Motion in 1-D

Observer & Frame of Reference:-

- Observer → who takes observation and from where it takes is called frame of reference.
- Observer always assume to be at rest.
- Nothing is at absolute rest or in absolute motion.
- Agar koi Gadhe pr baitha hai toh
 Gadha: Frame of Ref. Uske upar joh
 baitha hoga woh observer!

Distance		Displacement			
•	Total Path length	0	Shortest Path b/w initial and final position		
0	Scalar, Struggle	0	Always straight line		
0	Can't decrease with time	0	Vector, success		
•	Always positive	0	Direction - From initial to final position		
0	Depends on path taken	0	Can decrease with time		
0	Both have same unit and dimension	0	May be +ve or -ve		
		0	Does not depends on path		

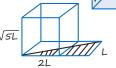
- If we know only initial and final position then we can't calculate distance but can find displacement.
- If initial position (x_1, y_1, z_1) and final position (x_2, y_2, z_2) then displacement $= \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- \Rightarrow distance \geq |displacement|

DISTANCE & DISPLACEMENT ON CIRCULAR PATH

$$ODisp^{m} = 2Rsin\left(\frac{\theta}{2}\right)$$

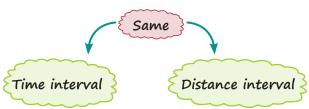
• Arc = $dist^n = R\theta$

Displace-	Disp ^m	Disp ^m	If disp ^m	If disp ^m
ment	must	may or	is zero	is not
(2nd	be	may not		equal
floor)	zero	be zero		to zero
	♠	♠	П	then:-
Distance	If dist ⁿ	If dist ⁿ	↓ Dist ⁿ	Dist ⁿ
(1st floor)	is zero	is not	may or	must
		equal	may	not
		equal to zero	•	not equal to
		•	may	


CHALLENGER QUESTION:-

There is a cubical room. One insect is moving from one corner to other body. Diagonal, then find minimum distance

• Can Fly: - Body Diagonal



O Can't Fly:-

AVERAGE SPEED (HOW FAST IN AN INTERVAL NOT AT INSTANT):-

$$Vavg = \frac{Total\ dist^n}{Total\ time}$$

$$S_{avg} = \frac{V_1 + V_2}{2}$$

$$S_{avg} = \frac{2V_1 V_2}{V_1 + V_2}$$

$$X_1 = X_2 = X$$

$$S_{avg} = \frac{V_1 t_1 + V_2 t_2}{t_1 + t_2}$$

$$S_{avg} = \frac{X_1 + X_2}{V_1 + V_2}$$

$$S_{avg} = \frac{X_1 + X_2}{V_1 + V_2}$$

SPEED ((How Fast) Scalar, unit: m/s, only magnitude.):-

o Inst.

o Average

$$S_{inst} = \frac{dx}{dt}$$

$$S_{avg} = \frac{\int S. dt}{\int dt}$$

$$\int \Box = \int \frac{dt}{dt}$$

For Uniform motion: $-S_{avg} = S_{inst.}$

VELOCITY (How fast and where): – Hum kitna Tez bhag rahe hai and kis direction me bhag rhe hai!

Inst.

$$\vec{V}_{inst.} = \frac{d\vec{X}}{dt}$$

$$V_{avg} = \frac{\int v.dt}{\int dt}$$

- = Rate of change in position
- = Slope of position time graph
- = Inst. speed × direction
- = How fast × where

On circular path, $V_{avg} = \frac{V \sin (\theta/2)}{(\theta/2)}$

|Avg speed| ≥ |Avg Velocity| Inst speed = |Inst Velocity|

UNIFORM MOTION:-

- Body moving with constant speed in fixed direction
- Uniform velocity

- Acceleration zero
- Avg. velocity = Inst. velocity
- Must be straight line

NON-UNIFORM MOTION:-

- Velocity non-uniform
- Acceleration non-zero
- Velocity can be change by changing speed only or direction only or both
- In non-uniform speed may constant
 Dimag me set feel ke sath.
- If velocity is uniform then → speed must be uniform.
 - Velocity = Speed + Direction = Constant
- If velocity is variable → Speed may or may not be variable
 - Velocity ko sirf direction change kar ke vary kar sakte hai
- o If speed is uniform → then velocity may uniform
 - o Direction ka nahi pata.
- If speed is variable → then velocity must be variable
- If avg. velocity is zero then avg. speed may or may not be zero.
- If avg. speed is zero, then avg. velocity must be zero.

