

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Cornerstone Metrology Service Inc.

7625 Hayvenhurst Avenue, #20 Van Nuys, CA 91406

Fulfills the requirements of

ISO/IEC 17025:2017

and national standards

ANSI/NCSL Z540-1-1994 (R2002) AND ANSI/NCSL Z540.3-2006 (R2013)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President

Expiry Date: 13 February 2027 Certificate Number: AC-1376

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002) ANSI/NCSL Z540.3-2006 (R2013)

Cornerstone Metrology Service Inc.

7625 Hayvenhurst Avenue, #20 Van Nuys, CA 91406 Michael Chauvie 818-902-9551

CALIBRATION

Valid to: February 13, 2027

Certificate Number: AC-1376

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(0 to 330) mV	$5 \mu V/V + 1 \mu V$	
	(0.33 to 3.3) V	$4 \mu V/V + 3 \mu V$	Comparison to
DC Voltage – Source ¹	(3.3 to 33) V	$4 \mu V/V + 30 \mu V$	Fluke 5500A
	(33 to 330) V	$4.5 \ \mu V/V + 0.3 \ mV$	Multiproduct Calibrator
	(330 to 1 020) V	$4.5 \mu V/V + 0.9 mV$	_
	(0 to 3.3) mA	0.13 mA/A + 50 nA	
	(3.3 to 33) mA	$0.1 \text{ mA/A} + 0.25 \mu \text{A}$	Comparison to
DC Current – Source ¹	(33 to 330) mA	0.1 mA/A + 3.3 μA	Fluke 5500A
	(0.33 to 2.2) A	$0.3 \text{ mA/A} + 44 \mu \text{A}$	Multiproduct Calibrator
	(2.2 to 11) A	0.6 mA/A + 0.33 mA	_
	(1 to 33) mV		
	(10 to 45) Hz	$3.5 \text{ mV/V} + 20 \mu \text{V}$	
	45 Hz to 10 kHz	$1.5 \text{ mV/V} + 20 \mu \text{V}$	Comparison to
AC Voltage – Source ¹	(10 to 20) kHz	$2 \text{ mV/V} + 20 \mu \text{V}$	Fluke 5500A
	(20 to 50) kHz	$2.5 \text{ mV/V} + 20 \mu \text{V}$	Multiproduct Calibrator
	(50 to 100) kHz	$3.5 \text{ mV/V} + 33 \mu \text{V}$	-
	(100 to 500) kHz	$10 \text{ mV/V} + 60 \mu \text{V}$	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(33 to 330) mV (10 to 45) Hz 45 Hz to 10 kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (100 to 500) kHz (100 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (3.3 to 33) V (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (33 to 330) V 45 Hz to 1 kHz (1 to 10) kHz (10 to 20) kHz (330 to 1 020) V 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	$\begin{array}{c} 2.5 \text{ mV/ V} + 50 \ \mu\text{V} \\ 0.5 \text{ mV/V} + 20 \ \mu\text{V} \\ 1 \text{ mV/V} + 20 \ \mu\text{V} \\ 1.6 \text{ mV/V} + 40 \ \mu\text{V} \\ 2.4 \text{ mV/V} + 0.17 \text{ mV} \\ 7 \text{ mV/V} + 0.33 \text{ mV} \\ \hline 1.5 \text{ mV/V} + 0.25 \text{ mV} \\ 0.3 \text{ mV/V} + 60 \ \mu\text{V} \\ 0.8 \text{ mV/V} + 60 \ \mu\text{V} \\ 1.4 \text{ mV/V} + 0.3 \text{ mV} \\ 2.4 \text{ mV/V} + 1.7 \text{ mV} \\ 5 \text{ mV/V} + 3.3 \text{ mV} \\ \hline 1.5 \text{ mV/V} + 2.5 \text{ mV} \\ 0.4 \text{ mV/V} + 2.6 \text{ mV} \\ 0.8 \text{ mV/V} + 2.6 \text{ mV} \\ 1.9 \text{ mV/V} + 5 \text{ mV} \\ 2.4 \text{ mV/V} + 17 \text{ mV} \\ \hline 0.5 \text{ mV/V} + 15 \text{ mV} \\ 0.8 \text{ mV/V} + 13 \text{ mV} \\ \hline 0.5 \text{ mV/V} + 80 \text{ mV} \\ 0.5 \text{ mV/V} + 0.1 \text{ V} \\ 2 \text{ mV/V} + 0.1 \text{ V} \\ 2 \text{ mV/V} + 0.5 \text{ V} \\ \end{array}$	Comparison to Fluke 5500A Multiproduct Calibrator
AC Current – Source ¹	(30 to 330) µA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.33 to 3.3) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	2.5 mA/A + 0.15 μ A 1.3 mA/A + 0.15 μ A 1.3 mA/A + 0.25 μ A 4 mA/A + 0.15 μ A 12.5 mA/A + 0.15 μ A 2 mA/A + 0.3 μ A 1 mA/A + 0.3 μ A 2 mA/A + 0.3 μ A 6 mA/A + 0.3 μ A	Comparison to Fluke 5500A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(3.3 to 33) mA		* *
	(10 to 20) Hz	2 m <mark>A</mark> /A + 3 μA	
	(20 to 45) Hz	$1 \text{ mA/A} + 3 \mu \text{A}$	
	45 Hz to 1 kHz	0.9 <mark>mA/</mark> A + 3 μA	
	(1 to 5) kHz	$2 \text{ mA/A} + 3 \mu \text{A}$	
