Microeconomics (Andrew Gates)
Practice Problems - Multivariate Optimization / Lagrange Method

Consumer Choice Framework: Utility-maximizing Consumption Choices

Matt enjoys sushi (S) and cocktails (C) with utility function Um(S,C) = S+C precisely describing his
consumption preferences. Matt has a $60 gift card to a restaurant where the prices of these two goods are
Ps=$5 and Pc= $10.

a) Draw a budget constraint and indifference curves depicting Matt’s preferences.

b) Isthe budget constraint binding in this problem? Briefly explain.

c) Solve Matt’s consumer choice optimization problem using a Lagrangian approach.

d) Solve Matt’s consumer choice problem using the MRS = MRT approach.

e) Create a table showing each of Matt’s possible consumption bundles (integer value allocations only)
and the resulting utility from each.

SOLUTION: For constructing the budget constraint, we must find every affordable combination
of sushi and cocktails which use all of Matt’s purchasing power:

Sushi Cocktails Matt's Utility
0] 6 0
2 5 10
4 4 16
6 3 18
8 2 16
10 1 10
12 0] 0
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SOLUTION
The budget constraint is binding in this problem, as usual, because Matt can only use the gift card for
purchasing these two goods: his utility is monotonically increasing over both, so he will always use up the
whole gift card. If it was cash instead of a gift card, the answer would be the same if he placed no value
on money but could be different if he also derived utility from the cash, which he might not fully spend in
that case.

Using a Lagrangian approach:

L(c,s,\) = c- s+ A(60 — 10c — 5s)

The first order conditions are:
oL

0L

g—C—SA—O

OL
5—60—100—55—0

So from the first two FOCs we have £ = A = {; which gives us s = 2c¢ as our optimal consumption
ratio. Using the third FOC (budget constraint) we can substitute to obtain the following:

60 — 10c — 5(2¢) = 0
=3, s =6
Using the MRS = MRT approach, we can construct the budget constraint directly: [ Ps-s+P.-c = 100 | and

equating the marginal rate of substitution from the utility function with the marginal rate of transformation
from the budget constraint, we have the following:

v 10

MRS = —9¢ = — = MRT
w5
S _ 9
C
s=2c

Substituting back into the budget constraint with the prices given in the question, we can solve 5-(2¢)+10-
¢ = 100 which also gets ¢* = 3 and s* = 6. Intuitively, the logic of this approach is that we are finding the
one unique place where the slope of the budget constraint (MRT) is equal to the slope of the indifference
curves (MRS). Since there are many indifference curves (which all have the same shape) substituting into
the budget constraint allows us to identify exactly which indifference curve we are on.
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Income/Leisure Framework - Sleep Requirements & Asymmetric Preferences

Emily can choose exactly how much she wants to work, but she must sleep exactly 12 hours per day and
these hours do not count towards either leisure or income. Emily’s utility over income I and leisure L is
given by the function Ug (I,L) =1* L2.

a) Draw Emily’s budget constraint and express this mathematically.

b) Find the optimal allocation of her time using whichever approach you want.

c) Draw a graph of her utility over hours spent working (allocated to income).

d) Briefly explain the meaning of the curvature in this graph with words.

e) Find her marginal utility from working 1 more hour if she is working 4 hours.

f) Find her marginal utility from working 1 more hour if she is working 15 hours.

g) Draw out Emily’s full income-leisure utility diagram: include a budget constraint and three
indifference curves. Label several specific points on each of these indifference curves to
show utility and the corresponding amounts of income and leisure on the two axes.

SOLUTION

The budget constraint mathematically is I + L = 12 and this also means that the utility equation can
be re-written in terms of only one variable, as either Ug(I) =1 (12 —I)2 in terms of income hours or
equivalently as Ug(L) = (12 — L) - L2 in terms of leisure hours. Graphing either one of these obtains an
inverse parabolic concave function reflecting diminishing returns and then eventually decreasing utility
beyond the peak, which corresponds with the optimal allocations.

To solve using a Lagrangian:

=T -L2+X-(12—-1-1L)

The three “first order conditions” describing the optimal allocations are obtained by taking the partial
derivative of the Lagrangian with respect to the three variables:

oL

_— = 2 —
5 =L —A=0
oL

T _T.2L - A=
oL 0
oL

oy =12-1-L=0

Equating the first two FOCs we have I -2L = A = L?, which we can solve to obtain 21 = L to find our
optimal ratio of time usage. Substituting this back into the budget constraint which is returned by the
third FOC, we get 12 — I — (2I) = 0 which we can solve to obtain I* =4 and L* = 8.

