
 1 

TRISS ERROR ANALYSIS 

 

Part 1 of 2 

 
By 

 

Luis E. Alvarado 

 
 



 2 

OUTLINE 

 

1. INTRODUCTION .......................................................................................................... 3 

1.1 Scope ......................................................................................................................... 3 

1.2 Background ............................................................................................................... 3 

2. CONCLUSION ............................................................................................................... 3 

3. ANALYSIS ASSUMPTIONS ........................................................................................ 3 

4. TRISS MATHEMATICAL MODEL ............................................................................. 4 

4.1 Case 1 Error Model ................................................................................................... 4 

4.2 Case 2 Error Model ................................................................................................... 5 

4.3 Case 3 Error Model ................................................................................................... 5 

4.4 Case 4 Error Model ................................................................................................... 5 

5. ANALYSIS RESULTS .................................................................................................. 5 

5.1 Case 1 Analysis ......................................................................................................... 5 

5.2 Case 2 Analysis ......................................................................................................... 5 

5.3 Case 3 Analysis ......................................................................................................... 6 

5.4 Case 4 Analysis ......................................................................................................... 6 

6. SUMMARY OF RESULTS AND RECOMENDATIONS ............................................ 6 

APPENDIX A -- TRISS MATLAB PLOTS ...................................................................... 7 

APPENDIX B -- MATLAB PROGRAM ......................................................................... 13 



 3 

1. INTRODUCTION 

1.1 Scope 

 

This document describes the analysis conducted to evaluate the susceptibility of the 

Tracking Infrared Scoring System (TRISS) to site measurement errors for different 

TRISS configurations. Four different cases were evaluated: 

 

(1) Present TRISS configuration. The distance between Camera 1 (C1) and Camera 2 

(C2) and the angles between the cameras and the target are measured using 

extremely precise surveying equipment, but imprecise UTM positions for 

Cameras 1 and 2 are used to estimate the angle between C1 and C2 and to 

determine true North. 

 

(2) The cameras and target UTM positions are measured using a hand held GPS 

device that normally provides position with a Circular Error of Probability (CEP) 

of approximately 15 feet. 

 

(3) The distance between camera 1 and camera 2 and the angles between the cameras 

and target are measured using imprecise surveying equipment (i.e. using the 

cameras pan/tilt device to measure angles). 

 

(4)  Ideal TRISS Configuration. The positions of C1 and C2 and the angles between 

the cameras and the target are measured using precise surveying equipment.  

 

1.2 Background 

TRISS is a ground based scoring system that uses two cameras with infrared lenses to 

determine the distance between a pre-selected target and the position where the deployed 

warhead hits the ground. TRISS also determines the scoring angle with respect to the 

aircraft that deployed the bomb (i.e. ingress angle).  

 

2. CONCLUSION 
The analysis shows that the accuracy of the scoring error is totally dependent in the 

accuracy of the internal angles between the cameras and the target used for scoring and 

the accuracy of the position of Cameras 1 and 2. The analysis also shows that the 

absolute position of C1 and C2 is not necessarily needed as long as the distance between 

C1 and C2 is accurately known and TRISS “knows” where true North is.  

 

3. ANALYSIS ASSUMPTIONS 
The analysis assumes that most of the TRISS errors are generated because the exact 

position of the cameras are not available or the angles between camera 1 and camera 2 



 4 

and the target are not known with the desired precision. This analysis makes the 

reasonable assumption that the scoring errors generated because of the pixel camera 

resolution are negligible compared to the errors generated because of measurement errors 

with the cameras positions and inaccurate internal angles measurements.  

 

4. TRISS MATHEMATICAL MODEL 
 

The analysis was conducted using a Monte-Carlo simulation model of TRISS. This 

model was developed using the MATLAB program. The MATLAB program is a 4th 

generation language that provides the user with the necessary tools to easily generate 

math models of complex physical systems. Appendix B includes a list of the program. 

 

The TRISS mathematical model assumes that the target is co-centric to cameras 1 and 2. 

Camera 1 position is fixed and camera 2 rotates around the target. The TRISS model 

computes the estimated target position error every time C2 is rotated one degree around 

the target. The user has the capability to modify C1 and C2 starting positions as well as 

the radius between C1 and the target. The user also has the capability to vary camera 

position and angular measurement errors. 

