Road Bicycle Frame Testing
A Summary

Larry Ruff Ph.D.

November 25, 2013
Presentation Outline

- Background
- Description of Fixtures
- Some Test Result
- Discussion and Conclusions
Background

➢ Previous Research
 • Frame Stiffness Testing
 • Klein – Old Catalog
 • Miller – Bike Tech
 • Rinard - Web
 • Cannondale - Web
 • Specialized - Catalog
 • Open University - Web
 • Velonews
Background

- Transmitted Vibration Testing
 - Hastings, Blair, Culligan and Pober
 - Treadmill
 - Levy and Smith
 - Mountain Bike
 - Champoux, Richard and Drouet
 - Structural Dynamics, Treadmill

- Fatigue Testing
 - Very little in the literature
Background

- Effects of Vibration on the Cyclist
 - Testing by Pivit
 - HAVS Standards
 - 2.8 meters per second squared
 - 5-20 hertz
 - Accumulated time riding road bicycles can possibly cause damage
Bicycling’s new frame rigidity testing machine.
Description of Fixtures

Test Fixtures
- Cantilever Beam Testing
- Frame Deflection Testing
- Fork Deflection Testing
- Fatigue Testing
- Fork Vibration Testing
- Bicycle Dynamic Testing
Cantilever Beam Testing

- Calibration
- Thin-walled Tubing Issues
Cantilever Beam Testing
Table 2.4: Deflection of 1.125 dia. by .035 Wall Tubing

<table>
<thead>
<tr>
<th>Pressure psi</th>
<th>Force calculated pounds</th>
<th>Deflection actual inches</th>
<th>Deflection calculated inches</th>
<th>Bridge voltage volts</th>
<th>Stress calculated psi</th>
<th>Strain calculated in/in</th>
<th>Strain measured in/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.98</td>
<td>9.37</td>
<td>.031</td>
<td>.0262</td>
<td>.0596</td>
<td>4756.07</td>
<td>.0001585</td>
<td>.000149</td>
</tr>
<tr>
<td>4.99</td>
<td>15.68</td>
<td>.055</td>
<td>.0439</td>
<td>.1021</td>
<td>7958.93</td>
<td>.0002653</td>
<td>.000255</td>
</tr>
<tr>
<td>7.97</td>
<td>25.04</td>
<td>.090</td>
<td>.0700</td>
<td>.1620</td>
<td>12709.93</td>
<td>.0004237</td>
<td>.000405</td>
</tr>
</tbody>
</table>

Table 2.5: Deflection of 1.250 dia. by .035 Wall Tubing

<table>
<thead>
<tr>
<th>Pressure psi</th>
<th>Force calculated pounds</th>
<th>Deflection actual inches</th>
<th>Deflection calculated inches</th>
<th>Bridge voltage volts</th>
<th>Stress calculated psi</th>
<th>Strain calculated in/in</th>
<th>Strain measured in/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.97</td>
<td>9.33</td>
<td>.025</td>
<td>.0189</td>
<td>.0495</td>
<td>3792.68</td>
<td>.0001264</td>
<td>.0001238</td>
</tr>
<tr>
<td>4.90</td>
<td>15.39</td>
<td>.0425</td>
<td>.0312</td>
<td>.0820</td>
<td>6256.10</td>
<td>.0002085</td>
<td>.0002050</td>
</tr>
<tr>
<td>7.98</td>
<td>25.07</td>
<td>.072</td>
<td>.0509</td>
<td>.1349</td>
<td>10191.06</td>
<td>.0003397</td>
<td>.0003373</td>
</tr>
</tbody>
</table>

Cantilever Beam Testing
Frame and Fork Deflection Testing

➢ Static Testing
 • Frame-Lateral
 • Frame-Vertical
 • Fork
Frame Deflection Testing
Frame Test Fixture Details
Frame Test Fixture Details
Controls and Instrumentation
Frames and Forks Used For Testing
Fork Deflection Testing
Fatigue Testing

- Allows Cycling of Chain Stays in Bending
- Large Number of Failures Found in Chain Stay/Bridge/Bottom Bracket Area
- Could also be Used to Test Seat Tube/BB and Down Tube/BB Joints
Fatigue Testing

