Vector

Scalar Quantity	Vector Quantity
HavingMagnitude only	 Having Magnitude, direction and follow triangle law of vector addition.
 Follow simple algebric addition 	• Can be changed by changing magnitude only, or changing dir ⁿ only or changing both.
O Can be changed only by changing its value	
Ex-Speed, time, Mass, Volume, density current, etc.	Ex-Force, Velocity, current density, torque etc.

- In vector +ve and -ve indicate direction only.
 Ex- +5N and -5N, same magnitude of force in opposite direction.
- 2. Angle between vector When two vectors are placed head to head or tail to tail then smaller angle between vector is called angle between vector.

- 3. Vector can be shifted parallel to itself by keeping magnitude cmd direction fixed.
- 4. Rotation of vector not allowed it will change meaning of vector.
- 5. If Angel between \overrightarrow{A} and \overrightarrow{B} vector is θ then angle between \overrightarrow{A} and $-\overrightarrow{B}$ is $(180-\theta)$.

Type of Vectors

Туре	Magnitude	Direction\Angle	
Equal Vector	Same	Same $(\theta = 0)$	
Parallels Vector	May or May not same	Same $(\theta = 0)$	
Opposite Vector or Negative Vectors	Same	Opposite θ = 180°	
Antiparalles Vector	May or May not same	θ = 180° opposite	
Orthogonal	May same	θ = 90°	
Zero/Null Vector	Zero	any direction	
Unit Vectors	One	$\hat{A} = \frac{\overrightarrow{A}}{A}$	

- O All equal vectors are parallel but all parallels are not equal.
- O All opposite (Negative) Vectors are Antiparallel but all antiparallel are not Opposite Vector

Component of Vector (effect of Vector)

Magnitude of Vectors:

$$\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
$$|\overrightarrow{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

If vector is making an angle α , β and γ from x, y and z-axis respectively then $\cos^2 \alpha +$ $cos^2\beta + cos^2\gamma = 1$; $sin^2\alpha + sin^2\beta + sin^2\gamma = 2$ $\cos \alpha = \frac{Ax}{A}$ $\cos \beta = \frac{Ay}{A}$ $\cos \gamma = \frac{Az}{A}$

Triangle Law of Vector addition

$$|\overrightarrow{R}| = \int A^2 + B^2 + 2AB \cos \theta$$

$$|f \theta = 0^\circ| \quad \theta = 90^\circ \quad |\theta = 180^\circ$$

$$|R_{max}| = A + B \quad |R| = \int A^2 + B^2 \quad |R_{min}| = A - B$$

$$|A - B \le R \le A + B$$

$$|f |\overrightarrow{A}| = |\overrightarrow{B}| = A \text{ and Angle b/w them } \theta$$

$$|\overrightarrow{R}| = 2A \cos (\theta/2) \quad D = 2A \sin (\theta/2)$$

			V 111	
$\theta = 0^{\circ}$	θ = 60°	θ = 90°	θ = 120°	θ = 180°
R = 2A	$R = \sqrt{3}A$	$R = \sqrt{2}A$	R = A	R = 0
D = 0	D = A	$D = \sqrt{2}A$	$D = \sqrt{3}A$	D = 2A

Vector Subtraction

Angle B/w \overrightarrow{A} & \overrightarrow{B} is θ then $\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$

$$|\overrightarrow{D}| = \sqrt{A^2 + B^2 - 2AB \cos \theta}$$

$$\theta = 0^{\circ}$$
 $\theta = 90^{\circ}$ $\theta = 180^{\circ}$
 $D_{min} = A - B$ $D = \sqrt{A^2 + B^2}$ $D = A + B$

$$A - B \le D \le A + B$$

- 1. Magnitude of Vector addition and subtraction same at 90°.
- 2. $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$

Commutative

3. $n(\overrightarrow{A} + \overrightarrow{B}) = n\overrightarrow{A} + n\overrightarrow{B}$ distributive