ACCELERATION:-

Ye Motion Ka Feel Nai Hai! Ye velocity me change ka feel hai.

- Acclⁿ opposite to motion is retardation.
- Negative acceleration does not mean retardation, retardation may be positive or negative.
- Per-sec velocity inject to body or persec velocity extract from body ka feel hai.
- Vector → direction of acceleration along change in velocity.

$$\vec{a}_{inst} = \frac{dv}{dt} = \frac{v.dv}{dx} = \frac{d^2x}{dt^2}$$

$$\vec{a}_{avg} = \frac{\vec{V}_2 - \vec{V}_1}{\Delta t} = t_1 \frac{\int_{t_1}^{t_2} \vec{a}_{ins} dt}{\int_{t_1}^{t_2} dt}$$

 $\frac{d\vec{v}}{dt} = \vec{a} =$ The rate of change in velocity

$$\left|\frac{\overrightarrow{dv}}{dt}\right| = \left|\overrightarrow{a}\right| = \text{Magnitude of acc}^n, \frac{d\left|\overrightarrow{v}\right|}{dt} = \text{Rate}$$

of change in speed.

of change in speed.					
$\vec{a} \cdot \vec{u} = -ve$ \vec{a} $speed \downarrow$ s retardation Tangential T	$ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & $				

MR*

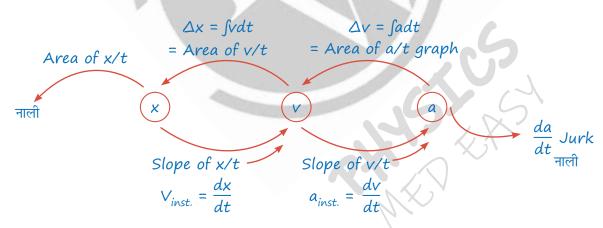
Bade aaram se

Uniform or constant non-zero acceleration.

Position $(x) \propto t^2$

Velocity (v) ∞ t

Velocity $v \propto \sqrt{x}$


If acceleration zero then velocity must be non zero constant

MR*

approach to solve question

ā = 0	a = non zero constant	बे = variable
$\vec{V} =$ constant uniform motion $S = Vt$	Equation of motion applicable	Eq ⁿ of motion is not applicable do integration or differentiation

MR*

- Q. Which of the following is correct for velocity and acceleration?
 - (a) Velocity increasing, acceleration decreasing
 - (b) Velocity decreasing, acceleration increasing
 - (c) Both increasing

- (d) Both decreasing
- (e) All of these

Ans. (e)

Q. If position $x = at^2 - bt^3$. Find the time when acceleration is zero?

Ans.
$$x = at^2 - bt^3$$

$$v = \frac{dx}{dt} = 2at - 3bt^2$$

$$a = 2a - 6bt = 0$$

$$2a = 6bt$$

$$t = \frac{a}{3b}$$

- Q. If velocity $v \propto \sqrt{x}$ then which of the following function is correct for position time relation.
 - (a) $x \propto t$
 - (b) $x \propto t^2$
 - (c) $x \propto \sqrt{t}$
 - (d) $x \propto t^{3/2}$
- Ans. MR* question me accⁿ constant then option me acceleration constant option (b)
- Q. If acceleration $a = \beta t^{3/2}$ then find velocity after time t if intial velocity is u.