	(5 to 10) kHz	$6 \text{ mA/A} + 3 \mu \text{A}$	
	(33 to 330) mA		
	(10 to 20) Hz	2 mA/A + 20 μA	
	(20 to 45) Hz	$1 \text{ mA/A} + 20 \mu \text{A}$	Composison to
AC Current – Source ¹	45 Hz to 1 kHz	900 μA/A + 20 μA	Comparison to Fluke 5500A
AC Current – Source	(1 to 5) kHz	$2 \text{ mA/A} + 50 \mu \text{A}$	Multiproduct Calibrator
	(5 to 10) kHz	<mark>6 m</mark> A/A + 0.1 mA	Multiproduct Calibrator
	(0.33 to 2.2) A		
	(10 to 45) Hz	2 mA/A + 0.3 mA	
	45 Hz to 1 kHz	1 mA/A + 0.3 mA	
	(1 to 5) kHz	7.5 mA/A + 0.3 mA	
	(2.2 to 11) A		
	(45 to 65) Hz	0.6 mA/A + 2 mA	
	(65 to 500) Hz	1 mA/A + 2 mA	
	500 Hz to 1 kHz	3.3 mA/A + 2 mA	
	(3.3 to 9) mA	0.04 % of reading	
	(9 to 33) mA	0.03 % of reading	
	(33 to 90) mA	0.04 % of reading	Comparison to
DC Power – Source ^{1,2}	(90 to 330) mA	0.03 % of reading	Fluke 5500A
33 mV to 1 020 V	(330 to 900) mA	0.08 % of reading	Multiproduct Calibrator
	(0.9 to 2.2) A	0.06 % of reading	Maniproduct Cambrador
	(2.2 to 4.5) A	0.12 % of reading	
	(4.5 to 11) A	0.09 % of reading	
	(3.3 to 9) mA		
	(33 to 330) mV	0.4 % of reading	
	(0.33 to 1 020) V	0.25 % of reading	
	(9 to 33) mA		
AC Power – Source ^{1,2}	(33 to 330) mV	0.25 % of reading	Comparison to
(45 to 65) Hz	(0.33 to 1 020) V	0.15 % of reading	Fluke 5500A
PF = 1	(33 to 90) mA		Multiproduct Calibrator
	(33 to 330) mV	0.35 % of reading	*
	(0.33 to 1 020) V	0.25 % of reading	
	(90 to 330) mA		
	(33 to 330) mV	0.25 % of reading	
	(0.33 to 1 020) V	0.15 % of reading	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(330 to 900) mA (33 to 330) mV	0.35 % of reading	
	(0.33 to 1 020) V 900 mA to 1.5 A	0.25 % of reading	
AC Power – Source ^{1,2}	(33 to 330) mV (0.33 to 1 020) V	0.25 % of reading 0.15 % of reading	Comparison to
(45 to 65) Hz	(0.33 to 1 020) V (1.5 to 4.5) A	0.13 % of reading	Fluke 5500A
PF = 1	(33 to 330) mV	0.35 % of reading	Multiproduct Calibrator
	(0.33 to 1 020) V (4.5 to 11) A	0.2 % of reading	
	(33 to 330) mV	0.25 % of reading	
	(0.33 to 1 020) V	0.15 % of reading	
	Up to 11 Ω (11 to 33) Ω	$\frac{0.12 \text{ m}\Omega / \Omega + 8 \text{ m}\Omega}{0.12 \text{ m}\Omega / \Omega + 15 \text{ m}\Omega}$	
	(33 to 330) Ω	<mark>90 μΩ / Ω +</mark> 15 mΩ	
	330Ω to $3.3 k\Omega$	$90 \ \mu\Omega / \Omega + 60 \ m\Omega$	
	(3.3 to 33) kΩ (33 to 110) kΩ	90 μΩ / Ω + 0.6 Ω 0.11 mΩ / Ω + 6 Ω	Comparison to
Resistance – Source ¹	(110 to 330) kΩ	$0.12~\mathrm{m}\Omega$ / Ω + $6~\Omega$	Fluke 5500A Multiproduct Calibrator
	$330 \text{ k}\Omega \text{ to } 3.3 \text{ M}\Omega$	$0.15 \text{ m}\Omega / \Omega + 55 \Omega$	Multiproduct Calibrator
	(3.3 to 11) MΩ (11 to 33) MΩ	$\frac{0.6 \text{ m}\Omega / \Omega + 550 \Omega}{1 \text{ m}\Omega / \Omega + 550 \Omega}$	
	(33 to 110) MΩ	$5 \text{ m}\Omega/\Omega + 5.5 \text{ k}\Omega$	
	(110 to 330) MΩ	$5 \text{ m}\Omega/\Omega + 16.5 \text{ k}\Omega$	
Capacitance – Source ¹ 50 Hz to 1 kHz	(0.33 to 11) nF	5 mF/F + 10 pF	
50 Hz to 1 kHz	(11 to 110) nF	2.5 mF/F + 0.1 nF	
50 Hz to 1 kHz	(110 to 330) nF	2.5 mF/F + 0.3 nF	
50 Hz to 1 kHz 50 Hz to 1 kHz	$(0.33 \text{ to } 1.1) \mu\text{F}$	2.5 mF/F + 1 nF 3.5 mF/F + 3 nF	Comparison to Fluke 5500A
(50 to 400) Hz	(1.1 to 3.3) μF (3.3 to 11) μF	3.5 mF/F + 3 nF 3.5 mF/F + 10 nF	Multiproduct Calibrator
(50 to 400) Hz	(11 to 33) µF	4 mF/F + 30 nF	r
(50 to 200) Hz	(33 to 110) µF	$5 \text{ mF/F} + 0.1 \mu\text{F}$	
(50 to 100) Hz (50 to 100) Hz	(110 to 330) µF (0.33 to 1.1) mF	7 mF/F + 0.3 μF 10 mF/F + 0.3 μF	
	Туре В	$10 \text{ mm/}^{-1} \pm 0.3 \mu\text{I}^{-1}$	
Electrical Simulation of	(600 to 800) °C	0.44 °C	Comparison to
Thermocouple Indicating	(800 to 1 000) °C	0.34 °C	Fluke 5500A
Devices – Source/Measure ¹	(1 000 to 1 550) °C (1 550 to 1 820) °C	0.3 °C 0.33 °C	Multiproduct Calibrator