Emily cannot work 15 hours because she only has 12 hours to allocate. Her marginal utility from
working one more hour if she is working 4 hours is the difference in utility that results: Ug(4,8) = 256
and Ug(5,7) = 5 - 7% = 245 so her marginal utility from this fifth hour spent working is —11.
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Emily’s Utility over hours spent on leisure (U plotted over L):

50

Emily’s Utility over hours spent working (U plotted over I):

250

Emily’s Income/Leisure Diagram:
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Supreme Side Hustle: Business Optimization with Space Constraints

Frank has a lucrative small business re-selling limited edition shoes and jackets from Nike and
Supreme. He has 200 cubic feet to store these goods in his apartment: each box of Nike shoes (N)
takes up one cubic foot and each Supreme jacket (J) takes up two cubic feet. Frank can buy one pair
of Nike shoes for $200 and he can buy a Supreme jacket for $400. The revenue function describing
how much money Frank can get from re-selling these items is R(N,]) = 9000 In(N) + 600 ] where
In denotes the natural logarithm, as usual. Assume Frank has no financial constraints.

SOLUTION
Frank generates revenue by re-selling, which are monotonic concave increasing for Nikes and monotonic
linear increasing for jackets. He also has a cost to acquire each type of product, which is linear for both.
This means that buying and re-selling more jackets will always generate a $200 profit per unit, but there
is a decreasing benefit to selling Nikes since the concave revenue function indicates diminishing marginal
revenue: the returns are decreasing for Nikes but profit is constant for jackets. The objective function for
profits, including revenues and costs, subject to the space constraint of his storage, is:

TI(N, J) = R(N, J) — C(N, J) = 9000 - In(N) + 600J — 200N — 400.J

The budget constraint, which is binding because profit is monotonically increasing over at least one good,
is 1IN + 2J < 200. Conceptually, this means that Frank will always profit from selling more and therefore
he will always use up every last foot of space in his apartment to store the goods. The Lagrangian is:

L(N,J,\) = R(N,J) — C(N,J)+ Ag(N, J)

= 9000 - In(N) + 600J — 200N — 400.J + A(200 — N — 2.J)

The partial derivatives with respect to the three choice variables here are:

oL 9000

oN = N 20-A=0
oL

— = —400 — 2\ =

37 600 00 0
OL

— =200—2J—-N=0

o\

Solving the second FOC, we obtain A* = 100, and substituting this into the first FOC to solve for N, we
obtain N* = 30. Using the third FOC with N* = 30, we obtain J* = 85.

If the cost of Nikes doubles, this will reduce the profit per unit from selling Nikes, so he will need to
re-optimize to figure out how much he should shift from Nikes to jackets. We now have the following
Lagrangian: L(N, J,A) = 9000 - In(N) 4+ 600J — 400N — 400J + A(200 — N — 2J).

The first FOC will change but the other two will not. Solving this, we get % = % —400 — A =0 and
therefore N* = 18 now. Substituting this into the other two FOCs now obtains J* = 91.

Frank’s original profit was I1(30, 85) = 9000in(30) + 600(85) — 200(30) — 400(85) = $41, 610.

With Nike shoes doubling in price, Frank’s profit is now I1p(18,91) = 9000in(18) + 600(91) — 400(18) —
400(91) = $37,013. We can see that he has shifted towards re-selling fewer Nikes and more jackets in
response to this price change, which has also reduced his profits. If he did not re-allocate, then his new
profits would be II(30, 85) = 9000/n(30) + 600(85) — 400(30) — 400(85) = $35,611.
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Firm Profit Maximization: Production of Two Goods

Suppose a factory has six assembly lines which can be used to produce good z or good
y. The profit function (which is realistically based on the assumption of nonlinear demand)
describing the firm’s payoff from production, is II(z,y) = 2000-in(z)+1000-in(y). Determine
how the firm should use its resources to maximize profits.

SOLUTION: The budget constraint in this case is * +y < 6 and it is binding because
producing more of either good is always monotonically increasing profit because the natural
log function is concave increasing. Using this constraint, we can set up our Lagrangian as
follows:

L(Ivya ’\) = H(Ia y) +A- g(z,y)
= 2000 - In(z) + 1000 - In(y) + A - (6 — z — y)

The three “first order conditions” describing the optimal allocations are obtained by
taking the partial derivative of the Lagrangian with respect to the three variables:

OL 2000

oz~ o 70
oL _ 1000 ,_,
dy Y

OL
a—/\—6—z—y—0

Equating the first two FOCs, we obtain 22 = )\ = %-

This simplifies to 2000y = 1000z, which simplifies to * = 2y* as our optimal ratio of inputs.
Substituting back into our third FOC, which is our original budget constraint, we can obtain
6—-2y—y=0.