Ans. Equation of motion is not valid

$$a = \frac{dv}{dt} = \beta t^{3/2}$$
$$\int_{u}^{v} dv = \beta \int t^{3/2} dt$$

$$v - u = \frac{\beta t^{5/2}}{5/2}$$

Q. If acceleration of object $a = \beta x^2$ then find velocity after x displacement, if initial velocity was zero.

Ans.
$$a = v \frac{dv}{dx} = \beta x^2$$

$$\int_{0}^{v} v dv = \int_{0}^{x} \beta x^{2} dx$$

$$\frac{v^2}{2} = \frac{\beta x^3}{3}$$

$$V = \sqrt{\frac{2\beta x^3}{3}}$$

MR SPECIAL *

Majduri se duri MR hai jaruri

Position Ke Formula Mein Time ke dono term ko dekho agar dono term +ve/+ve ya -ve/-ve sign rakhta hai toh woh U-turn Nai lenge ya distⁿ = $|disp^m|$ agar sign +ve/-ve Rahi toh U-turn lenge aur distance $\neq |disp^m|$

yaad rahe 1-D mein U-turn keliye rukhna hoga (v = 0) ... $dist^n$, * $disp^n$

Note: To calculate distⁿ, disp^m from x-t eqⁿ:

Ex. $x = t^2 - 4t + 8$ then take v-t graph, plot it using "v" eqⁿ which we"ll get by differentiating "x" eqⁿ & then put time given from t_1 & t_2 & see graph calculate distⁿ/disp^m.

 Moving Frame se body ko drop/release karne pr frame ka velocity share hojata hai but acclⁿ nai!

MOTION WITH CONSTANT ACCELERATION :-

$$\vec{v} = \vec{u} + \vec{a}t$$

$$v^2 - u^2 = 2\vec{a}\vec{s}$$

$$\vec{s} = \vec{x}_f - \vec{x}_c = \vec{u}t + \frac{1}{2}\vec{\alpha}t^2$$

$$\vec{\nabla}_{Avg} = \frac{\vec{v} + \vec{u}}{2}$$
 $S = \frac{\vec{u} + \vec{v}}{2} \times t$

$$S_{nth} = u + \frac{1}{2} (2n - 1)$$

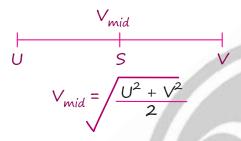
$$\frac{S_{n^{th}}}{S_{n}} = \frac{2n-1}{n^{2}} = \frac{2}{n} - \frac{1}{n^{2}}$$

Q. Object starts from rest and constant acceleration attained velocity 32 m/s in 10 sec. then find displacement in next 10 sec.

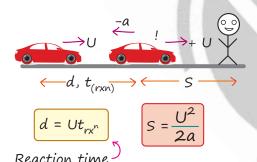
Ans.
$$S = \frac{u+v}{2} \times t \Rightarrow S = \frac{O+32}{2} \times 10$$

 $S = 160 \text{ m in } 1^{st} 10 \text{ sec.}$

Hence in next 10 sec.


it is $3 \times 160 = 480 \text{ m}$

Q. If velocity of object $V = \sqrt{25 - 8x}$ then find velocity and acceleration.


Ans. Acceleration is constant then compare velocity with 3rd equation of motion

$$v^{2} = 25 - 8x$$
 or $v^{2} = u^{2} + 2ax$
 $u^{2} = 25$ $-8x = 2ax$
 $u = 5 \text{ m/s}$ $2a = -8$
 $a = -4 \text{ m/s}^{2}$

Note:-

Stopping Distance:-

Rest To Rest Motion:-

Ratio of time for equal distⁿ interval:-

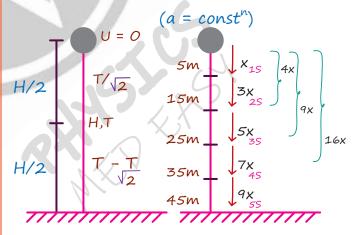
$$t_1: t_2: t_3 = 1: \sqrt{2-1}: \sqrt{3} - \sqrt{2}$$

Ratio of disp^m for equal time interval:-

$$S_{1st}: S_{2nd}: S_{3rd} = 1:3:5$$

 $S_{1s}: S_{2s}: S_{3s} = 1:4:9$

 $S_t : S_{next \, t} = 1 : 3 \text{ or } x : 3x$


Ratio of displacement in time t and next same time intraval t, where motion starts from rest and constant acceleration