Type C 0.3 °C (0 to 150) °C 0.26 °C (150 TO 650) °C 0.31 °C (650 TO 1 000) °C 0.31 °C (1 000 TO 1 800) °C 0.5 °C	Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Type E $(-250 \text{ to } -100) \degree \text{C}$ $0.5 \degree \text{C}$ $(-100 \text{ to } -25) \degree \text{C}$ $0.16 \degree \text{C}$ $(-25 \text{ to } 350) \degree \text{C}$ $0.14 \degree \text{C}$ $(350 \text{ to } 650) \degree \text{C}$ $0.16 \degree \text{C}$ $(350 \text{ to } 650) \degree \text{C}$ $0.21 \degree \text{C}$ $(-210 \text{ to } -100) \degree \text{C}$ $0.27 \degree \text{C}$ $(-100 \text{ to } -30) \degree \text{C}$ $0.16 \degree \text{C}$ $(-210 \text{ to } -100) \degree \text{C}$ $0.14 \degree \text{C}$ $(-30 \text{ to } 150) \degree \text{C}$ $0.14 \degree \text{C}$ $(-30 \text{ to } 150) \degree \text{C}$ $0.14 \degree \text{C}$ $(-30 \text{ to } 150) \degree \text{C}$ $0.17 \degree \text{C}$ $(760 \text{ to } 1 200) \degree \text{C}$ $0.23 \degree \text{C}$ Comparison to Fluke 5500A	Thermocouple Indicating	$\begin{array}{c} (0 \text{ to } 150) \ ^{\circ}\text{C} \\ (150 \text{ TO } 650) \ ^{\circ}\text{C} \\ (650 \text{ TO } 1 \ 000) \ ^{\circ}\text{C} \\ (1 \ 000 \text{ TO } 1 \ 800) \ ^{\circ}\text{C} \\ (1 \ 800 \text{ TO } 2 \ 316) \ ^{\circ}\text{C} \\ (1 \ 800 \text{ TO } 2 \ 316) \ ^{\circ}\text{C} \\ (-250 \ \text{to } -100) \ ^{\circ}\text{C} \\ (-250 \ \text{to } -100) \ ^{\circ}\text{C} \\ (-25 \ \text{to } 350) \ ^{\circ}\text{C} \\ (-25 \ \text{to } 350) \ ^{\circ}\text{C} \\ (350 \ \text{to } 650) \ ^{\circ}\text{C} \\ (650 \ \text{to } 1 \ 000) \ ^{\circ}\text{C} \\ (-200 \ \text{to } -100) \ ^{\circ}\text{C} \\ (-30 \ \text{to } 150) \ ^{\circ}\text{C} \\ (-30 \ \text{to } 1200) \ ^{\circ}\text{C} \\ (-200 \ \text{to } -100) \ ^{\circ}\text{C} \\ (-25 \ \text{to } 120) \ ^{\circ}\text{C} \\ (120 \ \text{to } 1000) \ ^{\circ}\text{C} \\ (120 \ \text{to } 1 \ 372) \ ^{\circ}\text{C} \\ Type \ \text{L} \\ (-200 \ \text{to } -100) \ ^{\circ}\text{C} \\ (-100 \ \text{to } 800) \ ^{\circ}\text{C} \\ (800 \ \text{to } 900) \ ^{\circ}\text{C} \\ (-100 \ \text{to } -25) \ ^{\circ}\text{C} \\ (-25 \ \text{to } 120) \ ^{\circ}\text{C} \\ (-100 \ \text{to } -25) \ ^{\circ}\text{C} \\ (-20 \ \text{to } -100) \ ^{\circ}\text{C} \\ (410 \ \text{to } 1 \ 300) \ ^{\circ}\text{C} \\ (250 \ \text{to } 410) \ ^{\circ}\text{C} \\ (250 \ \text{to } 400) \ ^{\circ}\text{C} \\ (250 \ \text{to } 400) \ ^{\circ}\text{C} \\ (250 \ \text{to } 400) \ ^{\circ}\text{C} \\ (400 \ \text{to } 1 \ 000) \ ^{\circ}\text{C} \ (400 \ \text{to } 1 \ 00) \ ^{\circ}\text{C} \ (400 \ \text{to } 1 \ 00) \ ^{$	$\begin{array}{c} 0.26 \ ^{\circ}\text{C} \\ 0.31 \ ^{\circ}\text{C} \\ 0.5 \ ^{\circ}\text{C} \\ 0.84 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5500A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type S 0 to 250) °C (250 to 1 000) °C (1 000 to 1 400) °C (1 400 to 1 767) °C Type T (-250 to -150) °C (-150 to 0) °C (0 to 120) °C (120 to 400) °C Type U (0 to 600) °C	0.47 °C 0.36 °C 0.37 °C 0.46 °C 0.63 °C 0.25 °C 0.17 °C 0.15 °C 0.27 °C	Comparison to Fluke 5500A Multiproduct Calibrator
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 385, 100 Ω $(-200 \text{ to } -80) \circ C$ $(-80 \text{ to } 0) \circ C$ $(0 \text{ to } 100) \circ C$ $(100 \text{ to } 300) \circ C$ $(300 \text{ to } 400) \circ C$ $(400 \text{ to } 630) \circ C$ $(630 \text{ to } 800) \circ C$ $(630 \text{ to } 800) \circ C$ $(-200 \text{ to } -190) \circ C$ $(-190 \text{ to } -80) \circ C$ $(-80 \text{ to } 0) \circ C$ $(0 \text{ to } 100) \circ C$	$\begin{array}{c} 0.05 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.1 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.25 \ ^{\circ}\text{C} \\ 0.4 \ ^{\circ}\text{C} \\ 0.5 \ ^{\circ}\text{C} \\ 0.6 \ ^{\circ}\text{C} \\ 0.7 \ ^{\circ}\text{C} \\ 0.8 \ ^{\circ}\text{C} \\ 0.9 \ ^{\circ}\text{C} \\ 0.1 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.1 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.16 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5500A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 385, 200 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (400 to 630) °C (-200 to -80) °C (-200 to -80) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (400 to 600) °C (600 to 630) °C Pt 385, 1 k Ω (-200 to -80) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (300 to 400) °C (400 to 600) °C (300 to 400) °C (400 to 600) °C (500 to 630) °C (100 to 260) °C (100 to 260) °C (0 to 100) °C (100 to 260) °C	$\begin{array}{c} 0.04 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.06 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.03 \ ^{\circ}\text{C} \\ 0.03 \ ^{\circ}\text{C} \\ 0.03 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.3 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5500A Multiproduct Calibrator
Oscilloscopes Amplitude – DC into 50 Ω load into 1 MΩ load	(0 to ± 2.2) V	0.25 % of reading + 0.1 mV 0.25 % of reading + 0.1 mV	Comparison to Fluke 5500A - SC300
Amplitude – Square Wave into 50 Ω load into 1 MΩ load	1.8 mVp-p to 2.2 Vp-p	0.25 % of reading + 0.1 mV 0.25 % of reading + 0.1 mV 0.25 % of reading + 0.1 mV	Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ³ Leveled Sine Wave - Amplitude Flatness Time Marker	5 mVp-p to 5.5 Vp-p 50 kHz reference 50 kHz to 100 MHz (100 to 300) MHz 50 kHz to 100 MHz (100 to 300) MHz 2 ns to 1 μs (2 to 50) μs	2 % of reading + 0.2 mV 3.5 % of reading + 0.3 mV 4 % of reading + 0.3 mV 1.5 % of reading + 0.1 mV 2 % of reading + 0.1 mV 25 μs/s (25 + 15 000 <i>t</i>) μs/s	Comparison to Fluke 5500A - SC300 Multiproduct Calibrator
Edge-Rise Time	$100 \ \mu s \text{ to } 5 \ s$ $1 \ \text{kHz to } 1 \ \text{MHz}$ $\leq 2 \ \text{ns} (50 \ \Omega, 1 \text{Vp-p})$	$(25 + 1\ 000t)\ \mu s/s$ +0/-30 ps	
Sine Wave Flatness – Source	(-143 to 13) d <mark>Bm</mark> 100 kHz to 1.04 GHz	1 dB	Comparison to HP 8657A Signal Generator
Phase – Source ¹	(10 to 65) Hz (65 to 500) Hz 500 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.4° 1.5° 5° 6° 10°	Comparison to Fluke 5500A Multiproduct Calibrator
Power Supplies, Welders ¹ (DC and AC @ 60 Hz) Voltage	Up to 40 kV	1 % of reading	Comparison to Digital Multimeter with High Voltage Probe
Current	Up to 1 kA	1 % of reading	Current Shunts
ESD Mats and Tables ^{1,2}	10 V 100 kΩ to 100 MΩ/sq 100 V 10 MΩ to 1 TΩ/sq	25 % of reading 25 % of reading	Comparison to OHM-STAT RT 1000

