

SECURE
CODING

GUIDELINES

Input Valida,on

Guidelines Compliant
Conduct all data validation on a trusted system (e.g., The server)
Identify all data sources and classify them into trusted and untrusted. Validate all
data from untrusted sources (e.g., Databases, file streams, etc.)
There should be a centralized input validation routine for the application
Specify proper character sets, such as UTF-8, for all sources of input
Encode data to a common character set before validating (Canonicalize)
All validation failures should result in input rejection
Determine if the system supports UTF-8 extended character sets and if so,
validate after UTF-8 decoding is completed
Validate all client provided data before processing, including all parameters, URLs
and HTTP header content (e.g. Cookie names and values). Be sure to include
automated post backs from JavaScript, Flash or other embedded code
Verify that header values in both requests and responses contain only ASCII
characters
Validate data from redirects (An attacker may submit malicious content directly to
the target of the redirect, thus circumventing application logic and any validation
performed before the redirect)
Validate for expected data types
Validate data range
Validate data length
Validate all input against a "white" list of allowed characters, whenever possible
If any potentially hazardous characters must be allowed as input, be sure that you
implement additional controls like output encoding, secure task specific APIs and
accounting for the utilization of that data throughout the application . Examples of
common hazardous characters include: < > " ' % () & + \ \' \"
If your standard validation routine cannot address the following inputs, then they
should be checked discretely
1. Check for null bytes (%00)
2. Check for new line characters (%0d, %0a, \r, \n)
3. Check for “dot-dot-slash" (../ or ..\) path alterations characters. In cases where
UTF-8 extended character set encoding is supported, address alternate
representation like: %c0%ae%c0%ae/
(Utilize canonicalization to address double encoding or other forms of obfuscation
attacks)

Output Coding

Guidelines Compliant

Conduct all encoding on a trusted system (e.g., The server)
Utilize a standard, tested routine for each type of outbound encoding

Contextually output encode all data returned to the client that originated outside
the application's trust boundary. HTML entity encoding is one example, but does
not work in all cases
Encode all characters unless they are known to be safe for the intended interpreter
Contextually sanitize all output of un-trusted data to queries for SQL, XML, and
LDAP
Sanitize all output of un-trusted data to operating system commands

Authen,ca,on and Password Management

Guidelines Compliant
Require authentication for all pages and resources, except those specifically
intended to be public
All authentication controls must be enforced on a trusted system (e.g., The server)
Establish and utilize standard, tested, authentication services whenever possible
Use a centralized implementation for all authentication controls, including libraries
that call external authentication services
Segregate authentication logic from the resource being requested and use
redirection to and from the centralized authentication control
All authentication controls should fail securely
All administrative and account management functions must be at least as secure as
the primary authentication mechanism
If your application manages a credential store, it should ensure that only
cryptographically strong one-way salted hashes of passwords are stored and that
the table/file that stores the passwords and keys is write-able only by the
application. (Do not use the MD5 algorithm if it can be avoided)
Password hashing must be implemented on a trusted system (e.g., The server).
Validate the authentication data only on completion of all data input, especially for
sequential authentication implementations
Authentication failure responses should not indicate which part of the
authentication data was incorrect. For example, instead of “Invalid username” or
“Invalid password”, just use “Invalid username and/or password” for both. Error
responses must be truly identical in both display and source code
Utilize authentication for connections to external systems that involve sensitive
information or functions
Authentication credentials for accessing services external to the application should
be encrypted and stored in a protected location on a trusted system (e.g., The
server). The source code is NOT a secure location
Use only HTTP POST requests to transmit authentication credentials
Only send non-temporary passwords over an encrypted connection or as encrypted
data, such as in an encrypted email. Temporary passwords associated with email
resets may be an exception
Enforce password complexity requirements established by policy or regulation.
Authentication credentials should be sufficient to withstand attacks that are typical
of the threats in the deployed environment. (e.g., requiring the use of alphabetic as
well as numeric and/or special characters)
Enforce password length requirements established by policy or regulation. Eight
characters is commonly used, but 16 is better or consider the use of multi-word
pass phrases
Password entry should be obscured on the user’s screen. (e.g., on web forms use
the input type “password”)

