Botulinum toxin A creates muscle weakness and atrophy following long term use, study suggests

Date: December 1, 2010
Source: University of Calgary
Summary: A new study found that long-term use of Botulinum toxin A creates muscle weakness and atrophy even for the muscle that was not injected. The research was spurred by an article published in the Journal of Neurology. A new study found that long-term use of Botulinum toxin A creates muscle weakness and atrophy even for the muscle that was not injected. The research was spurred by an article published in the Journal of Neurology.

Botulinum toxin A (Botox) is used to treat a variety of conditions. At the University of Calgary, researchers have been looking at the long-term effects of the drug on muscles. In their new study, they found that muscle weakness and atrophy can occur in non-injected muscles.

Dr. Daniel Herzog, lead author of the study, said, "This study shows, for the first time, that over time Botulinum toxin A use also results in muscle weakness, atrophy and loss of contractile tissue far-removed from the injection site. "It may be that the benefits of using Botox for these kinds of therapeutic, medical conditions outweigh these potential long-term consequences, " says Dr. Herzog, "however I think this study raises some important questions that need to be followed to ensure the best possible outcomes for patients, in the long-term."

The study also suggests that long-term use of Botulinum toxin A may lead to muscle weakness and atrophy in areas that were not treated. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug.

The study was conducted using mice that were injected with Botulinum toxin A. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug. The researchers also compared the muscle strength of the injected and non-injected muscles and found that the non-injected muscles had significantly lower strength.

The researchers suggest that the results of their study could have implications for the long-term use of Botulinum toxin A. They say that the results suggest that the drug may have long-term effects on muscle function and that more research is needed to understand these effects.

The study was published in the journal Brain Research.

Botulinum Toxin A is also used as a cosmetic treatment where muscles are paralyzed to prevent muscle contractions. The drug is approved for use in a variety of conditions, including cervical dystonia. The drug is also used as a cosmetic treatment to prevent muscle contractions in people with cervical dystonia.

Herzog notes that while this study was looking at larger doses, the results should be valid for any application of the drug. He says that the results raise some important questions about the long-term use of Botulinum toxin A.

Long-term use of Botulinum toxin A (BOTOX, Allergan, Inc., Toronto, Ontario, Canada) experienced muscle weakness in muscles far-removed from the injection site. "It may be that the benefits of using Botox for these kinds of therapeutic, medical conditions outweigh these potential long-term consequences, " says Dr. Herzog, "however I think this study raises some important questions that need to be followed to ensure the best possible outcomes for patients, in the long-term."

The study also suggests that long-term use of Botulinum toxin A may lead to muscle weakness and atrophy in areas that were not treated. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug.

The study was conducted using mice that were injected with Botulinum toxin A. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug. The researchers also compared the muscle strength of the injected and non-injected muscles and found that the non-injected muscles had significantly lower strength.

The researchers suggest that the results of their study could have implications for the long-term use of Botulinum toxin A. They say that the results suggest that the drug may have long-term effects on muscle function and that more research is needed to understand these effects.

The study was published in the journal Brain Research.

Botulinum Toxin A is also used as a cosmetic treatment where muscles are paralyzed to prevent muscle contractions. The drug is approved for use in a variety of conditions, including cervical dystonia. The drug is also used as a cosmetic treatment to prevent muscle contractions in people with cervical dystonia.

Herzog notes that while this study was looking at larger doses, the results should be valid for any application of the drug. He says that the results raise some important questions about the long-term use of Botulinum toxin A.

Long-term use of Botulinum toxin A (BOTOX, Allergan, Inc., Toronto, Ontario, Canada) experienced muscle weakness in muscles far-removed from the injection site. "It may be that the benefits of using Botox for these kinds of therapeutic, medical conditions outweigh these potential long-term consequences, " says Dr. Herzog, "however I think this study raises some important questions that need to be followed to ensure the best possible outcomes for patients, in the long-term."

The study also suggests that long-term use of Botulinum toxin A may lead to muscle weakness and atrophy in areas that were not treated. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug.

The study was conducted using mice that were injected with Botulinum toxin A. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug. The researchers also compared the muscle strength of the injected and non-injected muscles and found that the non-injected muscles had significantly lower strength.

The researchers suggest that the results of their study could have implications for the long-term use of Botulinum toxin A. They say that the results suggest that the drug may have long-term effects on muscle function and that more research is needed to understand these effects.

The study was published in the journal Brain Research.

Botulinum Toxin A is also used as a cosmetic treatment where muscles are paralyzed to prevent muscle contractions. The drug is approved for use in a variety of conditions, including cervical dystonia. The drug is also used as a cosmetic treatment to prevent muscle contractions in people with cervical dystonia.

Herzog notes that while this study was looking at larger doses, the results should be valid for any application of the drug. He says that the results raise some important questions about the long-term use of Botulinum toxin A.

Long-term use of Botulinum toxin A (BOTOX, Allergan, Inc., Toronto, Ontario, Canada) experienced muscle weakness in muscles far-removed from the injection site. "It may be that the benefits of using Botox for these kinds of therapeutic, medical conditions outweigh these potential long-term consequences, " says Dr. Herzog, "however I think this study raises some important questions that need to be followed to ensure the best possible outcomes for patients, in the long-term."

The study also suggests that long-term use of Botulinum toxin A may lead to muscle weakness and atrophy in areas that were not treated. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug.

The study was conducted using mice that were injected with Botulinum toxin A. The researchers found that the muscle weakness and atrophy occurred even in areas that were not injected with the drug. The researchers also compared the muscle strength of the injected and non-injected muscles and found that the non-injected muscles had significantly lower strength.

The researchers suggest that the results of their study could have implications for the long-term use of Botulinum toxin A. They say that the results suggest that the drug may have long-term effects on muscle function and that more research is needed to understand these effects.

The study was published in the journal Brain Research.