 

4.1 Case 1 Error Model 

In Case 1 the mathematical model assumes that the angles between C1 and C2 and the 

target are precisely known. The model also assumes that the distance between the C1 and 

C2 is also exactly known. The model assumes that an imprecise GPS device is used to 

measure the position of C1 and C2 in the UTM coordinate system.  A standard non-

differential, C/A code, GPS will provide and accuracy of 15 feet when Selective 

Availability (SA) is turned off. The model also assumes that a mathematical triangulation 

algorithm is used to estimate the target position. It should be noted that UTM position 

data for C1 and C2 are required to correlate the C1, C2 and Target internal angles to a 

true North-East coordinate system (i.e. UTM).  The present TRISS software needs the 

UTM coordinate data to estimate the scoring angle with respect to the aircraft that 

deployed the bomb (i.e. ingress angle).  

 

It should be noted that the TRISS software could be modified to only use the distance 

between C1 and C2 and the cameras internal angles to estimate the target position and the 

scoring error. This could be accomplished by rotating the scoring axis in such a manner 

that C1 and the target lie on a y-prime axis. The x-prime axis will be perpendicular to the 

y-prime axis. The scoring error will then be computed with respect to this axis. The 

scoring error computed in this new artificial reference frame should be identical to a 

scoring error computed on a UTM axis. The xy-prime axis will then have to be rotated to 

match the UTM axis to compute the scoring angle. The beauty of this approach is that the 

error due to erroneous UTM positions for C1 and C2 will be on the scoring angle but not 

on the actual scoring distance.  

 



 5 

4.2 Case 2 Error Model 

In Case 2 the mathematical model assumes that the user has measured the UTM positions 

of C1, C2 and the Target. The model assumes a CEP measurement error of approximately 

15 feet. The program user has the capability to change this parameter at will.  

 

4.3 Case 3 Error Model 

In Case 3 the mathematical model assumes that the angles between C1 and C2 and the 

target were measured with an accuracy of approximately 1 degree (i.e. 1 sigma). The 

model also assumes that the distance between the C1 and C2 is also known with an 

accuracy of 5 feet. The user has the capability to change these two parameters. The model 

also assumes that an imprecise GPS device was also used to measure the location of C1 

and C2. The model also assumes that a triangulation algorithm is used to estimate the 

target position. 

 

4.4 Case 4 Error Model 

In Case 4 the mathematical model assumes that the angles between C1 and C2 and the 

target were measured with an accuracy of approximately 1/5th degree. The model also 

assumes that the distance between C1 and C2 is known with an accuracy of 1 foot. 

5. ANALYSIS RESULTS 

5.1 Case 1 Analysis 

Figure 1, subplots 1 and 2 depict the expected TRISS errors under different geometries 

on two different scales. The x-axis is the number of degrees between C1 and C2. The y-

axis represents the standard deviation of the measurement error. The plot shows the 

standard deviation errors when C2 rotates around the target. Notice that the errors 

increase exponentially when C2 is exactly opposite to C1 (0 degrees) and when C2 and 

C1 are on the same spot (180 degrees).  Figure 1 shows that the best accuracy is given 

when the angular separation between C1 and C2 is within 80-130 degree range. These 

analysis results make sense since good geometry is needed to estimate the target position. 

If C1, C2, and the target are in the same plane the geometry is poor and the errors are 

considerably amplified. 

 

5.2 Case 2 Analysis 

 

Figure 2, subplots 1 and 2 show the same data as Figure 1 but for test case #2. As 

described before, in this case the measured UTM positions of C1, C2 and the Target were 

used to estimate the internal angles and the target position. Notice that in this case the 

TRISS errors only increased exponentially when C1 and C2 shared the same position. 

This can be explained by the fact that, for Case 2, slightly inaccurate UTM coordinates 

were used to estimate the internal angles. The ANGLE_C used to estimate the target 

position as indicated in Equation 1 was never exactly 180 degrees as it was for Case 1 



 6 

where exact measurements for the internal angles were used to estimate the target 

position. Notice that large errors may be generated when ANGLE_C is close to 0 or 180 

degrees. 