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Surface Plates ^{1,3}			GGG-P-463c using
Overall Flatness	Up to 204 inDL	(11.3 <mark>+ 0</mark> .3√DL) µin	Autocollimator
Local Area Flatness (Repeat Readings)	Up to 0.05 in	12 µin	Repeat-o-Meter
Bench Micrometers ^{1,3}	Up to 72 in	(9.4 + 5.2 <i>L</i>) μin	Comparison to Grade 1 Gage Blocks, Optical Parallels, TESA Electronic Length Measuring Equipment
Linear Measuring Machines ^{1,3}	Up to 72 in	(9.4 + 5.2 <i>L</i>) μin	Comparison to Grade 1 Gage Blocks, Optical Parallels, TESA Electronic Length Measuring Equipment
Optical Comparators Profile Projectors ^{1,3}	(5 to 60) in S <mark>creen X & Y</mark> Travel to 12 in	(76 + 2.2 <i>L</i>) μin	Comparison to Glass Scales, Magnification Scales, Magnification Pins, Precision Balls
Indicators ^{1,3}	Up to 6 in	(12 + 1 <i>L</i>) μin	Comparison to Calibration Tester, MAC-10 Calibrator, Grade 2 Gage Blocks, Surface Plate
Calipers ^{1,3}	Up to 80 in	(130 + 24 <i>L</i>) μin	Comparison to Grade 2 Gage Blocks, Ring Gages, Surface Plate
Micrometers ^{1,3} O.D.& I.D Includes Depth, Point, Ball, Blade, V, Pitch Anvils	Up to 60 in	(33 + 9.5 <i>L</i>) μin	Comparisons to Grade 2 Gage Blocks, Ring Gages, Surface Plate, Optical Parallels, Ball Gages,
Bore (Intramic)	Up to 6 in	68 µin	Ring Gages, Heidenhain MT25
Mic Heads	Up to 2 in	61 µin	Linear Probe

