EMPIRICAL ESTIMATION IN MICROECONOMICS:

INTRODUCTION TO ECONOMETRICS & EXAMPLES OF REAL-WORLD APPLICATIONS

ANDREW GATES

2024

INTRODUCTION TO EMPIRICAL ESTIMATION METHODS

- Ordinary Least Squares estimation
 - Motivation and intuitive explanation
 - Formal mathematical derivation
 - Examples of applications and interpreting results
 - Basic examples of different functional forms
- Differences in Differences estimation
 - Card & Krueger (AER 1994) paper: minimum wages & employment
 - *Future Topic:* Instrumental Variables approach
 - Acemoglu, Johnson, Robinson (2001) paper: settler mortality, institutions, econ growth
 - Other examples...

OLS: ORDINARY LEAST SQUARES ESTIMATION

- To estimate how an "independent variable" (x) affects a "dependent variable" (y) we can use a minimization problem with derivatives to find a line that best fits a plot of the data points
 - We have N observations: each point represents a measured value of outcome variable Y and exogenous variable X
- This (linear regression) is an extremely common technique to do empirical estimations in research to understand relationships between variables

Examples:

- wage and years of education
- college GPA and high school SAT score
- stock price and sales volume
- pollution levels and factory regulations
- automobile weight and crash fatality rate

OLS ESTIMATION: EQUATION AND INTUITION

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

- Y_i = estimated outcome value for observation i
- $\mathbf{\beta}_0 = \text{intercept of the best fit line}$
- X_i = value of independent variable X for observation i
- $\epsilon_i = random error$

- The intuition is to fit a line that minimizes the "sum of squared residuals" (RSS): the total amount of all vertical distances between the N data points and this line of "best fit" for the given set of data
 - Changing the intercept (starting point on the y-axis) shifts the line up or down
 - Changing the slope rotates the line's orientation / direction
- Squaring each of the vertical distances before adding them together achieves two important things:
 - Mathematically ensures all distances are positive: otherwise points above and below the line would cancel each other out
 - Exponentially increases the penalty for being farther away from the best fit line: outlier points have more "weight"

Deriving the formulas for the OLS intercept and slope coefficient starts with minimizing the sum of squared residuals (RSS) - the distance between the line of best fit and the data points. Mathematically, this problem is the following:

$$\min_{\hat{eta}_{0},\hat{eta}_{1}}\sum_{i=1}^{N}\left(y_{i}-\hat{eta}_{0}-\hat{eta}_{1}x_{i}
ight)^{2}=RSS$$

This minimization problem above is solved by taking the partial derivatives and setting them equal to 0. We take the derivative of RSS with respect to $\hat{\beta}_0$ and set it equal to 0 and solve, and perform the same process with respect to $\hat{\beta}_1$. This obtains the following FOCs:

$$\frac{\partial(RSS)}{\partial\hat{\beta}_0} = \sum_{i=1}^N -2\left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right) = 0$$

 and

$$\frac{\partial(RSS)}{\partial\hat{\beta}_1} = \sum_{i=1}^N -2x_i \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) = 0$$

Now we can solve these first derivative equations, or "first order conditions", using algebra and basic properties of summations. Dividing both sides by -2 we can re-write the first FOC as $\sum_{i=1}^{N} y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i = 0$.

Using the fact that
$$\sum_{i=1}^{N} y_i = N\bar{y}$$
 we have $N\hat{\beta}_0 = N\bar{y} - N\hat{\beta}_1\bar{x}$

Finally, we can divide everything by N to obtain

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}.$$

To solve for $\hat{\beta}_1$ we can divide both sides by -2 again and rearrange to obtain $\sum_{i=1}^{N} x_i y_i - \hat{\beta}_0 x_i - \hat{\beta}_1 x_i^2 = 0$. Substituting the result for $\hat{\beta}_0$ into this yields

$$\sum_{i=1}^N x_i y_i - \left(ar y - \hateta_1ar x
ight) x_i - \hateta_1 x_i^2 = 0$$

The summation applies to everything in the equation above. Using the property that a constant term can be removed from a summation and distributing the sum to each term, we obtain:

$$\sum_{i=1}^{N} x_i y_i - \bar{y} \sum_{i=1}^{N} x_i + \hat{\beta}_1 \bar{x} \sum_{i=1}^{N} x_i - \hat{\beta}_1 \sum_{i=1}^{N} x_i^2 = 0$$