 
    C1_T = C1_C2 * sin(d2r*ANGLE_B) / sin(d2r*ANGLE_C); (Equation 1) 
 

5.3 Case 3 Analysis 

For this case, it was assumed that the internal angles were measured with an accuracy of 

1 degree (standard deviation = 1 degree) and the distance between C1 and C2 had en 

error of 5 feet. Notice how sensitive TRISS is to angular inaccuracies. Figures 3 and 4 

show that a 1-degree of standard deviation error will generate a 60 feet scoring error 

under the best geometry. Figure 3 also assumes a 5 feet error in the measured distance 

between Camera 1 and Camera 2. Case 1 showed a 21 feet scoring error when perfect 

measurements were assumed for the internal angles. That is, a 15 feet error in the 

measurement of the C1 and C2 positions led to a 21 feet error in the estimation of the 

target position under ideal geometries. This gives you a GDOP (geometry dilution of 

precision) factor of 1.3.  It should be noted that the GDOP increases by a factor of 2.5 

when a 1-degree error is introduced into the equation 

5.4 Case 4 Analysis 

Figure 5 shows the TRISS errors for a case where the distance between C1 and C2 is 

precisely known within 1 foot and the internal angles are known with an accuracy of 1/5th 

of a degree. 

6. SUMMARY OF RESULTS AND RECOMENDATIONS 
  

6.1 The analysis shows that the best geometry is obtained when the cameras C1 and C2 

are placed 80-130 degrees apart.  

 

6.2  As described in Case 3, TRISS is extremely sensitive to angular inaccuracies. 

 

6.3 Under the best geometry an estimated 21 feet of error is expected if the location of the 

cameras C1 and C2 is obtained using a standard hand-held GPS. 

 

6.4 It is strongly recommended that the positions of C1 and C2 be properly surveyed 

using specialized GPS surveying equipment.  Under ideal geometry every foot of error 

will generate a TRISS scoring error of approximately 1.4 feet.  

 

6.5 It is also recommended that internal angles be also accurately measured to 1/5th of a 

degree. The mathematical model shows acceptable scoring errors (i.e. < 10 feet) when 

angular accuracies of 1/5th of a degree are assumed. 

 



 7 

  

APPENDIX A -- TRISS MATLAB PLOTS 



 8 

Figure 1- Case 1 

 



 9 

 

Figure 2 – Case 2 

 



 10 

Figure 3 – Case 3 

 



 11 

Figure 4 Case 4 



 12 

Figure 5 Case 5 

 



 13 

APPENDIX B -- MATLAB PROGRAM 



 14 

clear all 
%************************************************************** 
%  TRISS ERROR SIMULATION MODEL(S) 
%  By Luis E. Alvarado -------------- 4/27/02 
% 
%  Case 1 -- Exact disctance between cameras 1 and 2 is known and the exact 
%            internal angles from C1 to C2 are known. Not known are the 
%            exact UTM coordinates for C1,C2 and Target. 
%  Case 2 -- All angles and C1 to C2 distance are computed exclusively using UTM 
%  Case 3 -- Same as Case 1 except that a STD error of "N" degrees is assumed in the 
%  measurement of 
%            of the internal angles and a STD of "X" feet is assumed in the measurement of  
%            the C1_C2 distance. 
%************************************************************** 
r2d=180/pi; 
d2r=pi/180; 
theta = 0; 
randn('state',sum(100*clock)) %resets random to a different state each time. 
%************************************************************* 
% USER INPUTS 
%************************************************************* 
position = 2;       %=2 T is in center. C1 2000 feet to the left of T.C2 2000 ft to the right of T 
                          %=1 C1 is in the center, T 2000 ft to the right of C1. C2 2000 ft to the rt of T 
gpserr =  15.0;     %15 feet of error 
angleErr = 1.0;     %1 degree 
c1c2Err  = 5.0;     %5 feet 
CaseNum = input(' Please enter Error Analysis Case number = '); 
 
m=1:360;                     % number of Camera 2 positions 
n=100;                       % Number of Monte Carlo runs per C2 position 
for j=m 
theta = theta + 1;           %rotate C2 position. Leave C1 at (0,2000) and target in center 
if position==1 
    PX1_utm =0;              % UTM x position of Camera 1 
    PY1_utm =0;              % UTM y position of Camera 1 
    PXt_utm = 2000;          % UTM x position of Target 
    PYt_utm = 0;             % UTM y poistion of Target  
elseif position==2 
    PX1_utm =-2000;          % UTM x position of Camera 1 
    PY1_utm =0;              % UTM y position of Camera 1 
    PXt_utm =0;              % UTM x position of Target 
    PYt_utm =0;              % UTM y poistion of Target  
end 
 
