Comparing AIR Source &

WATER (GEO) Source Heat Pumps

Martin Orio – Water Energy Distributors, Inc. President - NEGPA

How ratings methods are the same, but different. Acronyms galore!!!

Engineer stuff: SEER or HSPF(btus per watt)/3.413 = COP

-AIR SOURCE-

-WATER SOURCE- (a.k.a. GEO)

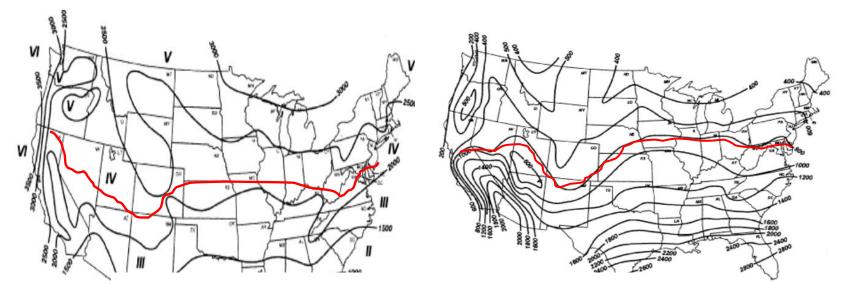
RATED via AHRI-210/240 - SEER & HSPF

- SEER (cooling) BTU transferred/Watts purchased "Cooling number"
- HSPF (heating) = Adjusts "SEER" type rating for varying outdoor Entering Air Temps (<u>EAT</u>) & part load operation ASHRAE (Std 114) & DOE Test (10CFR, 430)

Published data references 2,080 minimum annual run hrs –in the Carolinas or "zone 4")

- SO PUBLISHED EFFICIENCIES for HSPF & SEER are only accurate for seasonal temperatures/conditions in region 4
- *Performance "opportunity" #s based on a MINIMUM Entering Air Temperature (<u>EAT</u>) exclusively in zone 4 as well as varying defrost hours and related operating conditions in zone 4 averaged seasonal conditions.

Important note for later: [Rated at 45F (best), and 17F (worst)]

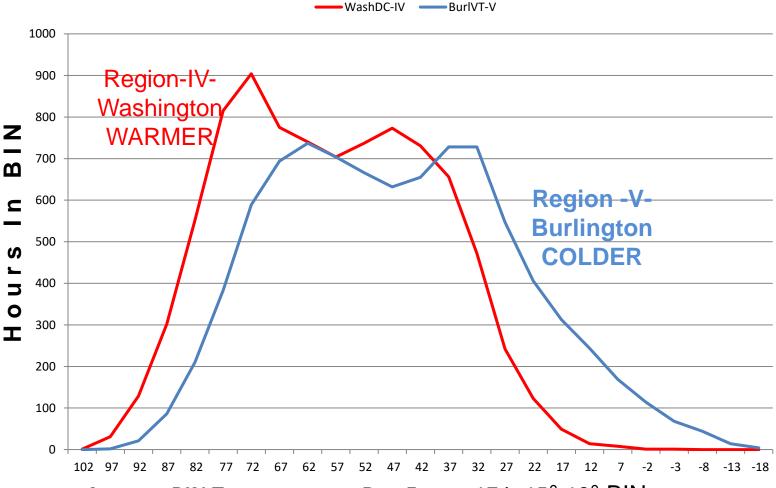

RATED via AHRI/ISO-13256 - EER & COP

- COP (Heating)
- EER (cooling)

Geothermal at Entering Water Temp (**EWT**) 50°F (GWHP-Well) & 32°F (GLHP- Closed Loops)

Geo rating/performance "opportunity" based on minimum EWT and is NOT zone specific, because groundsource HX is designed/rated to maintain constant exchange deltas with the earth. Not the outdoor air!

NATIONAL HEAT/COOL ZONES



ANSI/ANSI	/AHR	I STAND	ARD 210	/240-2008

	Table 19. Representative Cooling and Heating Load Hours for Each Generalized Climatic Region			
	Region	CLH _R	HLH _R	
Figure 2 Heating Load I	I	2400	750	
	П	1800	1250	
A	III	1200	1750	
Average	IV	800	2250	
hours (not	V	400	2750 2	2%
minimum)	VI	200	2750	

4.4. Rounding of SEER, HSPF, and APF for reporting purposes. After calculating SEER according to section 4.1, round it off as specified in subpart B 430.23(m)(3)(i) of Title 10 of the Code of Federal Regulations. Round section 4.2 HSPF values and section 4.3 APF values as per §430.23(m) (3) (ii) and (iii) of Title 10 of the Code of Federal Regulations.

