
NUMA Allocators in Real-Time Multiprocessor
Systems

Bhavesh Bareja
Computer Engineering
University of Michigan

Ann Arbor, USA
bhaveshb@umich.edu

Bradley Baker
Computer Engineering
University of Michigan

Ann Arbor, USA
bvbaker@umich.edu

Juechu Dong
Computer Engineering
University of Michigan

Ann Arbor, USA
joydong@umich.edu

Paul George
Computer Engineering
University of Michigan

Ann Arbor, USA
egpaul@umich.edu

Dino Mastropietro
Computer Engineering
University of Michigan

Ann Arbor, USA
donatom@umich.edu

Abstract—This project aims to compare, adapt, and explore
alternatives to existing memory allocators for Non-Uniform
Memory Access (NUMA) architectures within the context of
soft real-time systems. We compared glibc’s Malloc, TCMalloc
and a modified TLSF where we attempted to add huge page
allocation, hoping to reduce the number of page faults and TLB
evictions. Our findings show that TCMalloc has a very short
average latency for allocation but upon start up will have long
latencies.

I. INTRODUCTION

Non-Uniform Memory Access (NUMA) systems are
becoming more ubiquitous as more sophisticated CPU-
memory architectures are designed to support the growing
memory channel count and core count. The cores experience
lower memory access latencies for in-node access, while
cross-node memory access has additional latency from
inter-node connections. Allowing NUMA gives architects
more flexibility on CPU-Memory architecture, for example
it enables multi-socket design. However, the use of NUMA
has been considered as a source of non-determinism in the
real-time domain, since the problem of solving for worst-case
memory access latency is intractable and the worst run-time
is bounded by the worst-case memory latency.

Fig. 1. A NUMA System

As opposed to traditional hard real-time systems where
the deadline cannot fail under any circumstances, modern
real-time tasks are often ”soft” real-time, where tail latency
instead of worst-case latency is the performance target. Unlike
hard real-time systems, for example aviation computers where
failing a deadline means total failure to meet the performance
target, soft real-time applications like video games can take

some failures as long as it doesn’t happen too often. [1]

A common solution for multi-threaded real-time
applications running on NUMA, occasionally even multicore
real-time applications in general, is to isolate each node
and statically schedule each process/thread to a node and
statically place its corresponding memory to the same node.
This strategy greatly limits CPU and memory utilization and
throughput due to poor load balance. As modern real-time
applications offer more bandwidth challenges rather than
stricter deadlines, and more ”soft” deadlines, it’s worth
reevaluating the pros and cons of this strategy. [2]

Popular open sources and widely used allocators are either
not designed with real-time systems in mind, or do not
work with multi-core systems. General purpose allocators
like tc malloc routinely reorder existing blocks to deallocate
empty pages, resulting in non-constant allocation/deallocation
latency. This feature increases memory utilization but fails to
meet tail-latency requirements. Dynamic real-time allocators
like tlsf guarantee constant allocation/deallocation time but
are often designed with single-core, light-weight embedded
systems in mind. On multi-core architectures, these allocators
divide the system into multiple nodes, each having a dedicated
core, memory, and memory management page. Each thread is
scheduled to one particular core. This policy makes it hard
to maintain load balance. Static real-time allocators based on
profiling and workload analysis remain mainstream because
of the poor performance of dynamic allocators on multicore
systems, sacrificing flexibility. As a result, industry designs
closed source, specialized allocators for their specific real-time
application. [3] [4]

II. ALLOCATORS

In this section we explore the currently available Dynamic
Storage Allocation (DSA) algorithms and asses their pros
and cons. As we will see, most allocation algorithms, while
they work well with the general workload of multi-threaded
systems, are are either not optimized for the system and rely
on OS to efficiently handle that part or are not optimized to
tackle the hard requirements for real-time applications. As far
as we have seen, there are no allocators optimized to handle



the applications running on NUMA architectures with Real
time requirements.

