We observe a trajectory

0	1	0	1
0	1	1	1
1	1	1	1
1	1	1	0
1	0	1	0
1	0	1	1
0	0	1	1
0	0	0	1

Tim

G1 G2 G3 G4

We want to find a network model that generates the trajectory

If we consider N networks, we need log₂N bits to encode them

Each additional bit in the encoding doubles the number of networks, and the trajectories that they can generate/fit

Each bit in the trajectory that we allow to be a mismatch, also doubles the number of trajectories that our networks can generate/fit

Consequently, the best fit minimizes the number of network bits and noise bits – it is the **M**inimal **E**dit **D**istance from a **S**tate of **I**gnorance