

ELECTRICAL SAFETY BULLETIN

The USA DOE has developed and implemented an Electrical Safety Program. In reviewing the Electrical hazards related to their business/projects and work tasks performed they created a comprehensive electrical hazard classification system and then applied this against work tasks and developed and implemented a comprehensive qualitative risk assessment process that included a related risk matrix. In Table 1 below I have provided a simple summary of the electrical hazard classifications the USA DOE initially created and evolved over the years. Some of the information is also extracted/validated from other information sources as noted below.

Page 1 of 5

Issued by: TWB Date: 202340202

Table 1 – Electrical Hazard Classification Summary Table

Electrical Hazard Classification Voltage or	Potential Severity of Injury or Damage to Health
Electrical Equipment	
50/60hz AC Electrical Equipment, Single	Abnormal Arcing Fault:
Phase. Abnormal arcing fault, no arc flash.	Resulting in potential thermal exposure burn
Electric shock hazard.	injury to the Qualified Person's hands, noise,
	ejected molten metal, and bright light.
• ≤30VAC, CSA Z462. No shock.	Electric Shock Effects:
<50VAC, NFPA 70E. No shock.	• ≥30VAC, CSA Z462.
 120VAC single phase. 	 ≥50VAC, NFPA 70E.
 240VAC single phase. 	 Current flow into body, survivable
 277VAC single phase. 	injury.
 347VAC single phase. 	Electrocution.
	Electric shock sequela (long term effects)
	of injuries from electrical current).
50/60hz AC Electrical Equipment, Three	Abnormal Arcing Fault and Arc Flash Multiple
Phase. Abnormal arcing fault resulting in an	Potential Effects:
arc flash. Electric shock hazard.	Thermal burn injury.
	 Expansion of air resulting in arc blast
• ≥208VAC three phase, 2000A available	pressure.
fault current.	Molten metal/shrapnel.
• 480VAC/600VAC three phase.	UV/IR light.
• >1000VAC.	 Toxic smoke/vapour.
	Noise
	Electric Shock Effects:
	Current flow into body, survivable
	injury.
	Electrocution.
	Electric Shock Sequela.
<u>Batteries</u>	Abnormal arcing fault and arc flash multiple
	potential effects:
• ≤60VDC, CSA Z462. No electric shock.	Thermal burn injury.
• <50VDC, NFPA 70E. No electric shock.	Expansion of air resulting in arc blast
• ≥125VDC power (e.g. UPS battery rack	pressure.
or other DC power source). NFPA 70E	Molten metal/shrapnel.
Table 130.7(C)(15)(b) and CSA Z462	• UV/IR light.
Table V.3 updated 100VDC to 150VDC	Toxic smoke/vapour.
(based on industry research, not IEEE	Noise.
1584). For 125VDC, unlikely	

Page **2** of **5**

ELECTRICAL SAFETY BULLETIN ELECTRICAL HAZARD CLASSIFICATION

Issued by: TWB Date: 202340202

probability of sustaining if <17kA	Electric Shock Effects:
available fault current.	Current flow into body, survivable
	injury.
	Electrocution.
	Electric shock sequela.
Capacitors	Abnormal Arcing Fault:
	• >120kJ, >1.2 cal/cm ² .
Stored Energy Hazard Thresholds (NFPA 70E,	 Thermal hazard if >100J of stored
Article 360.3 and Annex R or CSA Z462 Clause	energy.
6.7 and Annex W):	 Acoustical shock wave, hearing
	protection >100J of stored energy.
<100V and >100J stored energy.	 Hearing protection boundary.
 ≥100V and >1.0 J of stored energy. 	Electric Shock Effects:
 ≥400V and >0.25 J of stored energy. 	 Function of energy, risetime, pulse
	length and body impedance.
	 Impulse electric shock.
	 ≥100V threshold.
	 Energy delivered, 1 to 10ms:
	 Slight sensation, 0.05 to 1mJ.
	 Disagreeable, 5 to 100mJ.
	 Painful, 0.1 to 0.5J.
	 Injury likely, 1 to 50J.
	 Fibrillation likely, 50 to 1000J.
	Other:
	 Lung protection boundary, >122kJ.
	 Fire hazard, dielectric fluids. Toxic
	vapours.
RF (Radiofrequency)	Electric Shock/Burn Threshold:
	• <u>0.003 to 0.1 MHz:</u>
• >3kHz to 100MHz.	 ≤1000f mA. No injury, no controls
	 >1000f mA. Injury or fatality.
	• <u>0.1 to 100 MHz:</u>
	 ≤100mA. No injury, no controls.
	 >100mA. Injury or fatality.
Sub-RF (Sub-Radiofrequency)	Thermal Threshold:
	• <u>≤50V:</u>
• 1Hz to 3kHz.	 ≤1000 W. No injury, no controls.
	 ≥1000 W. Injury or fatality.
	• <u>50-250V:</u>