Solving this for y obtains y* = 2 and z* = 4 as our optimal allocations which maximize
production output subject to the given constraint. Plugging these values into our original

payoff function, we can obtain the maximum payoff value which results from this optimal
allocation: II(4,2) = 2000 - In(4) + 1000 - in(2) = $3465.74.
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Profit Maximization: Production of Two Goods With Input Costs

Now suppose we have R(z,y) = 2000 - In(z) + 1000 - in(y) as our revenue function but
there is an additional variable cost involved: each unit of z costs $150 in materials and each
unit of y costs $750 in materials. We still have the same space constraint of having only 6
assembly lines which can each be used to produce either x or y.

SOLUTION: To solve this, we must account for the costs. Using the given information, we
can write the cost function as C(z,y) = 150z + 750y, and this is linear for both variables. In
order to optimize our production, we now must include these costs in the objective function.
We can accomplish this by using the fact that profits equal total revenues minus total costs:
Meost(z,y) = R(z,y) — C(z,y) = 2000 - In(z) + 1000 - In(y) — 150z — 750y.

The Lagrangian equation is:
L(z,y,A) = (z,y) + A - g(z,y)
= 2000 - In(z) — 150z + 1000 - In(y) — 750y + A - (6 —z — y)

With the same constraint as before, the first order conditions are now:

L 2
0 —?—150—)\=0

e
oL = 1000 _ 750 —-A=0
dy y
oL
8_)\ =6—z— Yy = 0
Using the same process to solve, we equate the first two FOCs:
2000 1000

e 150=A=—— — 750
z Yy

2000y — 150zy = 1000z — 750xy
¥(2000 + 600z) = 1000z

. 1000z
Y= 2000 + 600z

Substituting this back into our third FOC, which is once again our original budget con-
straint, we have 6 — = — (55505%65;) = 0- Solving this, we obtain z* = —4 and z* = 5. Since
we obviously cannot produce negative amounts of product x, we disregard the negative so-
lution for z. The optimal allocations are z* = 5,y* = 1. Notice that the cost of y was
substantially higher than the cost of z: intuitively this is why we have shifted production to
make more of z. The revenue function is concave increasing with respect to each variable,
reflecting diminishing returns to productive efficiency: this is why we still optimally allocate
one assembly line to producing y. If revenue was linear over quantity with the linear costs
here, then we would always allocate all resources to whichever product was more profitable
in terms of linear revenue minus linear cost.
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Optimization of Production Inputs: Classic Cobb-Douglass

A factory can produce one type of product using capital (K) and labor (L) as its inputs.
Its production function is: F(K,L) = A- K - L? and suppose this has a 1:1 relationship
with profits. Capital costs $20 per unit of input and labor costs $10 per unit of input, with
a total budget of $200. Suppose the technology parameter A equals 100 and the exponent
multipliers (“weights”) on alpha and beta are equal and sum to one.

SOLUTION: The production function in this case is F(K, L) = A-K*-L? = 100- K°5. %%
and the budget constraint is 20K + 10L < 200. Production is monotonically increasing over
both types of inputs assuming all non-negative values. The Lagrangian is therefore

L(K,L,\) = 100 - K°3 . L9 4 \(200 — 20K — 10L).

g—II; = 100(a) K" LP — 20\ = 100(0.5) K**"' L% — 20\ = 0
OL 81 0.570.5-1

3L~ 100(B)K*LP~" — 10X = 100(0.5) K"°L™*~" —10A =0
OL

8_/\_200_2OK_IOL_0

Re-writing the first two first order conditions, we have:

VL _gon—0 - ar = VE

VK ~ 2K

SVE _on—o o ar=VE

VL VL

Equating these with each other, since both are equal to the Lagrangian multiplier A, we
can simplify to obtain L* = 2K*. Finally, substituting this back into the third FOC, which
is also our original budget constraint, we obtain 200 — 20K — 10(2K) = 0, and solving this
yields our solution:

K*=5L" =10

Intuitively, with a symmetric production function (or any objective function or payoff
function) we can see that when labor is half the cost of capital we will use twice as much
labor as capital. If the costs were equal then optimally we would use equal amounts so long
as the objective function was symmetric. With equal costs but a larger exponent multiplier
on capital, for example, then we would use more capital. Notice also that indifference curves
from this objective function are convex: both inputs are needed to produce anything, but the
optimal usage ratio depends on the relative costs of each input compared to their usefulness
in making outputs.