A. PTmalloc

PTmalloc or pthread malloc is the base of the default
allocator used by glibc. This algorithm subdivides the memory
into multiple ”Arenas” with one main arena or the initial heap
of the program and multiple arenas to be used by threads. This
is done to reduce contention among threads but ultimately
results in larger fragmentation with the growing number of
threads and unbounded delays as the contention among threads
increases. While PTmalloc is aware of mutilple threads, there
is no code to optimize it for NUMA architectures, coordinate
thread locality, sort threads by core. It is assumed that the
kernel will handle those issues sufficiently well [5]. In our
study we found that this algorithm has a large overhead of
managing the free block as it requested memory from kernel
very frequently and freed the blocks as frequently too. This is
might be near optimal for applications with limited memory,
the overhead of releasing and requesting memory very often
is not ideal for the latency

B. TCMalloc

TCmalloc or Thread Cache malloc is the name derived
from its legacy implementation of its front-end ”Per thread
cache” mode where each thread had its own cache; however,
this resulted in larger memory footprints that scaled with the
number of threads. Now with the current implementation of
per CPU mode, it assigns a cache to each logical CPU rather
than each thread. The front-end is responsible for handling
requests for memory by the application. Each cache can only
be accessed by one thread at a time and hence does not require
locks to handle contention. This greatly helps the latency
and most requests are handled relatively fast as compared to
PTmalloc which requires the use of locks. If the front end
has exhausted its cache or needs a chunk larger than the one
available, a request is sent to the middle end that constitutes
the Transfer Cache and Central Free List. These structures
help the transfer of memory between CPUs happen rather
seamlessly. If the middle end also runs of space to be allocated
or moved from another CPU, the back end requests the kernel
for more space. To handle the whole process as efficiently
as possible, the algorithm requests the OS for huge chunks of
memory (about 1 GiB) at a time [6]. While this memory is only
reserved and not backed by physical memory, the overhead of
requesting such huge chunks makes its tail latency rather large
an unreliable for real time applications.

C. TLSF

TLSF or Two Level Segregated Fit List is the best candidate
for real time applications as it guarantees O(1) for allocation
and was built with real time applications in mind. It relies on a
few assumptions that make it fast but leave some security flaws
unaddressed. The authors made the following assumptions
while creating this allocator [7]:

• Trusted environment: programmers that have access to
the system are not malicious, that is, they will not try
to intentionally steal or corrupt application data. The
protection is done at the end-user interface level, not at
the programming level.

• Small amount of physical memory available.
• No special hardware (MMU) available to support virtual

memory.
• No reallocation: It is assumed that the original memory

pool is a single large block of free memory, and no
sbrk()function is available.

Having these assumptions takes a lot of housekeeping away
from the algorithms responsibility and hence has a huge
impact in reducing latencies. The other reason that TLSF
can guarantee O(1) execution is due to the algorithm used to
manage the free memory blocks. It maintains two lists, the first
level divides free blocks into classes that are a power of two
apart (16, 32, 64, 128, etc) and the second-level sub-divides
each first-level linearly. Each array of lists has an associated
bitmap used to mark which lists contain which free blocks.
To calculate the indexes given a block size, TLSF relies on
an internal function, segregate list() that returns the first and
second level indexes for the requested block. This helps in
bounded time execution for a search of the requested size of
block. Another differentiator that sets TLSF apart from rest
of the available allocators is that it employs active coalescing
of blocks that are freed. To do this efficiently TLSF embeds
each block with some extra information like:

• The size of the block, required to free it and to link this
block with the next one in the physical link list.

• Boundary tag, a pointer to the head of the previous
physical block.

• Two pointers, to link this block into the corresponding
segregated lists.

Having active coalescing helps the algorithm maintain a very
low level of fragmentation that ultimatley helps in better
performance.
While it is able to guarantee O(1) execution, the assumptions
with which it was written restrict it to not be used with NUMA
architectures.