From this same summation property, $\sum_{i=1}^{N} y_i = N\bar{y}$ and $\sum_{i=1}^{N} x_i = N\bar{x}$. Using these for $\hat{\beta}_1$ we obtain:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^N x_i y_i - N\bar{x}\bar{y}}{\sum_{i=1}^N x_i^2 - N\bar{x}^2}$$

Finally, we can use the facts that $\sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{N} x_i y_i - N \bar{x} \bar{y}$ and $\sum_{i=1}^{N} (x_i - \bar{x})^2 = \sum_{i=1}^{N} x_i^2 - N \bar{x}^2$, which stem from basic algebra, to substitute these two properties into the above equation and obtain the standard notation for the OLS slope estimator:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$

This is the "best fit" explanation of the how the dependent variable changes with respect to the independent variable.

LINEAR REGRESSION: INPUTS & OUTPUTS

- We can enter a set of data, containing N observations of a Y value and an X value, and an equation that we believe is a good explanation of the relationship between Y and X for the sample
- In Stata we could enter the following for a linear regression: regress Y X
 - The coefficient (β₁) that will be returned from this input command represents the slope of the best fit line, and this indicates how a one unit change in X will affect Y
 - We will also obtain an intercept for the vertical axis: graphically this is the value of the line of best fit when X=0

LINEAR REGRESSION: MULTIPLE VARIABLES

- A set of data containing N observations of a Y value and an X₁ value and an X₂ value can also be used, or potentially a data structure with many independent variables
- In Stata we could enter the following for this linear regression with multiple variables:

regress Y $X_1 X_2$

 The coefficients (β₁, β₂) that will be returned from this input command indicate how a one unit change in each of these two X variables will separately affect Y

REAL-WORLD APPLICATION 1: WAGE EQUATION

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

- Y_i = wage for individual i
- $\beta_0 = intercept$
- β_1 = effect on Y of a 1 unit increase in X
- X_i = years of education for individual i
- $\epsilon_i = \text{error term}$
- Suppose $\beta_0 = 10,000$ and $\beta_1 = 4000$: the basic interpretation is that an average random individual from the sample is predicted to earn \$10,000 plus \$4000 per year of education
- Someone with 12 total years of schooling is predicted to earn: 10,000+12(4000) = \$58,000
- Someone with 16 total years of schooling is predicted to earn: 10,000+16(4000) = \$74,000

<u>Question:</u> Do you think anything is missing with this model?

REAL-WORLD APPLICATION 2: REGULATIONS & BREWERIES

Linear regression equation: $Y_s = \beta_0 + \beta_1 X_s + \varepsilon_s$

- Y_s = brewery count in state s
- $\beta_0 = intercept$
- β_1 = effect on Y of a 1 unit increase in X
- X_s = "entry barrier" regulations in state s
- $\epsilon_s = \text{error term}$

- Suppose $\beta_0 = 600$ and $\beta_1 = -10$: the basic interpretation is that each additional regulation in a state is results in a decrease of 10 breweries in that state
- A state with 40 entry barrier regulations is expected to have 600 + 40(-10) = 200 breweries

REAL-WORLD APPLICATION 3: ATTENDANCE & EXAM SCORES

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$

- Y_i = score for individual i
- $\beta_0 = intercept$
- β_1 = effect on Y of a 1 unit increase in X_1
- X_{1i} = classes attended for individual i
- $\epsilon_i = \text{error term}$
- Suppose $\beta_0 = 78$ and $\beta_1 = 1.3$: the basic interpretation for this intercept and coefficient is that attending zero classes obtains a 78 on average and each class attended increases exam score by 1.3 points on average
- Someone with 10 classes attended is predicted to score 78 + 10(1.3) = 91
- What may be missing? Is it correlated with the included "exogenous" X-variable in this specification?