Page 3 of 5

ELECTRICAL SAFETY BULLETIN ELECTRICAL HAZARD CLASSIFICATION

Issued by: TWB Date: 202340202

• ≤5 mA. No injury, no controls.
 >5 mA. Injury or fatality.
• <u>>250V:</u>
 <u>Electric Shock threshold:</u>
 ≤5 mA. No injury, no controls.
 5-75 mA. Injury or fatality.
 Arc Flash Threshold:
 75 mA to 500A. Injury or fatality.
 >500A. Very serious, avoid work.

Note: This is a summary table only and may not be a complete reference. See references below.

References:

- 1. CSA Z462 Workplace electrical safety Standard, 2024 Edition. CSA Group, Mississauga, ON.
- 2. NFPA 70E Standard for Electrical Safety in the Workplace, 2024 Edition. NFPA, Quincy, MA.
- 3. IEEE 1584 Guide for Performing Arc-Flash Hazard Calculations, 2018 Edition. IEEE, New York, NY.
- 4. IEEE 3007 Series: Operation and Management, Maintenance, and Safety of Industrial and Commercial Power Systems (IEEE Yellow Book).
- 5. L. B. Gordon, L. Cartelli, "A Complete Electrical Hazard Classification System and Its Application", IEEE Electrical Safety Workshop, 2009.
- 6. A.M. Smoak, A.J. Keeth, "An Investigation of Low Voltage Arc Flash Exposure," IEEE Electrical Safety Workshop, 2013, ESW2013-30.
- 7. L. B. Gordon, N. Graham, "A Complete Electrical Arc Hazard Classification System and Its Application," IEEE Electrical Safety Workshop, 2015, ESW2015-21.
- 8. L. B. Gordon, K. Carr, N. Graham, "A Complete Electrical Arc Hazard Classification System and Its Application," IEEE Transactions on Industry Applications", Vol. 53, pp. 5078-5087, Sept./Oct. 2017.
- 9. L.B. Gordon, T. Martinez, "Complete Electrical Risk Assessment Method," IEEE Electrical Safety Workshop, 2018, ESW2018-09.
- 10. L. B. Gordon, L. Cartelli, N. Graham, "A Complete Electrical Shock Hazard Classification System and Its Application," IEEE Transactions on Industry Applications, Vol. 54, pp 6554-6565, Nov/December 2018.
- 11. J. Martin, A. Machado, G. Christiansen, J. Whipple, L.B. Gordon, "Low Voltage 208Y/120V && 240VAC Arc Sustainability," USA DOE EFCOG Best Practice #232-2019.
- 12. L.B. Gordon, J. Liechty, T. Martinez, E. Stromberg, J. Williams, "Electrical Injuries and Fatalities: Facts, Myths and Unknowns," IEEE Electrical Safety Workshop, 2019, ESW2019-32.
- 13. J.F. Wade, "Arc Flash in Single-Phase Electrical Systems," University of Tennessee, TN, PhD. Doctoral Dissertations, 12-2020.
- 14. J.F. Wade, "Investigation of Arc Flash in Single-Phase Vertical Conductors in a Box," IEEE Industry Applications, Volume 2, 2021, April 15, 2021
- 15. L.B. Gordon, T. Martinex, K. Carr, "Risk Assessment for Electrical Work for All Electrical Hazards," IEEE Electrical Safety Workshop, 2022. March 11, 2022, Tutorial 6.

ELECTRICAL SAFETY BULLETIN ELECTRICAL HAZARD CLASSIFICATION

Issued by: TWB Date: 202340202

RELEVANT RESOURCES

FREE DOWNLOADS

https://twbesc.ca/esp-free-tools

CONTACT

Terry W. Becker, P.Eng., CESCP, IEEE Senior Member terry.becker@twbesc.ca 1-587-433-3777 CONNECT ON LINKEDIN linkedin.com/in/twbecker

www.twbesc.ca