D. TLSF-hp

Since TLSF assumes that the initial pool of memory is all
there is and does not expand its initial allocation, we theorized
that it can be expanded efficiently to NUMA architectures
by allocating HugePages to each thread. A HugePage as the
Figure 2 shows consists of multiple normal pages. Prefaulting
them to each thread will help in expanding the application of
TLSF to NUMA architectures.
Unfortunately our implementation could not be seen through
as the algorithm kept segfaulting with the t-test1 test bench
from rpmalloc suite and we could not figure out the source of
memory leak even after using tools like Valgrind, gdb etc. An
interesting thing to note was that when used with Valgrind, the
overhead somehow gave the algorithm enough time to resolve



the memory leak. But that also meant that we could not profile
the implementation correctly. We were also able to pass the
basic sanity checks for our muti-threaded implementation of
the same.

Fig. 2. Huge pages are page allocations from one level up in the virtual page
table where allocating one huge page allocates all pages pointed to by that
huge page

III. TOOLS AND TEST SETUP

The main tool used in evaluating our allocators was
cyclictest [8]. Cyclictest is a multithreaded program that runs
a loop for a set amount of time at set intervals of timing.
The interval set for each thread uses the system timer to
wake up with whatever preemption priority is set by the
programmer. At wake up, the thread grabs a timestamp, runs a
task, and then grabs another timestamp to measure the length
of that test. This lets us measure allocation latency in terms
of average, minimum, and maximum, as well as a list of all
allocation latencies. The cyclic nature of the program allows
us to observe a few important factors in real-time systems,
being preemption and stability. We can set the priority of
cyclictest to test the effects of different background workloads
and pre-emptions on top of cyclictest. We can also observe
long runs of cyclictest as a stress test to check stability and
observe the results of long periods of repeated, differently-
sized allocations.

The test case running in cyclictest is a combination of a
malloc test case from RTEMS [9] as well as a test case we
came up with. The RTEMS malloc test was a fairly simple
malloc stress tester. It just calls repeated small mallocs of
random sizes within a small range and then frees them. The
test case we came up with ended up being a similar test, but
we allocated much larger pages and forced the allocations to

remain allocated for a set number of rotations, allowing us to
ensure that the stress test does more than allocating the same
memory as well as giving us control over the total allocation
active in the system.

A. PREEMPT RT & Linux Low latency kernel optimizations

Preempt RT is a fully preempt-able configuration of the
Linux kernel. It creates an additional range of process priority
classification (0-99, higher value higher priority) which allows
it to preempt other process (even kernel processes ) with
a lower assigned priority. Beyond Kernel Side Preemption,
support is enabled for High Resolution Timers, Priority-
Inheritance (avoids priority inversion problem), Earliest-
Deadline First scheduling and Real-time locks.

Fig. 3. Sample Kernel Subsystem Priority Levels

Using Preempt RT requires building the Linux kernel from
source and then booting a compatible distribution with it.
The RHEL-8 High Performance and Low Latency Tuning
Guide [10] outlined many different ways by which one could
further reduce execution time variance with a Preempt RT
kernel, namely , by isolating cpu cores, disabling interrupt
balancing, disabling power-saving cpu frequency governors,
locking pages, pre-faulting pages, disabling the VGA console,
and disabling transparent Huge pages (instead using Vanilla
HugePages). We evaluated and enabled the above and were
able significantly improve average as well as worst case
latencies reported by cyclictest.

B. NUMA

NUMA or Non-Uniform Memory access arises out of the
physical organization of the compute and memory resources of
a system. Extracting performance from such systems requires
careful data and process thread mapping so as to minimize
data movement overheads and their associated complex impli-
cations for a processes worst case execution time. Enthusiast
Consumer and High performance embedded controllers have
been shipping with with NUMA configurations for the last
decade.