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Cylindrical Squares, Steel Blade Magnetic Combination	(2 to 12) in	110 µin	Comparison to Surface Plate, Test Indicator, Angle Plate, Cylindrical Square
Levels, Digital Protractors, Inclinometers ³	Up to 360°	0.33″	Comparison to Grade 2 Gage Blocks, Surface Plate, Sine Bar, Autocollimator, Angle Blocks
Optical Flats/Parallels Flatness Parallelism	(1 to 6) in Up to 1 in	2.2 μin	Comparison to 6 in Master Flat, Optical Vernier,
Height Gages ³ Analog Digital	Up to 60 in Up to 60 in	3.6 μin 290 μin (10 + 7 <i>L</i>) μin	Gage Block Comparator Comparison to Grade 2 Gage Blocks, Surface Plate
Height Master ¹ Riser Blocks Block Stacks	Up to 60 in 6 in and 12 in Up to 48 in	(10 + 7 <i>L</i>) μin 21 μin (28 + 4.3 <i>L</i>) μin	Comparison to Grade 2 Gage Blocks Surface Plate, Electronic Amplifier with Probe
Electronic Gage Dimensional Comparator ¹	Up to 6 in	7.8 µin	Comparison to Grade 2 Gage Blocks, Surface Plate
Toolmaker's Microscope, Video Scope ¹	X, Y, Z: Up to 12 in	(19 + 4.3 <i>L</i>) μin	Comparison to Glass Scales, TESA Electronic Length Measuring Equipment
Glass Scales, Stage Micrometers, Steel Rules	(0.001 to 12) in	(16 + 2.7 <i>L</i>) μin	Comparison to Mahr Measurement Machine, CCT Microscope
Autocollimator ³	Up to 60'	0.21″	Comparison to Autocollimator Calibrator Optical Wedge