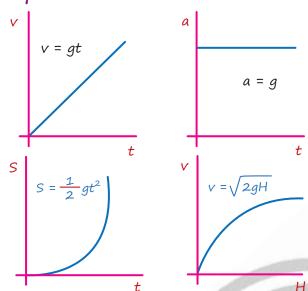
$$S_t: S_{2t} = 1: 4 \text{ or } x: 4x$$

displacement in time t total time (2t)

Q. Object starts from and constant acceleration moves 80 m in 7 sec. then find displacement in next 7 sec.

Ans. Displacement in next 7 sec = 3x= $3 \times 80 = 240 \text{ m}$

MOTION UNDER GRAVITY:-

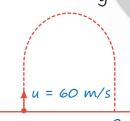

$$S_{1st}: S_{2nd}: S_{3rd} = 1:3:5$$

$$S_{1s}: S_{2s}: S_{3s} = x: 4x: 9x$$

Note:-

- 1. Time of Fight $(T_F) = \sqrt{\frac{2H}{g}}$
- 2. Velocity at ground :- $v = \sqrt{2gH}$

Graphs:-



MOTION UNDER GRAVITY FROM GROUND TO GROUND:-

- Non-uniform motion (velocity = variable) with constant acceleration (g).
- At maximum height velocity zero and a = g.

$$H_{max} = \frac{U^2}{2g} \qquad T_f = \frac{2U}{g}$$

$$T_{up} = \frac{U}{g} \qquad T_{down} = \frac{U}{g}$$

- 1. Total time of flight $T = \frac{2u}{g} = \frac{2\times60}{10}$ = 12 sec.
- 2. Maximum Height H = $\frac{u^2}{2a}$ = 180 m
- 3. Velocity at t = 7 sec. ^{2g} v = u + gt $= 60 - 10 \times 7 = -10$ m/s
- 4. Displacement in 8 sec.

$$S = ut + \frac{1}{2}at^2 = 160 \text{ m}$$

5. Distance in 8 sec.

at t = 6 sec. body comes to at rest and takes u-turn hence calculate distance 0 to 6 sec. then 6 to 8 sec

$$S = 180 + 20 = 200 \text{ m}$$

- 6. Distance in 9^{th} sec. downward journey ka 3^{rd} sec = 25 m. Use ratio.
- 7. Distance in last sec of upward journey = distance in 1st sec of downward journey = 5 m (always)
- Q. A stone with weight W is thrown vertically upward into the air with initial velocity v_o . If a constant force, due to air drag acts on the stone throughout the flight & if the maximum height attain by stone is h and velocity when it strikes to the ground is u. Which one is correct?

(a)
$$h = V_o^2 \left(1 + \frac{f}{W} \right) / 2g$$
, $V = V_o$

(b)
$$h = v_o^2 / 2g \left(1 + \frac{f}{W} \right)$$
, $v = zero$

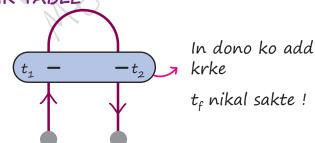
(c)
$$h = v_o^2 / 2g \left(1 + \frac{f}{W} \right), \ v = v_o \sqrt{\frac{W - f}{W + f}}$$

(d)
$$h = V_o^2 / 2g \left(1 + \frac{f}{W} \right), \ V = V_o \sqrt{\frac{W + f}{W - f}}$$

Ans.

MR*

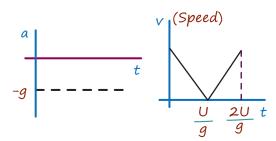
If f = 0 then

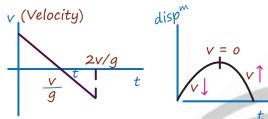

$$H = \frac{v^2}{2g} \text{ and } v = v_0$$

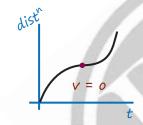
The MR*

$$H < \frac{\sqrt{2}}{2g}$$
 and $v < v_0$

Kam karne ke liye niche +ve hoga.