4. $\overrightarrow{A} - \overrightarrow{B} \neq \overrightarrow{B} - \overrightarrow{A}$

- 5. $\overrightarrow{A} = A_y \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\overrightarrow{B} = B_y \hat{i} + B_y \hat{j} +$ $B_{x}\hat{k}$ then $\vec{A} + \vec{B} = (A_{x} + B_{x})\hat{i} + (A_{y} + B_{y})\hat{j}$ $+(A_z+B_z)\hat{k}$
- 6. If $|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|$ then angle between \vec{A} and \vec{B} is 120°
- 7. If $|\overrightarrow{A}| + |\overrightarrow{B}| = |\overrightarrow{A} + \overrightarrow{B}|$ then angle between \overrightarrow{A} and \overrightarrow{B} is zero.
- 8. If $\overrightarrow{A} + \overrightarrow{B} = \sqrt{A^2 + B^2}$ then angle between \vec{A} and \vec{B} is 90°.
- 9. If $|\vec{A} + \vec{B}| = |\vec{B} \vec{A}|$ then angle between \overrightarrow{A} and \overrightarrow{B} is 90°.

Scalar Product (Dot Product)

 $\overrightarrow{A} \cdot \overrightarrow{B} = A(B \cos \theta) = A(Component \text{ of } B \text{ along } A)$ = $(A \cos \theta) B = B(Component \text{ of } A \text{ along } B)$

Component of B along A =
$$\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{A}$$

Component of A along B = $\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{B}$

O Result of dot product is always scalar.

$$\hat{i} \cdot \hat{i} = 1 \qquad \hat{j} \cdot \hat{j} = 1 \qquad \hat{k} \cdot \hat{k} = 1$$

$$\hat{i} \cdot \hat{k} = 0 \qquad \hat{j} \cdot \hat{i} = 0 \qquad \hat{k} \cdot \hat{j} = 0$$

$$\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$

$$= A_x B_x + A_y B_y + A_z B_z$$

Application of dot Product

- (i) To Find Angle B/W vectors $\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$ $\cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{AB}$
- (ii) To check unit vector

 If \overrightarrow{A} is a unit vector then $\overrightarrow{A} \cdot \overrightarrow{A} = 1$
- (iii) To check perpendicular vector (orthogonal)

 If $\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos 90^\circ = 0$

If
$$\vec{A} \cdot \vec{B} = AB \cos 90^\circ = C$$

 $\vec{A} \cdot \vec{B} = O \quad (\vec{A} \perp r \vec{B})$

(iv) To find component of one vector along other.

$$\vec{A} \cdot \vec{B} = A(B \cos \theta)$$

$$B \cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{A} = Comp^n \text{ of } B \text{ along } A$$

Cross-Product : [Vector Product]

$$\vec{A} \times \vec{B} = AB \sin \theta \hat{n}$$

 \hat{n} is direction of $\vec{A} \times \vec{B}$ which is perpendicular to \vec{A} & \vec{B} .

$$(\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{A} = O \qquad (\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{B} = O$$

B sin $\theta = \frac{\overrightarrow{A} \times \overrightarrow{B}}{A} = component of B$ perpendicular of A

$$\vec{R} = \vec{A} \times \vec{B}$$

Place your finger of right hand along \vec{A} and slap \vec{B} then thumb will represent \vec{R} .

$$\hat{i} \times \hat{i} = 0 = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}$$

$$\hat{i} \times \hat{j} = \hat{k}$$

$$\hat{j} \times \hat{i} = -\hat{k}$$

$$\hat{j} \times \hat{k} = \hat{i}$$

$$\hat{k} \times \hat{j} = -\hat{i}$$

$$\hat{k} \times \hat{i} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{j}$$

$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} i & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$= i (A B - A B)$$

$$= i (A_y B_z - A_z B_y)$$
$$- J(A_x B_z - A_z B_x)$$

+
$$K(A_xB_y - A_yB_x)$$

- O Unit vector does not have any unit only have direction and magnitude one.
- O Minimum no. of vectors whose resultant can be zero is '2'.
- O Minimum no of unequal vectors whose resultant can be zero is 3.
- The resultant of 3 Non-coplaner vectors can't be zero.
- Minimum no of Non-coplaner, vectors whose resultant can be zero is 4.
- Q. If $|\vec{A} \times \vec{B}| = |\vec{B}| \vec{A} + \vec{B}|$ then angle between \vec{A} and \vec{B} is?