C1_R = sqrt((PXt_utm - PX1_utm)^2 + (PYt_utm - PY1_utm)^2); 
PX2_utm = C1_R * cos(theta * d2r) + PXt_utm; 
PY2_utm = C1_R * sin(theta * d2r) + PYt_utm; 
 
%************************************************************************* 
%   Start Monte Carlo Simulation 
%   Assume GPS UTM Error of 15 feet in x-y plane 
%************************************************************************* 
for i=1:n  
     
    X1_utm = PX1_utm +  randn * gpserr; 
    Y1_utm = PY1_utm +  randn * gpserr; 



 15 

    X2_utm = PX2_utm +  randn * gpserr; 
    Y2_utm = PY2_utm +  randn * gpserr; 
    Xt_utm = PXt_utm +  randn * gpserr; 
    Yt_utm = PYt_utm +  randn * gpserr; 
 
   
%-------------------------------------------------------------------------------- 
%  If Case 1 -- Compute external angles using precisely suveyed internal angles and surevey 
%  distance between C1 and C2 and GPS measured C1 and C2 UTM coordinate data; 
%-------------------------------------------------------------------------------- 
 if CaseNum == 1 
%**************************************************************** 
% Assume the Internal angles and the distance between C1 and C2 are 
% precisely known. Zero measurement error is assumed. 
%**************************************************************** 
    dx21 = PX2_utm - PX1_utm; 
    dy21 = PY2_utm - PY1_utm; 
%--------------------------------------------------------- 
% Compute exact distance between Camera 1 and Camera 2 
    C1_C2 = sqrt( dx21.^2 + dy21.^2 ); 
% Use UTM to compute Angle between C1 and C2     
    dx21 = X2_utm - X1_utm; 
    dy21 = Y2_utm - Y1_utm; 
   
    BETA_C = atan2(dx21, dy21)*r2d; %Angle from C1 to C2 
    if BETA_C < 0 
        BETA_C = BETA_C + 360; 
    end 
    %--------------------------------------------------------- 
    dxt1 = PXt_utm - PX1_utm; 
    dyt1 = PYt_utm - PY1_utm;  
    ALPHA_T = atan2(dxt1, dyt1)*r2d; %Angle from C1 to target 
    if ALPHA_T < 0 
        ALPHA_T = ALPHA_T + 360; 
    end  
    %--------------------------------------------------------- 
    dxt2 = PXt_utm - PX2_utm; 
    dyt2 = PYt_utm - PY2_utm; 
 
    GAMA_T = atan2(dxt2, dyt2)*r2d; %Angle form C2 to target 
    if GAMA_T < 0 
        GAMA_T = GAMA_T + 360; 
    end 
    %--------------------------------------------------------- 
    aft1 = ALPHA_T +180; 
    if aft1 >= 360 
        aft1 = aft1 - 360; 
    end  
    aft2 = GAMA_T + 180; 
    if aft2 >= 360 
        aft2 = aft2 - 360; 
    end 
    ANGLE_C = abs(aft1 - aft2); 
    if ANGLE_C > 180 
        ANGLE_C = 360 - ANGLE_C; 
    end 



 16 

    ANGLE_A = abs(BETA_C - ALPHA_T); 
    if ANGLE_A  < 0  
        ANGLE_A = 360 + ANGLE_A; 
    end        
    ANGLE_B = 180 - ANGLE_C - ANGLE_A; 
%********************************************************************** 
elseif CaseNum==2 
%-------------------------------------------------------------------------------- 
%  If Case 2 -- Compute external angles and internal angles and C1_C2 distance 
%  exclusively using C1, C2 and Target GPS UTM coordinate data. 
%-------------------------------------------------------------------------------- 
    dxt1 = Xt_utm - X1_utm; 
    dyt1 = Yt_utm - Y1_utm; 
 
    ALPHA_T = atan2(dxt1, dyt1)*r2d; %Angle from C1 to target 
     
    if ALPHA_T < 0 
        ALPHA_T = ALPHA_T + 360; 
    end 
%--------------------------------------------------------- 
    dxt2 = Xt_utm - X2_utm; 
    dyt2 = Yt_utm - Y2_utm; 
 
    GAMA_T = atan2(dxt2, dyt2)*r2d; %Angle form C2 to target 
    if GAMA_T < 0 
        GAMA_T = GAMA_T + 360; 
    end 
     