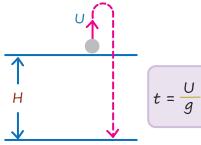

MR TABLE




Object is at same height at t_1 and t_2 .

That height
$$h = \frac{1}{2}gt_1t_2$$

 Ball is projected up with speed "U" graphs:-



o If air friction in not ignored then:-

$$\frac{t_{up}}{t_{down}} = \sqrt{\frac{g - a}{g + a}}$$

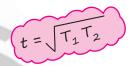
 $ot_{up} < t_{down}$

MOTION UNDER GRAVITY FROM HEIGHT TO GROUND:-

$$t = \frac{U}{g} + \sqrt{\frac{U^2}{g^2} + \frac{2H}{g}}$$

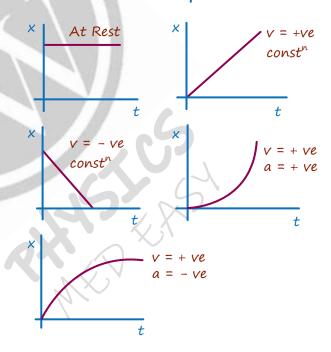
MR*

If u = 0 then it is like drop from height H then

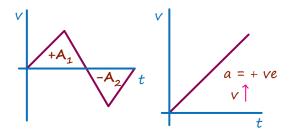

$$t = \sqrt{\frac{2H}{g}}$$

MR*

If H = O then it is like ground to ground motion

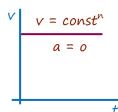

$$t = \frac{2u}{g}$$

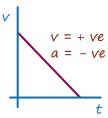
Q. Ball is projected up with speed "u" from height H. Then time of fight T_1 . With same speed "u" it is projected downward then time of fight is T_2 . find time of fight "T" when object is dropped from same height.

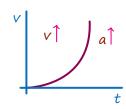


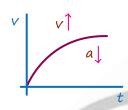
Graph:-

1. Position - Time Graph:-

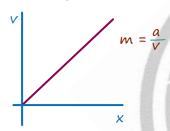


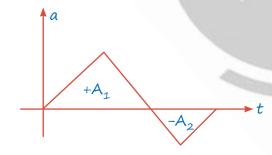

2. Velocity - Time Graph:-



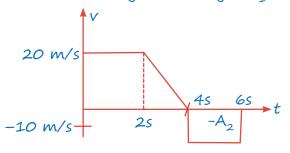

Area = displacement = $A_1 - A_2$ slope = acceleration

but distance = $A_1 + A_2$

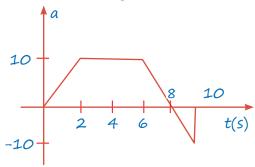




3. Velocity - Position Graph:-



4. Acceleration time graph:-



Slope = नाली (Jurk)

Area = Change in velocity = $A_1 - A_2$

Distance = total area = 40 + 20 + 20 = 80 mDisplacement = 40 + 20 - 20 = 40 m Q. If initial velocity of object is 10 m/s then find velocity at 10 sec

Ans. Area = change in velocity

$$\vec{V}_f - \vec{V}_i = \frac{1}{2} \times 12 \times 10 - \frac{1}{2} \times 10 \times 2$$
 $V_f - V_i = 60 - 10 = 50$
 $V_c = 50 + V_i = 50 + 10 = 60 \text{ m/s}$

Relative Motion in 1-D

 Observer khud ko hamesa rest me assume karta hai, or uska pas jo bhi velocity, acceleration hota hai, ulta kar ke jisko dekhta hai usme chipka deta hai.