MULTIPLE VARIABLES EXAMPLE: EXAM SCORES BY ATTENDANCE & STUDY HOURS

Linear regression equation with multiple explanatory variables: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^{0.5} + \varepsilon_i$

- Y_i = score for individual i
- $\beta_0 = intercept$
- β_1 = effect on Y of a 1 unit increase in X_1
- X_{1i} = classes attended for individual i
- β_2 = effect on Y of a 1 unit increase in X_2
- X_{2i} = total hours of work and study for individual i
- $\epsilon_i = \text{error term}$
- Suppose $\beta_0 = 75$ and $b_1 = 0.7$ and $\beta_2 = 1.5$: now we can see that there is a positive correlation between attendance and total hours of work, which obviously matters but was not included before (omitted variable bias)
- Including this new exogenous variable decreases the extent to which attendance explains the outcome, but this
 probably increases the overall accuracy and explanatory power (which is called R²) of the regression
- Also note the functional form of this new variable: hours studied has diminishing marginal returns
- Someone with 10 sessions attended and 64 hours of work is predicted to score 75 + 10(0.7) + 1.5(8) = 94.0
- Someone with 3 sessions attended and 36 hours of work is predicted to score 75 + 3(0.7) + 1.5(6) = 86.1

WAGE EQUATIONS WITH SEVERAL VARIABLES & DIFFERENT FUNCTIONAL FORMS

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^{0.5} + \beta_3 X_{3i}^{0.5} + \beta_4 X_{4i} + \varepsilon_i$

- Y_i = annual income for individual i
- $\beta_0 = intercept$
- $\beta_1, \beta_2, \beta_3, \beta_4$: slope coefficients
- X_{1i} = total years of education for individual i
- X_{2i} = total years of work experience for individual i
- X_{3i} = total number of years that individual i has spent in prison
- X_{4i} = total number of years that individual i has been married
- $\epsilon_i = error term$
- Suppose that $\beta_0 = 15000$, $\beta_1 = 2000$, $\beta_2 = 7000$, $\beta_3 = -8000$, $\beta_4 = 1000$
- A person with 16 years of education, 4 years of work experience, and zero criminal convictions who has never been married is expected to have annual income of 15000 + 2000(16) + 7000(2) 8000(0) + 1000(0) = \$61,000
- A person with 18 years of education, 25 years of work experience, and zero criminal convictions who has been married for 16 years is expected to have annual income of 15000 + 2000(18) + 7000(5) 8000(0) + 1000(4) = \$90,000

UNDERSTANDING CAUSATION & ENDOGENEITY CONCERNS

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^{0.5} + \beta_3 X_{3i}^{0.5} + \beta_4 X_{4i} + \varepsilon_i$

- Y_i = annual income for individual i
- $\beta_0 = intercept$
- $\beta_1, \beta_2, \beta_3, \beta_4$: slope coefficients
- X_{1i} = total years of education for individual i
- X_{2i} = total years of work experience for individual i
- X_{3i} = total number of years that individual i has spent in prison
- X_{4i} = total number of years that individual i has been married
- $\epsilon_i = error term$
- Suppose that $\beta_0 = 15000$, $\beta_1 = 2000$, $\beta_2 = 7000$, $\beta_3 = -8000$, $\beta_4 = 1000$
- A person with 12 years of education, 4 years of work experience, 9 years spent in prison, and who has never been married is expected to have annual income of 15000 + 2000(12) + 7000(2) 8000(3) + 1000(0) = \$29,000
- Is it reasonable to assume that spending time in prison is the reason for a low income instead of the possibility that having a low income might have been a significant factor affecting that person's initial decision to get involved in criminal activity?
 - The data often does not conclusively tell us the "causal flow direction" what happened first making it impossible to know which was the cause and which was the effect: this ambiguity is usually called **endogeneity** and it creates major limitations and accuracy issues in statistical models
 - The easiest way to deal with this, if possible, is to choose outcome variables measured at a later point in time than the explanatory variables

USING BINARY INDICATOR "DUMMY" VARIABLES & MULTICOLLINEARITY ISSUES

- Sometimes it is either more accurate or more convenient to represent variables as a binary measure
 - An "indicator variable" equal to either 1 or 0 that represents whether someone is or is not a convicted felon is usually more accurate and efficient for statistical modeling than some continuous measure of years in jail
 - The effect of a binary variable in a standard model is always either zero or the value of its slope estimate
- Consider a variable like marriage: if someone is married then they are statistically more likely to have certain personality, lifestyle, and other attributes that positively correlate with being a good employee
 - Years of marriage is generally not as good of a measure as a simple binary variable representing whether the person is currently married
 - Potential concern: marriage could increase or potentially decrease a person's incentives to earn lots of money
 - Marriage status is correlated with age, education, etc... and potentially affected by prior income or lack of income

It is very complicated to find the most accurate and efficient combination and format of variables in empirical analysis!