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rotary Table Dividing Heads Ultradex ^{1,3} Rotary Tilt	(0 to 360)° (0 to 90)°	0.5″	Comparison to Autocollimator, 12-Sided Polygon (30 °)
Coordinate Measuring Machines ^{1,3}	1D: Up to 72 in	(33 + 8.4L) µin	Comparison to Granite Square, Grade 2 Gage Blocks, Ball Bar
Thread Wires	Up to 1 in	7.6 µin	Mahr Measurement Machine, Master Wires, Gage Blocks
Ring Gages ³ Inside Diameter	(0.125 to 12) in	(16 + 2.9 <i>L</i>) μin	Comparison to I.D. Comparator, Gage Blocks
Plug Gages ³ Outside Diameter	(0.005 to 8) in	(8.9 + 1.8 <i>L</i>) μin	Comparison to Mahr Measurement Machine, Gage Blocks
Gear Wires	(0.005 to 1) in	7.6 µin	Bench Micrometer, Mahr Measurement Machine, Grade 2 Gage Blocks
Thread Ring Gages	Up to 1 in	51 µin	Tactile Fit using Master Thread Setting Plugs
Polygons ³	Up to 360°	0.30″	Comparison to Autocollimator, Ultradex
Thread Plug Gages	Up to 10 in	12 μin	Comparison to Bench Micrometer, Mahr Measurement Machine, Grade 2 Gage Blocks, Grade A Thread Wire Set

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Ring Setting Master	Up to 10 in	12 µin	Comparison to Bench Micrometer, Mahr Measurement Machine, Wires, Grade 2 Gage Blocks
Calibration Testers	Up to 0.2 in	14 μin	Comparison to TESA Electronic Length Measuring Equipment, Grade 2 Gage Blocks, Heidenhain MT25 Linear Probe
Indicator Calibrators	Up to 2 in	14 μin	Comparison to TESA Electronic Length Measuring Equipment, Grade 2 Gage Blocks, Heidenhain MT50 Linear Probe
Gage Blocks ³	(0.01 to 0.1) in (0.1001 to 4) in (5 to 20) in	(2.7 + 3.8 <i>L</i>) μin (2.0 + 3.1 <i>L</i>) μin (1.8 + 1.7 <i>L</i>) μin	Comparison to TESA Electronic Length Measuring Equipment, Grades 1 and Grade 2 Gage Blocks
Crimp Tools	Up to 0.25 in	43 µin	Comparison to Pin Gages, Outside Micrometer
Repeat Reading Gages	Up to 0.025 in	15 µin	Comparison to Calibration Tester
Sunnen Gage Setting Fixtures ¹	Up to 4 in	58 µin	Comparison to Grade 2 Gage Blocks, Optical Parallels
Sunnen Gages ¹	(0.375 to 4) in	45 µin	Comparison to Ring Gages
Squares ³ (Granite and Ceramic)	(2 to 24) in	(18 + 1.9 <i>L</i>) μin	Comparison to Autocollimator, Parallel Mirror, Surface Plate, Optical Square