 \vec{x}_{AB} = Position of A w.r.t. $\vec{B} = \vec{x}_A - \vec{x}_B$ \vec{x}_{BA} = Position of B w.r.t. $\vec{A} = \vec{x}_B - \vec{x}_A$ differentiation w.r.t. time

$$\overrightarrow{V}_{AB} = \overrightarrow{V}_{A} - \overrightarrow{V}_{B}$$

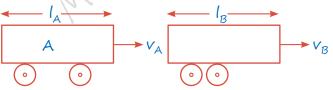
$$\overrightarrow{a}_{AB} = \overrightarrow{a}_{A} - \overrightarrow{a}_{B}$$

$$\overrightarrow{a}_{AB} = \overrightarrow{a}_{B} - \overrightarrow{a}_{A}$$

$$\overrightarrow{V}_{AB} = -\overrightarrow{V}_{BA}$$

$$\overrightarrow{a}_{AB} = -\overrightarrow{a}_{BA}$$

$$\overrightarrow{a}_{AB} = -\overrightarrow{a}_{BA}$$


$$\overrightarrow{A}$$

$$\overrightarrow{V}_{AB} = -\overrightarrow{V}_{BA}$$

$$\overrightarrow{A}$$

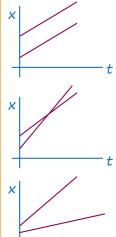
$$\overrightarrow{A}$$

$$\overrightarrow{V}_{AB} = -\overrightarrow{A}_{BA}$$

- Time taken to overtake = $\frac{I_A + I_B}{V_A V_B}$
- If they are moving opposite to each other $= \frac{I_A + I_B}{V_A + V_B}$

If
$$V_A = V_B$$

$$V_{AB} = 0$$


$$x_{AB} = cost^n$$

If
$$V_A > V_B$$

$$V_{AB} = +ve$$

$$V_{BA} = -ve$$

$$\overrightarrow{x}_{AB}$$
 = decrease then increase

If $V_A < V_B$

$$V_{AB} = -ve$$

$$V_{RA} = +ve$$

 \overrightarrow{X}_{AB} = Increasing

Motion of Object on the Moving Surface | Ans. V_{relative} = 40 m/s

1. Man is running on the surface of train with V_M in the direction of train (V_T) $V_{MG} = V_T + V_M$

If man is running in opposite direction then, $V_{MG} = V_T - V_M$

- 2. River is flowing with V_R and man is swimming with V_M in downstream then V_{MG} = Velocity of man w.r.t ground or effective velocity of man = $V_M + V_R$ In upstream $V_{MG} = V_R - V_M$
- 3. Same as above in stair case.
 - Motion under gravity of one object w.r.t other which is also in motion under gravity is uniform relative motion.

$$a_{AB} = O$$
 $V_{AB} = Cost^n$

 S_{AB} = Increasing or decreasing linear

Time of collision =
$$\frac{S_{AB}}{V_{AB}}$$

Q. A ball is drop from 80 m height and another ball is projected with speed 40 m/s then they will collide.

$$a_{relative} = 0$$
 $t = \frac{80}{40} = 2 \sec 0$
 $S_{relative} = 80$

Q. A ball thrown downward with speed 20 m/s and 30 m/s simultaneously, then find relative velocity and separation b/w them after 4 sec

Ans. $a_{AB} = O V_{BA} = 10 \text{ m/s (const w.r.t bus)}$ $S_{BA} = V_{BA}t = 10 \times 4 = 40 \text{ m}$

A bus starts from rest moving with an acceleration of 2 m/s². A cyclist, 96 m behind the bus starts simultaneously towards the bus at 20 m/s. After what time will he be able to overtake the bus:-

Ans.

$$a_{CB} = 2 \text{ m/s}^2 \qquad 96 \text{ m} \qquad 0 \qquad 0$$

 $S = ut + \frac{1}{2} at^2$ (cyclist w.r.t bus)

$$96 = 20t - \frac{1}{2}2t^2$$

 $t^2 - 20t + 96^2 = 0$ t = 12s and t = 8 sec at 8 sec cyclist overtake bus and at 12 sec bus will again cross cyclist.

MR*

 पछतावा अतीत नहीं बदल सकता और चिंता भविष्य नहीं सँवार सकती। इसलिए वर्तमान का आनंद लेना ही, जीवन का सच्चा सुख है।