- Cycle Chain Stays to Failure Example
 - 103 pound load
 - .386 inch initial deflection
 - .410 inch deflection at 1200 cycles, crack
 - .505 inch deflection at 1400 cycles, crack progressed
 - .545 inch deflection at 1660 cycles, crack progressed and crack in other stay
Fatigue Testing
Fork Vibration Testing

- Measure Vibration Transmitted to Top of Steerer
Fork Vibration Testing
Bicycle Dynamic Testing

Testing Methods

- Test Loop
- Bumps
- Fork Vibration (Vibration at Stem)
- Tire Pressure
Accelerometers
Bump Test Strip
Bump Testing
Test Loop Raw Data
Test Loop Data Histogram
Tire Pressure Comparison
<table>
<thead>
<tr>
<th>Frames Min.</th>
<th>Max. Vert. Defl. inches</th>
<th>Lateral Deflection</th>
<th>Acc. Range Rear Bike Test Loops</th>
<th>Acc. Range Rear Bump Surface g</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Havnoonian Alum. .003 (2)</td>
<td>6 .698</td>
<td>12.0 to -8.2 20.2</td>
<td>6.3 to -1.0 7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuji .004 (3)</td>
<td>5 .666</td>
<td>12.4 to -6.6 19.0</td>
<td>8.4 to -2.0 10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Havnoonian Stl. .004 (1)</td>
<td>4 .592</td>
<td>12.5 to -6.4 18.9</td>
<td>8.4 to -2.7 11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masi .0048 (5)</td>
<td>1 .331</td>
<td>11.8 to -6.8 18.6</td>
<td>7.1 to -1.9 9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwinn .005 (6)</td>
<td>3 .541</td>
<td>12.1 to -8.2 20.3</td>
<td>9.8 to -7.1 16.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannondale .005 (4)</td>
<td>2 .473</td>
<td>12.1 to -6.7 18.8</td>
<td>9.0 to -2.4 11.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.6: Summary of Rear Test Data

Max and Min Bump Surface
<table>
<thead>
<tr>
<th>Forks</th>
<th>Maximum Deflection inches</th>
<th>Acc. Range Fork Vibration g</th>
<th>Acc. Range Frt Bike Loop g</th>
<th>Acc. Range Frt Test g</th>
<th>Acc. Range Frt Bump Surface g</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masi (2)</td>
<td>.222</td>
<td>5.5 to -5.8 11.3</td>
<td>9.8 to -5.4 15.2</td>
<td>5.2 to -1.3 6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynolds (3)</td>
<td>.224</td>
<td>6.0 to -7.2 13.2</td>
<td>10.3 to -5.9 16.2</td>
<td>4.8 to -1.6 6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (5)</td>
<td>.239</td>
<td>5.3 to -7.7 13.0</td>
<td>11.2 to -5.1 16.3</td>
<td>7.7 to -3.6 11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuji (1)</td>
<td>.281</td>
<td>4.6 to -4.4 9.0</td>
<td>10.4 to -5.3 15.7</td>
<td>5.0 to -2.9 7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritchey (4)</td>
<td>.302</td>
<td>5.8 to -5.8 11.6</td>
<td>10.5 to -6.7 17.2</td>
<td>4.5 to -1.4 5.9</td>
<td>HH AL Frame</td>
<td></td>
</tr>
<tr>
<td>Ritchey (4)</td>
<td>.302</td>
<td>5.8 to -5.8 11.6</td>
<td>9.5 to -4.8 14.3</td>
<td>5.6 to -3.3 8.9</td>
<td>HH STL Frame</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.7: Summary of Front Test Data