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Straight Edges ³ (Granite and Ceramic)	(6 to 60) in	(15 + 2.3 <i>L</i>) μin	Comparison to Autocollimator, Parallel Mirror, Surface Plate
Parallels ³ (Granite and Ceramic)	(6 to 60) in	(15 + 2.3 <i>L</i>) μin	Comparison to Surface Plate, Electronic Amplifier with Probe
Penta Prism Optical Square ³	90°	0.37″	Comparison to Autocollimator, Parallel Mirror, Surface Plate
Surface Roughness Gages ¹	Up to <mark>120 µin</mark>	5.9 µin	Comparison to Roughness Specimens
Surface Roughness Specimens	Ra Up to 120 µin	3.1 µin	Comparison to Shef Surface Tester
Torque Ratio Arms/Wheels	(1 to 60) in	(23 + 9.8 <i>L</i>) μin	Comparison to Surface Plate, Gage Blocks, Amp w/ Probe

Mass and Mass Related

Parameter/Equipment	Range	Ex	-	led Uncertainty of surement (+/-)	Reference Standard, Method, and/or Equipment
	HRA				
	Low			1.2 HRA	
	Middle			1.1 HRA	
Rockwell Hardness Testers ¹	High			1.1 HRA	
	HRBW				In diment monification mon
	Low			1.5 HRBW	Indirect verification per ASTM E18 using Hardness Blocks.
	Middle			1.3 HRBW	
	High			1.2 HRBW	
	HRC				
	Low			1.2 HRC	
	Middle			1.3 HRC	
	High			1.2 HRC	

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rockwell Hardness Testers ¹	HRE Low Middle High HRHW Low High HR15N Low Middle High HR30N Low Middle High HR45N Low Middle High HR15TW Low Middle High HR30TW Low Middle High HR30TW Low Middle High HR45TW Low Middle High	1.3 HRE 1.2 HRE 1.2 HRE 1.2 HRHW 1.2 HRHW 1.2 HR15N 1.1 HR15N 1.1 HR15N 1.2 HR30N 1.2 HR30N 1.2 HR30N 1.2 HR45N 1.3 HR45N 1.2 HR15TW 1.2 HR15TW 1.2 HR15TW 1.2 HR15TW 1.2 HR30TW 1.2 HR30TW	Indirect verification per ASTM E18 using Hardness Blocks.
Vickers Hardness Testers ¹	HV Up to 1 000 HV	6.7 HV	Indirect verification per ASTM E92 using Hardness Blocks.
Knoop Hardness Testers ¹	HK Up to 1 000 HV	10 HK	Indirect verification per ASTM E92 using Hardness Blocks.
Durometer/Shore Hardness Tester – Force Only ¹ Type A, D, M	Up to 100 duro	0.72 duro	Partial Verification per ASTM D2240 using Gage Blocks and Digital Force Gage/Fixture.

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Gages ¹	Up to 100 g 100 to 500 g 500 g to 5 kg (5 to 25) kg	0.3 mg 1.8 mg 12.2 mg 0.19 g	Comparison to Class F Weights, Master Load Cells
Load Cells	Up to 500 lb (500 to 2 000) lb (2 000 to 10 000) lb	0.07 % of reading 0.06 % of reading + 0.5 lb 0.07 % of reading + 0.5 lb	Comparison to Class F Weights, Master Load Cells
Scales and Balances ¹ (0.000 1 g resolution)	Up to 100 g	0.3 mg	OIML Class M1 weights and NIST HB 44 are utilized in the calibration of the weighing system.
Scales and Balances ¹ (0.001 g resolution)	(100 to 500) g	1.8 mg	OIML Class M1 weights and NIST HB 44 are utilized in the calibration of the weighing system.
Scales and Balances ¹ (0.01 g resolution)	500 g t <mark>o 5 kg</mark>	13 mg	OIML Class M1 weights and NIST HB 44 are utilized in the calibration of the weighing system.
Scales and Balances ¹ (0.1 g resolution)	(5 to 25) kg	0.19 g	OIML Class M1 weights and NIST HB 44 are utilized in the calibration of the weighing system.
Scales and Balances ¹ (0.1 lb resolution)	Up to 500 lb	1.7 g	NIST Class F Weights and NIST HB 44 utilized in the calibration of the weighing system.
	Up to 100 g	0.22 mg	Comparison to OIML Class M1 Weights using HR-202 Balance
Mass Artifacts	(100 to 500) g	1.7 mg	Comparison to OIML Class M1 Weights using SETRA 500C Balance
	500 g to 5 kg	12 mg	Comparison to OIML Class M1 Weights using SETRA 5000C Balance

