary_binary =␣
↪→get_split_binary_data()

IMB_features, IMB_labels = get_imbalanced_data(dictionary_binary)
IMB_test_features, IMB_test_labels = get_imbalanced_test(dictionary_binary)
print(len(X_train[0])) # 7508
print(((X_train.sum())/ 1000)) #53.794 = avg number of non-zero features

############################################
#### ####
#### Hyperparameter and Model Selection ####
#### ####
############################################

####### 3.1 Hyperparameter Selection for a Linear-Kernel SVM ########
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C_range = np.logspace(-3, 3, 7)
penalty = 'l2'
mets = ["accuracy", "f1-score", "auroc", "precision", "sensitivity",␣

↪→"specificity"]

for m in metrics:
C = select_param_linear(X_train, Y_train, 5, m, [.1], penalty)
print(m, ": ", C)

plot_weight(X_train, Y_train, 'l2', C_range)

#train_SVM(X_train, Y_train, .1, dictionary_binary, penalty, "accuracy")

######## 3.2 Hyperparameter Selection for a Quadratic-Kernel SVM ########
p_r = [[C, r] for C in np.logspace(-3, 3, 7) for r in np.logspace(-3, 3, 7)]

auroc_QC = select_param_quadratic(X_train, Y_train, 5, "auroc", p_r)
#auroc C: 2.2989280947804698 r: 1.1344975765620917 Perf: 0.90112

######## 3.4 Linear-Kernel SVM with L1 Penalty and Squared Hinge Loss␣
↪→########

C2 = np.logspace(-3, 0, 4)

C = select_param_linear(X_train, Y_train, 5, "auroc", C2, 'l1')
print("auroc l1: ", C)

plot_weight(X_train, Y_train, 'l1', C2)

######## 3.5 Perceptron Classifier ########
X_trainP, Y_trainP, X_testP, Y_testP, dictionary_binaryP =␣

↪→get_split_binary_data(class_size=500)

THETA, B = train_perceptron(X_trainP, Y_trainP)

perceptron_perf = eval_decision_boundary(THETA, X_testP, Y_testP,␣
↪→metric="accuracy")

SVM_perf = test_SVM(X_trainP, Y_trainP, X_testP, Y_testP, .1,␣
↪→penalty, metric="accuracy")

print("perceptron_perf : ", perceptron_perf)
print("SVM_perf : ", SVM_perf )

# Dot product of Theta and X_Test points
# check if it's +/- then evaluate against Y_test and compute accuracy␣

↪→performance
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#######################################################
#### ####
#### Asymmetric Cost Functions and Class Imbalance ####
#### ####
#######################################################

######## 4.1 Arbitrary class weights ########
c_w = {-1:1,1:10}

for m in mets :
perf_score = test_SVM(X_train, Y_train, X_test, Y_test, 0.1,␣

↪→penalty='l2', metric=m, class_weight=c_w)
print(m, " : ", perf_score)

######## 4.2 Imbalanced Data ########
c_w2 = {-1:50,1:1}

for m in mets :
perf_score = test_SVM(IMB_features, IMB_labels, IMB_test_features,␣

↪→IMB_test_labels,
0.1, penalty='l2', metric=m, class_weight=c_w2)

print(m, " : ", perf_score)

######## 4.3 Choosing appropriate class weights ########

best_scores = {}

for m in mets :
best_scores[m] = np.array([0, 0, 0])

mets = ["auroc", "specificity"]

for wn in range(1,10, +2) :
for wp in range(1,10, +2)

print(" Wp:", '{0:3}'.format(wp/10), " Wn: ", '{0:3}'.format(wn/10))
c_w3 = {-1:wn/10,1:wp/10}
for m in mets :

clf = select_classifier(penalty='l2', c=.1, class_weight=c_w3)
score = cv_performance(clf, IMB_features, IMB_labels, k=5, metric=m)
print(" - score:", '{0:7}'.format(score), " metric: ", m)
if score > best_scores[m]

best_scores[m] = score
print(best_scores)

######## 4.4 The ROC Curve ########
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c_w = {-1:1,1:1}
clf1 = select_classifier(penalty='l2', c=.1, class_weight=c_w)
score1 = cv_performance(clf1, IMB_features, IMB_labels, k=5, metric='auroc')

c_w_custom = {-1:2.5,1:.1}
clf2 = select_classifier(penalty='l2', c=.1, class_weight=c_w_custom)
score2 = cv_performance(clf2, IMB_features, IMB_labels, k=5, metric='auroc')
print("score1: ", score1, " score2: ", score2)

clf1_disp = metrics.plot_roc_curve(clf1, X=IMB_test_features,␣
↪→y=IMB_test_labels,

name='Wn=1 Wp=1')
clf2_cisp = metrics.plot_roc_curve(clf2, X=IMB_test_features,␣

↪→y=IMB_test_labels,
name='Wn=2.5 Wp=.1', ax=clf1_disp.ax_)

clf1_disp.figure_.suptitle("AUROC curve comparison")

plt.savefig('AUROC_Curve.png')
plt.close()

#######################################################
#### ####
#### Challenge ####
#### ####
#######################################################
n_gram = 2
max_occr = .8
min_occr = 0.0003
weight = 0

multiclass_features, multiclass_labels, multiclass_dictionary =␣
↪→get_multiclass_training_data_custom(750, n_gram, max_occr, min_occr, weight)

print("********** got test feats & labels, making train feats *********")

heldout_features = get_heldout_reviews_custom(multiclass_dictionary,␣
↪→n_gram, weight)

print("********** got train heldout features, making model... *********")

model = SVC(kernel='poly', C=.75, degree=2, coef0=2,␣
↪→decision_function_shape='ovr', gamma='scale')

print("********** made the model, fitting... *********")

model.fit(multiclass_features, multiclass_labels)
print("********** fit the model, predicting... *********")
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predictions = model.predict(heldout_features)
print("********** predicted, saving... *********")

generate_challenge_labels(predictions, 'donatom')
print("**************** DONE ****************")

if __name__ == '__main__':
main()
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