Enforce account disabling after an established number of invalid login attempts
(e.g., five attempts is common). The account must be disabled for a period of time
sufficient to discourage brute force guessing of credentials, but not so long as to
allow for a denial-of-service attack to be performed
Password reset and changing operations require the same level of controls as
account creation and authentication.
Password reset questions should support sufficiently random answers. (e.g.,
“favorite book” is a bad question because “The Bible” is a very common answer)
If using email based resets, only send email to a pre-registered address with a
temporary link/password
Temporary passwords and links should have a short expiration time
Enforce the changing of temporary passwords on the next use
Notify users when a password reset occurs
Prevent password re-use
Passwords should be at least one day old before they can be changed, to prevent
attacks on password re-use
Enforce password changes based on requirements established in policy or
regulation. Critical systems may require more frequent changes. The time between
resets must be administratively controlled
Disable “remember me” functionality for password fields
The last use (successful or unsuccessful) of a user account should be reported to
the user at their next successful login
Implement monitoring to identify attacks against multiple user accounts, utilizing
the same password. This attack pattern is used to bypass standard lockouts, when
user IDs can be harvested or guessed
Change all vendor-supplied default passwords and user IDs or disable the
associated accounts
Re-authenticate users prior to performing critical operations
Use Multi-Factor Authentication for highly sensitive or high value transactional
accounts
If using third party code for authentication, inspect the code carefully to ensure it is
not affected by any malicious code

Session Management

Guidelines Compliant
Use the server or framework’s session management controls. The application
should only recognize these session identifiers as valid
Session identifier creation must always be done on a trusted system (e.g., The
server)
Session management controls should use well vetted algorithms that ensure
sufficiently random session identifiers
Set the domain and path for cookies containing authenticated session identifiers
to an appropriately restricted value for the site
Logout functionality should fully terminate the associated session or connection
Logout functionality should be available from all pages protected by authorization
Establish a session inactivity timeout that is as short as possible, based on
balancing risk and business functional requirements. In most cases it should be no
more than several hours

Disallow persistent logins and enforce periodic session terminations, even when
the session is active. Especially for applications supporting rich network
connections or connecting to critical systems. Termination times should support
business requirements and the user should receive sufficient notification to
mitigate negative impacts
If a session was established before login, close that session and establish a new
session after a successful login
Generate a new session identifier on any re-authentication
Do not allow concurrent logins with the same user ID
Do not expose session identifiers in URLs, error messages or logs. Session
identifiers should only be located in the HTTP cookie header. For example, do not
pass session identifiers as GET parameters
Protect server side session data from unauthorized access, by other users of the
server, by implementing appropriate access controls on the server
Generate a new session identifier and deactivate the old one periodically. (This
can mitigate certain session hijacking scenarios where the original identifier was
compromised)
Generate a new session identifier if the connection security changes from HTTP to
HTTPS, as can occur during authentication. Within an application, it is
recommended to consistently utilize HTTPS rather than switching between HTTP
to HTTPS.
Supplement standard session management for sensitive server-side operations,
like account management, by utilizing per-session strong random tokens or
parameters. This method can be used to prevent Cross Site Request Forgery
attacks
Supplement standard session management for highly sensitive or critical
operations by utilizing per-request, as opposed to per-session, strong random
tokens or parameters
Set the "secure" attribute for cookies transmitted over an TLS connection
Set cookies with the HttpOnly attribute, unless you specifically require client-side
scripts within your application to read or set a cookie's value

Access Control

Guidelines Compliant
Use only trusted system objects, e.g. server side session objects, for making
access authorization decisions
Use a single site-wide component to check access authorization. This includes
libraries that call external authorization services
Access controls should fail securely
Deny all access if the application cannot access its security configuration
information
Enforce authorization controls on every request, including those made by server
side scripts, "includes" and requests from rich client-side technologies like AJAX
and Flash
Segregate privileged logic from other application code
Restrict access to files or other resources, including those outside the
application's direct control, to only authorized users
Restrict access to protected URLs to only authorized users
Restrict access to protected functions to only authorized users
Restrict direct object references to only authorized users

Restrict access to services to only authorized users
Restrict access to application data to only authorized users
Restrict access to user and data attributes and policy information used by access
controls
Restrict access security-relevant configuration information to only authorized
users
Server side implementation and presentation layer representations of access
control rules must match
If state data must be stored on the client, use encryption and integrity checking
on the server side to catch state tampering.
Enforce application logic flows to comply with business rules
Limit the number of transactions a single user or device can perform in a given
period of time. The transactions/time should be above the actual business
requirement, but low enough to deter automated attacks
Use the "referer" header as a supplemental check only, it should never be the sole
authorization check, as it is can be spoofed
If long authenticated sessions are allowed, periodically re-validate a user’s
authorization to ensure that their privileges have not changed and if they have,
log the user out and force them to re-authenticate
Implement account auditing and enforce the disabling of unused accounts (e.g.,
After no more than 30 days from the expiration of an account’s password.)
The application must support disabling of accounts and terminating sessions
when authorization ceases (e.g., Changes to role, employment status, business
process, etc.)
Service accounts or accounts supporting connections to or from external systems
should have the least privilege possible
Create an Access Control Policy to document an application's business rules, data
types and access authorization criteria and/or processes so that access can be
properly provisioned and controlled. This includes identifying access requirements
for both the data and system resources