We evaluated Gem5 [11] a popular simulator for systems
research. Gem5 allows for a large variety of system configu-
rations, esp for us NUMA configurations, at varying degrees



glibc tcmalloc
max 118403 ns 5576319 ns

median 3411 ns 3059 ns
IQR 370 ns 350 ns
mean 3355 ns 3110 ns

std dev 394 ns 387* ns
99th percentile 3915 ns 4066 ns

num high outliers 0.78% 1.60%
num extremes 0 7

Fig. 4. Key statistics from a 3-minute sample of cyclictest

of resolution(full system(configurable micro-architecture de-
tail), and system call emulation mode) we determined that
it would not be suitable for our memory heavy workloads
in full system mode, and unsuitable for measuring run-time
latencies in system call emulation mode. Approaches exist to
virtualize(gem5-qemu) some parts of the gem5 full system
execution and overcome these limitations but we were unable
to bring it up with our desired configuration.

The Linux kernel allows for the partitioning of the un-
derlying memory into Fake NUMA regions to enable the
test and bringup of real numa systems, as well as a means
to partition the system memory if isolation were desired.
Enabling FakeNUMA at boot time gives us both a divided
memory subsystem and no simulation overheads that impact
its latency.

IV. RESULTS

Unfortunately, we have been unable to get our TLSF
implementation to run under the pressure of cyclictest. We
have passed the test suite that TLSF uses, but we have been
trying to trace segfaults that appear when we run TLSF at full
speed. The issue disappears when we add debug statements
or run Valgrind, which made it tough to trace the error
properly. This means that our primary results are a display
of the abilities of our testing setup and an indication of the
important factors we would analyze in TLSF. The biggest
factors we would like to check are the number of outliers
and the average latency of malloc calls. Below is shown the
results for glibc and tcmalloc run for 20 minutes with our
test and with the RTEMS malloc test, as well as what we
were hoping to achieve with TLSF.

There are a few interesting results from these tests. The
first is that tcmalloc is a pool allocator, so we expect that
the only extremes occur at the beginning of the program.
The data we measured shows that the only extremes were
indeed at startup. Beyond that, we see that tcmalloc and glibc
perform quite similarly - neither have extremes during the
normal run of cyclictest, and the 99th percentile performance
are very similar. (*)The actual full-sample standard deviation
of tcmalloc is skewed quite high due to how extreme the
startup cost is: 12490 ns. Removing the startup cost shows
us a measure of steady state tcmalloc operation, which is

Fig. 5. Service distribution of cyclictest latency in glibc vs. tcmalloc

glibc tcmalloc
munmap 4.4M 33
mmap 4.4M 78

madvise 8 900k
brk 3 15

Fig. 6. strace call profile with cyclictest

the value shown in the table. All measures of center and
spread favor tcmalloc. This indicates that ignoring startup cost,
tcmalloc appears to satisfy 99% of requests better than glibc.
The number of high outliers is the category in which tcmalloc
falls short, indicating that the distribution is less centered than
the glibc distribution. Ideally, we could have used these metrics
to characterize performance of TLSF in this environment and
compare it against tcmalloc. The key factors TLSF would
be attempting to win would be in spread and the number of
outliers.

Figure 6 shows the stark contrast between glibc and tcmal-
loc’s way of handing memory. As mentioned in Section III,
glibc frequently requests and releases memory to OS, the same
can be seen with strace call pattern. While glibc calls mmap
and munmap about 4.4M times each, tcmalloc calls them not
even for a fraction of times. Rather, it uses madvise to tranfer
memory blocks between multiple threads/CPUs.

V. CHALLENGES

Since dynamic memory is less common in real-time applica-
tions, we had difficulty finding some really strong testbenches
that would stress memory allocation in a way that is relevant
to real-time systems. Profiling the performance metrics such
as reliable timing of allocators and fragmentation caused by
them was another major challenge we faced.