%--------------------------------------------------------- 
    dx21 = X2_utm - X1_utm; 
    dy21 = Y2_utm - Y1_utm; 
    BETA_C = atan2(dx21, dy21)*r2d; %Angle from C1 to C2 
    if BETA_C < 0 
        BETA_C = BETA_C + 360; 
    end 
%--------------------------------------------------------- 
    aft1 = ALPHA_T +180; 
    if aft1 >= 360 
        aft1 = aft1 - 360; 
    end  
    aft2 = GAMA_T + 180; 
    if aft2 >= 360 
        aft2 = aft2 - 360; 
    end 
    ANGLE_C = abs(aft1 - aft2); 
    if ANGLE_C > 180 
        ANGLE_C = 360 - ANGLE_C; 
    end 
    ANGLE_A = abs(BETA_C - ALPHA_T); 
    if ANGLE_A  < 0  
        ANGLE_A = 360 + ANGLE_A; 
    end        
    ANGLE_B = 180 - ANGLE_C - ANGLE_A; 
%-------------------------------------------------------- 
    C1_C2 = sqrt( dx21.^2 + dy21.^2 ); 
elseif CaseNum == 3 



 17 

%************************************************************************************************** 
% If Case 3 -- Same as Case 1 except that a STD error of "N" degrees is assumed in the 
measurement of 
% of the internal angles and a STD of "X" feet is assumed in the measurement of the C1_C2 
distance. 
%************************************************************************************************** 
    dx21 = PX2_utm - PX1_utm; 
    dy21 = PY2_utm - PY1_utm; 
%--------------------------------------------------------- 
% Compute the distance between Camera 1 and Camera 2 
    C1_C2 = sqrt( dx21.^2 + dy21.^2 ) + randn*c1c2Err; 
% Use UTM to compute Angle between C1 and C2     
    dx21 = X2_utm - X1_utm; 
    dy21 = Y2_utm - Y1_utm; 
   
    BETA_C = atan2(dx21, dy21)*r2d; %Angle from C1 to C2 
    if BETA_C < 0 
        BETA_C = BETA_C + 360; 
    end 
    %--------------------------------------------------------- 
    dxt1 = PXt_utm - PX1_utm; 
    dyt1 = PYt_utm - PY1_utm;  
    ALPHA_T = atan2(dxt1, dyt1)*r2d + randn*angleErr; %Angle from C1 to target 
    if ALPHA_T < 0 
        ALPHA_T = ALPHA_T + 360; 
    end  
    %--------------------------------------------------------- 
    dxt2 = PXt_utm - PX2_utm; 
    dyt2 = PYt_utm - PY2_utm; 
 
    GAMA_T = atan2(dxt2, dyt2)*r2d + randn*angleErr; %Angle form C2 to target 
    if GAMA_T < 0 
        GAMA_T = GAMA_T + 360; 
    end 
    %--------------------------------------------------------- 
        aft1 = ALPHA_T +180; 
    if aft1 >= 360 
        aft1 = aft1 - 360; 
    end  
    aft2 = GAMA_T + 180; 
    if aft2 >= 360 
        aft2 = aft2 - 360; 
    end 
    ANGLE_C = abs(aft1 - aft2); 
    if ANGLE_C > 180 
        ANGLE_C = 360 - ANGLE_C; 
    end 
    ANGLE_A = abs(BETA_C - ALPHA_T); 
    if ANGLE_A  < 0  
        ANGLE_A = 360 + ANGLE_A; 
    end        
    ANGLE_B = 180 - ANGLE_C - ANGLE_A; 
else 
    [' INVALID CASE SELECTION -- IGNORE RESULTS '] 
end 
      