USING BINARY INDICATOR "DUMMY" VARIABLES

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^{0.5} + \beta_3 X_{3i} + \beta_4 X_{4i} + \epsilon_i$

- Y_i = annual income for individual i
- $\beta_0 = intercept$
- $β_1, β_2, β_3, β_4$: slope coefficients
- X_{1i} = total years of education for individual i
- X_{2i} = total years of work experience for individual i
- X_{3i} = binary indicator set equal to 1 if individual i has ever been in prison
- X_{4i} = binary indicator set equal to 1 if individual i has ever been married
- $\epsilon_i = \text{error term}$
- Suppose that $\beta_0 = 15000$, $\beta_1 = 2000$, $\beta_2 = 7000$, $\beta_3 = -15000$, $\beta_4 = 13000$
- A person with 16 years of education, 4 years of work experience, and zero criminal convictions who has never been married is expected to have annual income of 15000 + 2000(16) + 7000(2) 15000(0) + 13000(0) = \$61,000
- A person with 16 years of education and 4 years of work experience who has been to prison and has never been married is expected to have annual income of 15000 + 2000(16) + 7000(2) 15000(1) + 13000(0) = \$46,000
- A person with 16 years of education, 4 years of work experience, and zero criminal convictions who has been married is expected to have annual income of 15000 + 2000(16) + 7000(2) 15000(0) + 13000(1) = \$74,000

USING BINARY INDICATORS AND CONTINUOUS VARIABLES TOGETHER

Linear regression equation: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^{0.5} + \beta_3 X_{3i} + \beta_4 X_{4i}^{0.5} + \beta_5 X_{5i} + \beta_6 X_{6i}^{0.5} + \epsilon_i$

- Y_i = annual income for individual i
- $\beta_0 = intercept$
- $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6$: slope coefficients
- X_{1i} = total years of education for individual i
- X_{2i} = total years of work experience for individual i
- X_{3i} = binary indicator set equal to 1 if individual i has ever been in prison
- X_{4i} = total number of years that individual i has spent in prison
- X_{5i} = binary indicator set equal to 1 if individual i has ever been married
- X_{6i} = total number of years that individual i has been married
- $\epsilon_i = error term$
- Suppose that $\beta_0 = 15000$, $\beta_1 = 2000$, $\beta_2 = 7000$, $\beta_3 = -8000$, $\beta_4 = -3000$, $\beta_5 = 6000$, $\beta_6 = 2000$
- A person with 16 years of education, 9 years of work experience, and zero criminal convictions who has been married 4 years is expected to have annual income of 15000 + 2000(16) + 7000(3) 8000(0) 3000(0) + 6000(1) + 2000(2) = \$78,000
- A person with 16 years of education, 9 years of work experience, who spent 4 years in prison and has been married for 1 year is expected to have annual income of 15000 + 2000(16) + 7000(3) 8000(1) 3000(2) + 6000(1) + 2000(1) = \$62,000

- Differences in Differences (often abbreviated DD or DiD) is a way to analyze the effect of a "treatment" by comparing trends in outcomes while taking pre-existing trajectories of the outcomes into account
- Example: Imagine two hospital patients who are both recovering from an illness at the same rate and receiving medicine. One patient receives an additional treatment T and then her rate of improvement increases afterwards. Using a DD approach can estimate the isolated effect of T on whatever quantitative measure of health is being observed as the outcome.

- DiD approach estimates the *change in the trend* compared to the pre-existing trend
- The green line above would represent a control group with the orange representing a treatment group

- DiD approach can capture both immediate and delayed effects compared to the counterfactual trend
- There can be immediate shifts, changes in the slope, or a combination of both, or of course possibly neither

- Intuitively, (D-C) is the change that would have happened anyway and (B-A) is this change plus the treatment effect, so we subtract the measured change from a "control group" to isolate the treatment effect
- It is extremely important to have a properly comparable control group: if there are differences between the treatment group observations and control group observations besides the treatment then that could bias the results

DIFFERENCES IN DIFFERENCES ESTIMATION: POLICY EXAMPLE

- Howard Bodenhorn (2016) "Blind tigers and red-tape cocktails": Found that early local Prohibition policies in the late 1800s increased homicides by 50% in dry counties
 - Used DiD approach to compare outcomes across counties in South Carolina
 - After a county outlawed alcohol there was a massive increase in violence compared to overall trends
 - Logic: buyers and sellers resorting to "black markets" did not have any government to resolve commercial disputes
 - Government could not play the role of "monopolist of violence" so market participants took matters into their own hands
 - If homicide rates were not constant over time then a DiD approach is necessary to disentangle "treatment effect"