VI. FUTURE DIRECTION

Currently, our TLSF implementation is not aware of NUMA
nodes, instead using global pools and locks to manage sub-
pools. We didn’t have time to implement it, but we wanted
to investigate the possibility of allocating huge pages for the
’global’ pool on each NUMA node that needs an allocation.
That pool would only be used by the CPU nearest its node



to minimize latency. This would add space overhead scaling
linearly with the number of NUMA nodes as each node would
need to initialize its global pool, but this would remove the
need for locks and guarantee that memory access latency is
minimized.
Additionally, since TLSF already assumes that it runs in a
trusted environment, we would like to investigate the possibil-
ity of sharing huge pools of memory between applications
on the same node. This could allow us to allocate even
larger global pools since huge pool allocations would not
take memory capacity away from other processes. This would
limit the applicability of this allocator to extremely trusted
environments, but we would be able to test whether we can
turn application startup time into system startup time. This
could allow new applications to avoid page faults on startup
while still receiving a lot of the benefit of pre-allocated
memory.

A. Verification

Most System level validation latency validation today is
done by stressing combinations of subsets of the overall
system and record their impact on the test time ”worst” case
execution times of the real time workload. This approach is
unsuitable for hard real-time systems or for systems that have
firm QoS guarantees. Statically analyzing Worst case execution
times, would require quantifying all sources of latency and
their inter-dependencies, and thereafter enumerating all pos-
sible execution traces, with all possible architecture / micro-
architecture / operating system forced inter leavings. Efforts
in the community [12] [13] have shown that this is tractable in
finite-state (heavily isolated and predictable) systems, however
scaling these to today’s high performance micro-architectures
and operating systems like those that made up our test platform
is still an open problem.

VII. CONTRIBUTION

1. Bhavesh: 20%
2. Brad: 20%
3. Juechu: 20%
4. Paul: 20%
5. Dino: 20%

REFERENCES

[1] L. A. G. C. Buttazzo, G. Lipari and M. Caccamo.
[2] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time

scheduling for generalized parallel task models,” in 2011 IEEE 32nd
Real-Time Systems Symposium, 2011, pp. 217–226.

[3] V. Shah, “A review on memory allocators for
numa based rtos,” 06 2018. [Online]. Available:
http://dspace.hmlibrary.ac.in:8080/jspui/bitstream/123456789/1366/18/18 Synopsis.pdf

[4] R. Gifford, N. Gandhi, L. T. X. Phan, and A. Haeberlen, “Dna: Dynamic
resource allocation for soft real-time multicore systems,” in 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2021, pp. 196–209.

[5] [Online]. Available: https://sourceware.org/glibc/wiki/MallocInternals
[6] [Online]. Available: https://google.github.io/tcmalloc/design.html
[7] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “Tlsf: a new dynamic

memory allocator for real-time systems,” Proceedings. 16th Euromicro
Conference on Real-Time Systems, 2004. ECRTS 2004.

[8] [Online]. Available: https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
[9] [Online]. Available: https://devel.rtems.org/wiki/Developer/Git

[10] R. Inc., “ Optimizing RHEL 8 for Real Time for low
latency operation,” https://access.redhat.com/documentation/en-
us/red hat enterprise linux for real time/8/html-
single/optimizing rhel 8 for real time for low latency operation/,
2022.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, aug
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[12] R. Cardell-Oliver, “The formal verification of hard real-time systems,”
Ph.D. dissertation, University of Cambridge, 1992.

[13] S. Campos, E. Clarke, W. Marrero, and M. Minea, “Verus: A tool for
quantitative analysis of finite-state real-time systems,” in Proceedings
of the ACM SIGPLAN 1995 Workshop on Languages, Compilers,
Tools for Real-Time Systems, ser. LCTES ’95. New York, NY,
USA: Association for Computing Machinery, 1995, p. 70–78. [Online].
Available: https://doi.org/10.1145/216636.216661