Solⁿ. AB
$$\sin \theta = \sqrt{3}$$
 AB $\cos \theta$

$$\tan \theta = \sqrt{3} \Rightarrow \theta = 60^{\circ}$$

- O Division of vector with vector is not possible
- O Division of magnitude of vector is possible
- O Vector can be divided by scalar.
- If vector multiplied by positive scalar then magnitude change direction remains same.
- If vector multiplied by negative scalar then magnitude change direction becomes opposite.

O Scalar triple Product:

 $R = (\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{C}$ Result R will be scalar and R will be zero if any of these two vector becomes parallel.

- Q. Ramlal is moving with velocity 6m/s along east and pinky with 6 m/s at 30° east of north then relative of pinky w.r.t Ramlal.
- Sol. $\overrightarrow{V}_{PR} = \overrightarrow{V}_{P} \overrightarrow{V}_{R}$ same vector ka subtraction at 60° $|\overrightarrow{V}_{PR}| = 6$ m/s

Change in speed = 0 magnitude of change in velocity = 20 m/s $\vec{V}_f = 10 \text{ m/s}$

- Q. If $\vec{A} = 0.6\hat{i} + \beta\hat{j}$ is a unit vector then find value of B.
- $Sol^{n} |\overrightarrow{A}| = 1$ if A is unit vector

$$\sqrt{(0.6)^2 + \beta^2} = 1$$

$$\beta^2 + 0.36 = 1$$

$$\beta = \sqrt{0.64} = 0.8$$

Q. Two force 10N and 6N acting then find resultant of these two force may be?

$$Sol^{n} 10 - 6 \le R \le 10 + 6$$

R will be 4N to 16N

Q. The angle which a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ makes with x, y and z-axis

$$\cos \alpha = \frac{Ax}{A}$$
 $\cos \beta = \frac{Ay}{A}$ $\cos \gamma = \frac{Az}{Z}$

$$\cos \gamma = \frac{Az}{7}$$

$$\alpha = 60$$

$$\alpha = 60^{\circ}$$
 $\beta = 60^{\circ}$ $\gamma = 45^{\circ}$

- Q. In which of the following combination of three force resultant will be zero.
 - (a) 3N, 7N, 8N
 - (b) 2N, 5N, 1N
 - (c) 3N, 12N, 7N
 - (d) 4N, 5N, 10N
- Solⁿ Sum of two smaller must be greater or equal to (3rd).
- O Polygon Law of vector addition

Start tail of next vector from head of previous vector and so on.

 $\vec{A} + \vec{B} + \vec{C} = \vec{R}$

 $\vec{A} + \vec{B} + \vec{C} = 0$

- O Angle between $(\overrightarrow{A} \times \overrightarrow{B})$ and $(\overrightarrow{A} + \overrightarrow{B})$ is zero
- Q. Force acting on object $\vec{F} = 5\hat{i} + 3\hat{j} 7\hat{k}$ position vector $\overrightarrow{r} = 2i + 2j - k$ then find torque ?? (NEET 2022)

$$\vec{\xi} = r \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 5 & 3 & -7 \end{vmatrix}$$

$$\hat{i}(-14 - (-3) - \hat{j}(-14 - (-5) + \hat{k}(6-10) -11\hat{i} + 9\hat{j} - 4\hat{k}$$

 अपनी पढाई छोड़ जो तेरे पीछे चला आयेगा। वो खुद का ना हो सका, तेरा क्या हो जायेगा॥