Cryptographic Prac,ces

Guidelines Compliant
All cryptographic functions used to protect secrets from the application user must
be implemented on a trusted system (e.g., The server)
Protect master secrets from unauthorized access
Cryptographic modules should fail securely
All random numbers, random file names, random GUIDs, and random strings
should be generated using the cryptographic module’s approved random number
generator when these random values are intended to be un-guessable
Cryptographic modules used by the application should be compliant to FIPS 140-2
or an equivalent standard. (See
http://csrc.nist.gov/groups/STM/cmvp/validation.html)
Establish and utilize a policy and process for how cryptographic keys will be
managed

Error handling and Logging

Guidelines Compliant
Do not disclose sensitive information in error responses, including system details,
session identifiers or account information
Use error handlers that do not display debugging or stack trace information
Implement generic error messages and use custom error pages
The application should handle application errors and not rely on the server
configuration
Properly free allocated memory when error conditions occur
Error handling logic associated with security controls should deny access by
default
All logging controls should be implemented on a trusted system (e.g., The server)
Logging controls should support both success and failure of specified security
events
Ensure logs contain important log event data
Ensure log entries that include un-trusted data will not execute as code in the
intended log viewing interface or software
Restrict access to logs to only authorized individuals
Utilize a master routine for all logging operations
Do not store sensitive information in logs, including unnecessary system details,
session identifiers or passwords
Ensure that a mechanism exists to conduct log analysis
Log all input validation failures
Log all authentication attempts, especially failures
Log all access control failures
Log all apparent tampering events, including unexpected changes to state data
Log attempts to connect with invalid or expired session tokens
Log all system exceptions
Log all administrative functions, including changes to the security configuration
settings
Log all backend TLS connection failures
Log cryptographic module failures
Use a cryptographic hash function to validate log entry integrity

Data Protec,on

Guidelines Compliant
Implement least privilege, restrict users to only the functionality, data and system
information that is required to perform their tasks
Protect all cached or temporary copies of sensitive data stored on the server from
unauthorized access and purge those temporary working files a soon as they are
no longer required.
Encrypt highly sensitive stored information, like authentication verification data,
even on the server side. Always use well vetted algorithms, see "Cryptographic
Practices" for additional guidance
Protect server-side source-code from being downloaded by a user

Do not store passwords, connection strings or other sensitive information in clear
text or in any non-cryptographically secure manner on the client side. This
includes embedding in insecure formats like: MS viewstate, Adobe flash or
compiled code
Remove comments in user accessible production code that may reveal backend
system or other sensitive information
Remove unnecessary application and system documentation as this can reveal
useful information to attackers
Do not include sensitive information in HTTP GET request parameters
Disable auto complete features on forms expected to contain sensitive
information, including authentication
Disable client side caching on pages containing sensitive information. Cache-
Control: no-store, may be used in conjunction with the HTTP header control
"Pragma: no-cache", which is less effective, but is HTTP/1.0 backward compatible
The application should support the removal of sensitive data when that data is no
longer required. (e.g. personal information or certain financial data)
Implement appropriate access controls for sensitive data stored on the server.
This includes cached data, temporary files and data that should be accessible only
by specific system users

Communica,on Security

Guidelines Compliant
Implement encryption for the transmission of all sensitive information. This
should include TLS for protecting the connection and may be supplemented by
discrete encryption of sensitive files or non-HTTP based connections
TLS certificates should be valid and have the correct domain name, not be
expired, and be installed with intermediate certificates when required
Failed TLS connections should not fall back to an insecure connection
Utilize TLS connections for all content requiring authenticated access and for all
other sensitive information
Utilize TLS for connections to external systems that involve sensitive information
or functions
Utilize a single standard TLS implementation that is configured appropriately
Specify character encodings for all connections
Filter parameters containing sensitive information from the HTTP referer, when
linking to external sites

System Configura,on

Guidelines Compliant
Ensure servers, frameworks and system components are running the latest
approved version
Ensure servers, frameworks and system components have all patches issued for
the version in use
Turn off directory listings
Restrict the web server, process and service accounts to the least privileges
possible
When exceptions occur, fail securely
Remove all unnecessary functionality and files

Remove test code or any functionality not intended for production, prior to
deployment
Prevent disclosure of your directory structure in the robots.txt file by placing
directories not intended for public indexing into an isolated parent directory.
Then "Disallow" that entire parent directory in the robots.txt file rather than
Disallowing each individual directory
Define which HTTP methods, Get or Post, the application will support and
whether it will be handled differently in different pages in the application
Disable unnecessary HTTP methods, such as WebDAV extensions. If an extended
HTTP method that supports file handling is required, utilize a well-vetted
authentication mechanism
If the web server handles both HTTP 1.0 and 1.1, ensure that both are configured
in a similar manor or insure that you understand any difference that may exist
(e.g. handling of extended HTTP methods)
Remove unnecessary information from HTTP response headers related to the OS,
web-server version and application frameworks
The security configuration store for the application should be able to be output in
human readable form to support auditing
Implement an asset management system and register system components and
software in it
Isolate development environments from the production network and provide
access only to authorized development and test groups. Development
environments are often configured less securely than production environments
and attackers may use this difference to discover shared weaknesses or as an
avenue for exploitation
Implement a software change control system to manage and record changes to
the code both in development and production