Region IV vs. Region V

Average BIN Temperatures- Deg F e.g. 17 is 15°-19° BIN Data from NOAA 30 year weather data

Thermal "heat pumping" using, "Heat Pumps"

Conductivity

4X more effective "Energy Transfer" Substance

 $Air = 0.24 cal/g/^{2}C$

Water =1.00 cal/g /ºC

1. More Energy Transfer at any Temperature

2. Higher Overall Efficiency

WATER WINS by a FACTOR OF FOUR

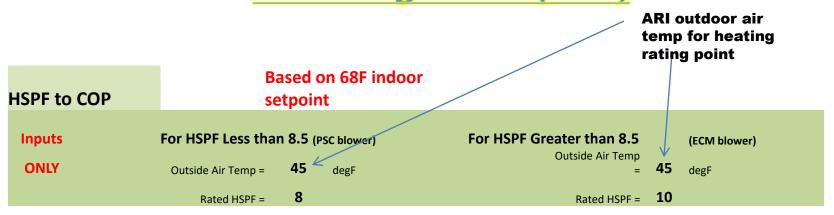
COMPARITIVE EFFICIENCIES

Manufacturer's Performance Reference

Today's Air source "label" performance range

*COP of 2.0 -3.7

translates to HSPF of 6.8 to 12.5
(In zone 4)


Today's Geothermal "label" performance Range

Ratings AHRI/ISO-13256:

$$*COP - 3.5 - 5.3$$

(No zone related performance/efficiency effect)

"Best" Air-source performance conditions at 45 degrees F (EAT)

*Difference = -0.2758computed

*Difference = -0.2465computed

Adjusted HSPF

= 10.21 computed

2.99

Adjusted

HSPF = 12.46 computed

at 45 degrees F

Equivalent COP =

Bruce Wilcox

Member ASHRAE

degrees F

3.65 computed

Equivalent COP =

4710

computed

Climatic Impacts on Heating Seasonal Performance Factor (HSPF) and Seasonal Energy Efficiency Ratio (SEER) for Air-Source Heat Pumps

Philip Fairey Member ASHRAE Danny S. Parker Associate Member ASHRAE

Matthew Lombardi

Adjusted Air-source performance at 30 degrees F (EAT)

HSPF to COP	Base	ed on 68F indoor setpoint		
Inputs	For HSPF Less than 8	3.5 (PSC blower)	For HSPF Greater than 8.5	(ECM blower)
ONLY	Outside Air Temp =	30 degF	Outside Air Temp =	30 degF
	Rated HSPF =	8	Rated HSPF =	10
	*Difference =	-0.0285computed	*Difference =	0.0162computed
	•	8.23 computed rees F	Adjusted HSPF = at 30	
Equiva	alent COP =	2.41 computed	Equivalent COP =	2.88 computed

4710

Climatic Impacts on Heating Seasonal Performance Factor (HSPF) and Seasonal Energy Efficiency Ratio (SEER) for Air-Source Heat Pumps

Philip Fairey Member ASHRAE Danny S. Parker Associate Member ASHRAE

Bruce Wilcox Member ASHRAE Matthew Lombardi

Adjusted Air-source performance at <u>0 degrees F</u>

HSPF to COP	Based on 68F indoor setpoi	nt
Inputs	For HSPF Less than 8.5 (PSC blower)	For HSPF Greater than 8.5 (ECM blower)
ONLY	Outside Air Temp = 0 degF	Outside Air Temp = 0 degF
	Rated HSPF = 8	Rated HSPF = 10
	*Difference = 0.3216computed	*Difference = 0.3858computed
	Adjusted HSPF = 5.43 computed	Adjusted HSPF = 6.14 computed
	at 0 degrees F	at 0 degrees F

Equivalent COP =

Climatic Impacts on Heating Seasonal Performance Factor (HSPF) and Seasonal Energy Efficiency Ratio (SEER) for Air-Source Heat Pumps

Equivalent COP =

Bruce Wilcox

Member ASHRAE

Philip Fairey Member ASHRAE

computed

4710

1.59

Danny S. Parker Associate Member ASHRAE computed

1.80

Factors that effect performance of Air-source and Geo Heat Pumps

Air source

- •"Label" Model Efficiency SEER and HSPF
- Operating temperate "Zone" (EAT) and defrost cycle/resistance heat assist profile factors (required)
- •Run hours Load to capacity ratio
- •Installation method Duct pressure, line sizing, placement
- •Electric "parasites" supporting compressor activity (blowers inside and outside)
- •Other DELTAS of temperature and pressure in extraction and delivery

Groundsource

- •"Label" Model Efficiency EER and COP
- Earth-coupling type/method
- •Entering Water/Fluid
 Temperature from earthside
- •Run hours Load to capacity ratio
- •Electric "parasites" supporting compressor activity (blowers, circulators, etc.)
- •Other DELTAS of temperature and pressure in extraction and delivery