 18 

%Compute Camera 1 to target distance  C1_T 
    if sin(d2r*ANGLE_C) == 0 
        ANGLE_C = ANGLE_C + 0.00001; 
    end 
    C1_T = C1_C2 * sin(d2r*ANGLE_B)/sin(d2r*ANGLE_C); 
%Compute Camera 2 to target distance   C2_T 
    C2_T = C1_C2 * sin(d2r*ANGLE_A)/sin(d2r*ANGLE_C); 
% Estimate target position using Camera 1 
    Xt1_utm = X1_utm + C1_T * sin(ALPHA_T*d2r); 
    Yt1_utm = Y1_utm + C1_T * cos(ALPHA_T*d2r); 
% Estimate target position using Camera 2 
    Xt2_utm = X2_utm + C2_T * sin(GAMA_T*d2r); 
    Yt2_utm = Y2_utm + C2_T * cos(GAMA_T*d2r); 
% Average target position  
    Xtavg = (Xt1_utm + Xt2_utm)/2; 
    Ytavg = (Yt1_utm + Yt2_utm)/2; 
%********************************************************************* 
%  Save variables 
%********************************************************************* 
    Xt_err(i) = PXt_utm - Xt1_utm; 
    Yt_err(i) = PYt_utm - Yt1_utm; 
 
    Xt_Aerr(i) = PXt_utm - Xtavg; 
    Yt_Aerr(i) = PYt_utm - Ytavg; 
end 
%-------------------------------------------------------- 
%    SAVE VARIABLE 
%-------------------------------------------------------- 
if CaseNum == 1 
    ALPHA_S(j)= ALPHA_T;  
    GAMA_S(j) = GAMA_T; 
%--------------------------------- 
    Xt1_S1(j) = Xt1_utm; 
    Yt1_S1(j) = Yt1_utm; 
    Xt2_S1(j) = Xt2_utm; 
    Yt2_S1(j) = Yt2_utm; 
else 
    Xt1_S2(j) = Xt1_utm; 
    Yt1_S2(j) = Yt1_utm; 
    Xt2_S2(j) = Xt2_utm; 
    Yt2_S2(j) = Yt2_utm; 
end 
    deg(j) = theta; 
    TM_err(j) = sqrt( std(Xt_err)^2 + std(Yt_err)^2 ); 
    TM_Aerr(j) = sqrt( std(Xt_Aerr)^2 + std(Yt_Aerr)^2 );   
     
end  
%*************** END OF MONTECARLO SIMULATION LOOP ******************** 
%************************************************************************** 
%  PLOT RESULTS  
%*************************************************************************** 
if CaseNum==1 
    tt2=['--Using perfectly surveyed angles and exact C1-C2 distance']; 
    max1=1000; 
elseif CaseNum==2 
    tt2=['--Using GPS UTM Measurements only']; 



 19 

    max1=2000; 
else  
    tt2=['--Using inexact surveyed angles and inexact C1-C2 distance']; 
    max1=1000; 
end 
tt3=['Angle between C1 and C2 in 10 deg increments'];  
tt=['CASE = ',num2str(CaseNum),tt2]; 
tp1 = ['GPS UTM STD ERROR= ' num2str(gpserr)]; 
tp2 = ['Angle STD= ' num2str(angleErr) ' degree' '   C1C2 STD= ' num2str(c1c2Err) ' feet']; 
 
    subplot(211) 
    plot(deg,TM_err,deg,TM_Aerr,'--'),title(tt),xlabel(tt3),grid; 
    if CaseNum < 3 
        text(5,550,tp1); 
    else 
        text(5,550,tp2); 
    end 
     
    ylabel('STD Error in Feet') 
    axis([0 360 0 max1]); 
%---------------------------- 
    subplot(212) 
    plot(deg,TM_err,deg,TM_Aerr,'--'),xlabel(tt3),grid; 
    text(0,75,'solid line -- Use only C1 to estimate Target position'); 
    text(0,5,'dotted line-- Use C1 & C2 to estimate Target position'); 
    ylabel('STD Error in Feet') 
    axis([0 360 0 100]); 
    subplot; 



 20 

TRISS ERROR ANALYSIS  

 

Part II – More Analysis Cases 
 

 

Luis E. Alvarado 

 
 

 

 

 

 

 



 21 

OUTLINE 

 

1. INTRODUCTION ........................................................................................................ 22 

1.1 Scope ....................................................................................................................... 22 

1.2 Background ............................................................................................................. 22 

2. CONCLUSION ............................................................................................................. 22 

3. TRISS MATHEMATICAL MODEL ........................................................................... 22 

4. ANALYSIS RESULTS ................................................................................................ 23 

4.1 Case 1 Analysis ....................................................................................................... 23 

4.2 Case 2 Analysis ....................................................................................................... 24 

4.3 Case 3 Analysis ....................................................................................................... 24 

4.4 Case 4 Analysis ....................................................................................................... 24 

5. SUMMARY OF RESULTS AND RECOMENDATIONS .......................................... 25 

APPENDIX A -- TRISS MATLAB PLOTS .................................................................... 26 



 22 

1. INTRODUCTION 

1.1 Scope 

 

This document summarizes the analysis conducted to evaluate the susceptibility of the 

Tracking Infrared Scoring System (TRISS) to site measurement errors and camera 

calibration errors for different TRISS configurations.  