MINIMUM WAGES & EMPLOYMENT: A CASE STUDY OF THE FAST-FOOD INDUSTRY IN NEW JERSEY AND PENNSYLVANIA

- NJ minimum wage significantly increased in 1992
 - Presumably exogenous minimum wage law change: "treatment" in this model
- Classical economic theory predicts a decrease in employment and production
 - Input cost of labor increases: firms expected to respond by shifting towards capital and decreasing output
 - Fast food industry is considered highly competitive
- Compared employment in 410 fast-food restaurants in NJ and eastern PA before and after the change
 - Conducted multiple waves of phone interviews with extremely high response rate (87% overall; 91% NJ, 73% PA)
 - Follow-ups and physical visits to verify closed stores
 - No substantial evidence of selection bias / non-response bias

MINIMUM WAGES & EMPLOYMENT: IMPLEMENTATION

- Initially very similar wages (\$4.61 NJ and \$4.63 PA) across the two groups but higher prices in NJ stores
- Two year delay in New Jersey's implementation of the higher minimum wage
 - Policy change was made in good economic conditions before a mild to moderate economic recession occurred
 - Challenges to stop the policy change before implementation failed: these might have caused firms to delay taking potential action in response because there was uncertainty about whether the minimum wage increase would actually happen
 - Wage increased in multiple steps months apart: likely a policy design to minimize negative response from firms
- Initially 23.3 full-time equivalent (FTE) workers in PA and 20.4 in NJ
- From Feb 1992 to Nov 1992 the distribution of wages shifted substantially especially in NJ
 - NJ initially had clusters around \$4.25 and other values below the post-hike minimum and shifted to one huge cluster just barely above the new minimum around \$5.05: result was almost uniformity in wages after this policy change took effect

MINIMUM WAGES & EMPLOYMENT: RESULTS

MINIMUM WAGES & EMPLOYMENT: MAIN RESULTS

- Main DiD estimation result: relative gain of +2.76 FTE employees in NJ fast food restaurants over the time period when NJ minimum wage increases were implemented
- In NJ, stores were initially smaller on average but more increased in size, and employment expanded at lower-wage stores while employment contracted at higher-wage stores
 - These results contradict the predictions of traditional economic theory about how firms behave
- High-wage NJ stores had a change in FTE employees similar to comparable PA stores (-2.16 vs. -2.28)

MINIMUM WAGES & EMPLOYMENT: ROBUSTNESS CHECKS & OTHER FACTORS

- Tested for reduction in employee benefits as a way for firms to "make up" additional costs of wage increase: found that fringe benefits / other compensation forms matched changes in wages
 - Starting bonuses, employee discounts, training did not appear to decline to offset higher labor costs
 - This suggests that firms did not find other ways to reduce total compensation for workers
- Effects of economic recession on consumer choices?
 - Demand might actually have increased for fast food if consumers shift spending towards cheaper options
 - Employment declines are obviously common during recessions, hence the decreases observed in this study
 - These two effects predicted by standard economic reasoning work in opposite directions
- One potential explanation for the unexpected findings: "unobserved demand shocks" in NJ could have outweighed negative employment effects
 - Tested for this using subsamples (Newark area and Camden area) and did not find evidence of demand shocks

DISCUSSION: MINIMUM WAGES & EMPLOYMENT

- Are their experimental design and results convincing?
 - Could there have been other simultaneous economic or policy change "treatment effects" which are not accounted for?
 - Is the sample in eastern PA a good "control group" to compare to the "treatment group" restaurants in NJ?
 - Do fast-food restaurants choose output quantity in a way that is similar to classical industrial production examples?
 - To what extent are labor and capital substitute inputs in fast food and how has this changed over time?
- In what ways might responses to minimum wage hikes and ability to substitute inputs vary across industries?
 - Healthcare (or anything with inelastic demand and specialized labor on the supply side) probably less flexibility on quantity and quality changes for firms
- What are the limitations or modern economic and policy implications of this analysis?
 - How high could minimum wages be raised before these findings no longer hold?
 - What effects to we expect to see now that many CA fast food workers just unionized a few days ago?