Fork Max Value Bump
Table 4.8: Summary of Additional Test Data

<table>
<thead>
<tr>
<th>Frame</th>
<th>Loop Frt. g</th>
<th>Loop Rear g</th>
<th>Bumps Frt. g</th>
<th>Bumps Rear g</th>
<th>Loop Frt. g</th>
<th>Loop Rear g</th>
<th>Bumps Frt. g</th>
<th>Bumps Rear g</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH Std (1)</td>
<td>1.31</td>
<td>1.69</td>
<td>1.76</td>
<td>2.08</td>
<td>1.013405</td>
<td>1.002831</td>
<td>1.019412</td>
<td>1.008933</td>
</tr>
<tr>
<td>HH Al (2)</td>
<td>3.10</td>
<td>3.37</td>
<td>1.14</td>
<td>1.05</td>
<td>1.011115</td>
<td>1.003914</td>
<td>1.005315</td>
<td>0.996259</td>
</tr>
<tr>
<td>Fuji (3)</td>
<td>1.46</td>
<td>1.51</td>
<td>1.64</td>
<td>2.28</td>
<td>1.013294</td>
<td>1.001288</td>
<td>1.024278</td>
<td>1.011051</td>
</tr>
<tr>
<td>C’dale (4)</td>
<td>1.07</td>
<td>1.34</td>
<td>1.15</td>
<td>2.49</td>
<td>1.016671</td>
<td>1.001595</td>
<td>1.021294</td>
<td>1.014384</td>
</tr>
<tr>
<td>Masi (5)</td>
<td>1.12</td>
<td>1.17</td>
<td>1.59</td>
<td>1.93</td>
<td>1.010184</td>
<td>0.99203</td>
<td>1.017456</td>
<td>1.013998</td>
</tr>
<tr>
<td>Schwinn (6)</td>
<td>1.87</td>
<td>3.36</td>
<td>1.26</td>
<td>2.54</td>
<td>1.012677</td>
<td>1.001043</td>
<td>1.021086</td>
<td>1.018435</td>
</tr>
</tbody>
</table>

Note 1: This value is taken from the individual histograms of the data.

Note 2: This is the average of the raw data.

Table 4.8: Summary of Additional Test Data

Note Schwinn Values
<table>
<thead>
<tr>
<th>Frame</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3.25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4.25</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3.63</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3.25</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5.25</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Frame=Numbers in Table 4.2
A=Vertical Deflection Ranking: Least Deflection to Most
B=Lateral Deflection Ranking: Least Deflection to Most
C=Maximum Rear Loop g Value, Highest to Lowest
D=Maximum Range Rear Loop g Value, Highest to Lowest
E=Maximum Rear Bumps g Value, Highest to Lowest
F=Maximum Range Rear Bumps g Value, Highest to Lowest
G=Maximum Histogram Rear Loop g Value, Highest to Lowest
H=Maximum Histogram Rear Bumps Value, Highest to Lowest
I=Average Rear Loop g Value, Highest to Lowest
J=Average Rear Bumps g Value, Highest to Lowest
Avg=Average of Rankings, Not Including A: Vertical Deflection or B: Lateral Deflection

Figure 4.9: Summary and Average of Rear Stiffness Ranking Values

Schwinn Stiffest Masi Least Stiff
<table>
<thead>
<tr>
<th>Frame Fork</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>2.4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>3.8</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>4.3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>5.2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4.3</td>
</tr>
<tr>
<td>6.5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Frame=Numbers in Table 4.2
Fork= Numbers in Table 4.3
A=Fork Deflection Ranking, Least Deflection to Most
B=Fork Vibration Ranking, g Value, Highest to Lowest
C=Fork Vibration Ranking Total Range, g Value, Highest to Lowest
D=Maximum Front Loop g Value, Highest to Lowest
E=Maximum Range Front Loop g Value, Highest to Lowest
F=Maximum Front Bumps g Value, Highest to Lowest
G=Maximum Range Front Bumps g Value, Highest to Lowest
H=Maximum Histogram Front Loop g Value, Highest to Lowest
I=Maximum Histogram Front Bumps Value, Highest to Lowest
J=Average Front Loop g Value, Highest to Lowest
K=Average Front Bumps g Value, Highest to Lowest
Avg=Average of Rankings, Not Including A: Fork Deflection

Figure 4.10: Summary and Average of Front Stiffness Ranking Values

Again, Schwinn vs. Masi
Discussion and Conclusions

- Test Fixtures Designed and Built
 - Deflection, Fatigue and Vibration
- Simple Modeling
 - Not Discussed Today
- Failure Analysis and Testing
 - Not Enough Time to Discuss too Much
- Vibration Measurement and Ride Quality
 - Some Correlation to Stiffness but not that Simple