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Mass Artifacts	(5 to 20) kg	0.13 g	Comparison to OIML Class M1 Weights using SETRA SUPER II Balance
Torque Tools ¹	0.1 ozf·in to 1 200 lbf·ft	1 % of reading	Comparison to Waters Torque Watch Calibrator, Digital Torque Calibrator, Load Cells
Torque Calibrators	0.1 ozf·in to 1 200 lbf·ft	0.5 % of reading	Comparison to Torque Arms, NIST Class F Weights
Pressure Gages ¹	Up to <mark>500 psi</mark> Up to <mark>5 000 psi</mark> Up to 1 <mark>0 000 psi</mark>	0.03 % of reading 0.1 % of reading 0.1 % of reading	Comparison to Fluke Master Pressure Gages, Omega DRO w/ Pressure Transducer
Vacuum Gages ¹	(-25 to 0) inHg	0.03 % of reading	Comparison to Fluke Master Pressure Gages, Omega DRO w/ Pressure Transducer

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Ovens, Environmental Chambers, Freezers, Temperature Baths ¹	(0 to 2 501) °F (0 to 100) °C	2.9 °F 0.22 °C	Comparison to Data Logger, Thermocouple Calibrator, Lab Thermometer
Temperature Controllers	(32 to 752) °F	0.43 °F	Comparison to Lab Oven Thermocouple Calibrator
Thermometers ¹	(0 to 400) °C	0.24 °C	Comparison to Fluke/Hart 1502, Indicator with PRT, Heat Source

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Infrared Thermometers ⁴	$({Ambient + 20} to 932) °F$	0.83 % of reading + 5.2 °F	Comparison to Thermoworks IRK-2 & IRK-500 / Omega BB703 Black Body (flat plate) $\mathcal{E} = 0.99, \lambda = (8 \text{ to } 14) \mu \text{m}$
Thermocouple Devices	Ambient to 1 000 °F Ambient to 538 °C	1.3 °F 0.73 °С	Comparison to Lab Oven, Thermocouple Calibrator, Hart Fluke 1502A Indicator with PRT, Temperature Bath, Fluke 5500 Multiproduct Calibrator
Humidity – Source ⁵ (Fixed Points) (relative to 25 °C)	33.07 %RH 54.38 %RH 75.47 %RH	2 % of reading 2 % of reading 3 % of reading	Comparison to Chamber with Thermohygrometer and Salt Solutions
Humidity – Measure ¹	(10 to 90) %RH	4 %RH	Comparison to Thermohygrometer

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Stopwatches & Timers ¹	Up to 48 hr	0.11 s	Comparison to Quartz Standard Stopwatch.
Photo Tachometers ³	(60 to 99 999) rpm	0.003 6 % of reading + 1.2 rpm	Comparison to HP 34401A 6.5 Digit Multimeter, Wavetek 171 Signal Generator
Mechanical Tachometers ³	(10 to 1 000) rpm (1000 to 6 000) rpm	0.05 % of reading + 2 rpm 0.05 % of reading + 1 rpm	Comparison to Digital Photo Tachometer.
Frequency – Source ¹	0.01 Hz to 1.2 kHz (1.2 to 10) kHz 10 kHz to 2 MHz	25 μHz/Hz + 1 mHz 25 μHz/Hz + 1 mHz 25 μHz/Hz + 15 mHz	Comparison to Fluke 5500A - SC300 Multiproduct Calibrator

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%. Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. Uncertainty is stated in % of reading in units of Watts (W).
- 3. $t = \text{time in seconds}; L = \text{length in inches}; DL = \text{diagonal length}; ' = \text{arc-minute}; '' = \text{arc-second}; rpm = revolutions per minute}.$
- 4. Resolution of the Device Under Test will be included in the Measurement Uncertainty (MU) at the time of calibration.
- 5. The values present in the Range column are Nominal values. The actual setpoint value at the time of calibration will be reported with the tolerance and the associated Measurement Uncertainty (MU). The Nominal at 33.07 %RH can vary by ± 0.18 %RH; 54.38 %RH can vary by 0.23 %RH; and 75.47 %RH can vary by 0.14 %RH.
- Unless otherwise specified in the far-right column, the calibration procedure/method was written internally.
 This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1376.

Jason Stine, Vice President