Database Security

Guidelines Compliant
Use strongly typed parameterized queries
Utilize input validation and output encoding and be sure to address meta
characters. If these fail, do not run the database command
Ensure that variables are strongly typed
The application should use the lowest possible level of privilege when accessing
the database
Use secure credentials for database access
Connection strings should not be hard coded within the application. Connection
strings should be stored in a separate configuration file on a trusted system and
they should be encrypted.
Use stored procedures to abstract data access and allow for the removal of
permissions to the base tables in the database
Close the connection as soon as possible
Remove or change all default database administrative passwords. Utilize strong
passwords/phrases or implement multi-factor authentication
Turn off all unnecessary database functionality (e.g., unnecessary stored
procedures or services, utility packages, install only the minimum set of features
and options required (surface area reduction))
Remove unnecessary default vendor content (e.g., sample schemas)
Disable any default accounts that are not required to support business
requirements

The application should connect to the database with different credentials for
every trust distinction (e.g., user, read-only user, guest, administrators)

File Management

Guidelines Compliant
Do not pass user supplied data directly to any dynamic include function
Require authentication before allowing a file to be uploaded
Limit the type of files that can be uploaded to only those types that are needed
for business purposes
Validate uploaded files are the expected type by checking file headers. Checking
for file type by extension alone is not sufficient
Do not save files in the same web context as the application. Files should either go
to the content server or in the database.
Prevent or restrict the uploading of any file that may be interpreted by the web
server.
Turn off execution privileges on file upload directories
Implement safe uploading in UNIX by mounting the targeted file directory as a
logical drive using the associated path or the chrooted environment
When referencing existing files, use a whitelist of allowed file names and types.
Validate the value of the parameter being passed and if it does not match one of
the expected values, either reject it or use a hard coded default file value for the
content instead
Do not pass user supplied data into a dynamic redirect. If this must be allowed,
then the redirect should accept only validated, relative path URLs
Do not pass directory or file paths, use index values mapped to pre-defined list of
paths
Never send the absolute file path to the client
Ensure application files and resources are read-only
Scan user uploaded files for viruses and malware

Memory Management

Guidelines Compliant
Utilize input and output control for un-trusted data
Double check that the buffer is as large as specified
When using functions that accept a number of bytes to copy, such as strncpy(), be
aware that if the destination buffer size is equal to the source buffer size, it may
not NULL-terminate the string
Check buffer boundaries if calling the function in a loop and make sure there is no
danger of writing past the allocated space
Truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions
Specifically close resources don’t rely on garbage collection. (e.g., connection
objects, file handles, etc.)
Use non-executable stacks when available
Avoid the use of known vulnerable functions (e.g., printf, strcat, strcpy etc.)
Properly free allocated memory upon the completion of functions and at all exit
points

General Coding Prac,ces

Guidelines Compliant
Use tested and approved managed code rather than creating new unmanaged
code for common tasks
Utilize task specific built-in APIs to conduct operating system tasks. Do not allow
the application to issue commands directly to the Operating System, especially
through the use of application initiated command shells
Use checksums or hashes to verify the integrity of interpreted code, libraries,
executables, and configuration files
Utilize locking to prevent multiple simultaneous requests or use a synchronization
mechanism to prevent race conditions
Protect shared variables and resources from inappropriate concurrent access
Explicitly initialize all your variables and other data stores, either during
declaration or just before the first usage
In cases where the application must run with elevated privileges, raise privileges
as late as possible, and drop them as soon as possible
Avoid calculation errors by understanding your programming language's
underlying representation and how it interacts with numeric calculation. Pay close
attention to byte size discrepancies, precision, signed/unsigned distinctions,
truncation, conversion and casting between types, "not-a-number" calculations,
and how your language handles numbers that are too large or too small for its
underlying representation
Do not pass user supplied data to any dynamic execution function
Restrict users from generating new code or altering existing code
Review all secondary applications, third party code and libraries to determine
business necessity and validate safe functionality, as these can introduce new
vulnerabilities
Implement safe updating. If the application will utilize automatic updates, then
use cryptographic signatures for your code and ensure your download clients
verify those signatures. Use encrypted channels to transfer the code from the
host server

Source: OWASP SCP

CHECKLISTS | WHITEPAPERS
TEMPLATES | VIDEOS

DID YOU LIKE OUR PLAYBOOK
AND IF YOU NEED MORE

FOLLOW US ON