 

1.2 Background 

TRISS is a ground based scoring system that uses two cameras with infrared lenses to 

determine the distance between a pre-selected target and the position where the deployed 

warhead hits the ground. TRISS also determines the scoring angle with respect to the 

aircraft that deployed the bomb (i.e. ingress angle).  

 

2. CONCLUSION 
The analysis shows that the accuracy of the scoring error is totally dependent in the 

accuracy of the internal angles between the cameras and the target used for scoring and 

the accuracy of the position of Cameras 1 and 2. The analysis also shows that the 

absolute position of C1 and C2 is not necessarily needed as long as the distance between 

C1 and C2 is accurately known and TRISS “knows” where true North is. The analysis 

also indicates that TRISS is very sensitive to Camera calibration errors. 

 

 

3. TRISS MATHEMATICAL MODEL 
The analysis was conducted using a Monte-Carlo simulation model of TRISS. This 

model was developed using the MATLAB program. The MATLAB program is a 4th 

generation language that provides the user with the necessary tools to easily generate 

math models of complex physical systems.  

 

The TRISS mathematical model assumes that the target is co-centric to cameras 1 and 2. 

Camera 1 position is fixed and Camera 2 rotates around the target. The TRISS model 

computes the estimated target position error every time C2 is rotated one degree around 

the target. The user has the capability to modify C1 and C2 starting positions as well as 

the radius between C1 and the target. The user also has the capability to vary camera 

position and add angular measurement errors. The user also has the capability to simulate 

camera calibration errors. 



 23 

4. ANALYSIS RESULTS 

4.1 Case 1 Analysis 

For this case scenario, the cameras were positioned 90 degrees apart. The target was in 

the center approximately 1 mile from cameras 1 and 2. It was assumed that both cameras 

experienced an angular misalignment standard deviation error (SDE) of 0.1degrees  with 

the respect to the target. Figure 1-1, subplots 1 and 2 depict the expected TRISS error 

estimating target position under different geometries on two different scales. The x-axis 

is the number of degrees that Camera 2 is rotated (counterclockwise) around the target. 

The y-axis represents the standard deviation of the measurement error. The plot shows 

the standard deviation errors when C2 is rotated around the target and C1 remains 

stationary. Notice that the errors increased exponentially when C2 was exactly opposite 

to C1 (0 degrees) and when C2 and C1 were on the same spot (180 degrees).  Figure 1-1 

shows that the best accuracy is given when the angular separation between C1 and C2 is 

within 80-130 degree range. These analysis results make sense since good geometry is 

needed to estimate the target position. If C1, C2, and the target are in the same plane the 

geometry is poor and the errors are considerably amplified. Figure 1-2 shows the internal 

angles A, B and C of triangle formed by C1, C2 and the target. Figure 1-3 shows the 

distances estimated by TRISS between C1 and the Target and between C2 and the target 

using equations 1 and 2. 

 
    C1_T = C1_C2 * sin(d2r*ANGLE_B) / sin(d2r*ANGLE_C); (Equation 1) 
 
    C2_T = C1_C2 * sin(d2r*ANGLE_A) / sin(d2r*ANGLE_C); (Equation 2) 
 

Notice in Figure 1-3 that the computation of the estimated distances became “unstable” 

when ANGLE_C approaches 0 degrees and when ANGLE_A or ANGLE_B approaches 

0 degrees at the same time ANGLE_C approaches 0 degrees (system singularities).  

Remember the ratios  k/0,  and  0/0 are numerically unstable. If TRISS becomes a  

dynamic system it is recommended to eliminate these singularity points.    

 

Figure 1-4 shows the TRISS scoring error when the “bomb” is rotated 100 feet around 

the target. A 0.1degree standard deviation calibration error was assumed for both cameras 

and as before, a 0.1 degree angular misalignment SDE was assumed between both 

cameras and the target. Notice the scoring error is pretty much constant (~ 20 feet) 

around the target.  Figure 1-5 shows the internal angles A, B and C of the triangle formed 

by C1, C2 and the bomb. Notice that the angles barely change when the bomb is rotated 

around the target. Notice also that the internal angles never approached 0 degrees. This 

explain why the scoring error is pretty constant around the target as depicted in Figure 1-

4 

 

Figure 1-6 illustrates an X-Y plot indicating the position of C1 and C2 with respect to the 

target. Notice the cameras were positioned exactly 90 degrees apart. 

 

Figure 1-7 shows the trajectory of the bomb rotating around the target (100 feet radius 

circle) and the multiple positions predicted by the TRISS Monte Carlo simulation model. 



 24 

4.2 Case 2 Analysis 

This simulation case is identical to Case 1 with the exception that the Cameras were 

positioned 40 degrees apart with respect to the target. This was done to show the 

importance of placing the cameras as close as possible 90 degrees with respect to the 

target. Figure 2-1 shows the TRISS scoring error when the “bomb” is rotated 100 feet 

around the target. As before a 0.1degree standard deviation calibration error  was 

assumed for both cameras and a 0.1 degree angular misalignment SDE was assumed 

between both cameras and the target. Notice the scoring error is no longer constant and  

at some scoring angles, the scoring error was close to 40 feet. 

 

Figure 2-2 illustrates an X-Y plot indicating the position of C1 and C2 with respect to the 

target. Notice the cameras were positioned exactly 40 degrees apart. 

 

Figure 2-3 shows the trajectory of the bomb rotating counterclockwise around the target 

(100 feet radius circle) and the multiple positions predicted by the TRISS Monte Carlo 

simulation model. Notice that the scoring inaccuracies were almost doubled by 

repositioning the cameras closer together (From 90 degrees to 40 degrees).  
 

4.3 Case 3 Analysis 

For this case scenario, the angular misalignment errors between C1 and  the target and 

between C2 and the target were varied from 0 degrees to 0.5 degrees. The intention of 

this simulation test was to show how sensitive TRISS is to angular misalignment errors 

even under perfect geometry situations. C1 and C2 were placed 90 degrees apart with 

respect to the target. The target was placed 5200 feet from C1 and C2.  Figure 3-1 depicts 

a plot showing TRISS scoring errors in the y-axis versus angular misalignments of C1 

and C2 in the x-axis. Notice the error increases from 0 feet to more than 70 feet for 0.5 

degrees of angular misalignment. For this experiment  zero calibration errors were 

assumed for C1 and C2.  

4.4 Case 4 Analysis 

For this case scenario, the angular misalignment errors between C1 and  the target and 

between C2 and the target were assumed to be zero degrees. However, the camera 

calibration errors were varied from 0 to 1 degree. The intention of this simulation test was 

to show how sensitive TRISS is to camera calibration errors even under  perfect geometry 

situations. C1 and C2 were placed 90 degrees apart with respect to the target. The target 

was placed 5200 feet from C1 and C2.  Figure 4-1 depicts a plot showing TRISS scoring 

errors versus camera calibration errors. Notice the error increased from 0 feet to more 

than 90 feet for a 1 degree standard deviation camera calibration error. 

 

 

 

 

 

 



 25 

5. SUMMARY OF RESULTS AND RECOMENDATIONS 
  

5.1 The analysis of Cases 1 and 2 show that the best geometry is obtained when the 

cameras C1 and C2 are placed 80-130 degrees apart.  

 

5.2 Case 3 clearly shows that TRISS is extremely sensitive to angular inaccuracies. 

 

5.3 Case 4 clearly indicates that TRISS is also very sensitive to camera calibration 

inaccuracies 

 

5.4 Therefore, it is strongly recommended  (imperative) that the positions of C1, C2 and 

the target be properly surveyed using specialized GPS surveying equipment. The total 

cost of the GPS equipment is approximately $6000 for 3 GPS surveying sites.  

 

5.5 The analysis also shows that the scoring error shall be very constant around the target 

if the separation angle between the target and C1 and C2 is close to 90 degrees. 



 26 

 

 

APPENDIX A -- TRISS MATLAB PLOTS 



 27 

Figure 1-1 

 

 



 28 

Figure 1-2 

 



 29 

Figure 1-3 

 



 30 

Figure 1-4 

 



 31 

Figure 1-5 

 

 



 32 

Figure 1-6 

 



 33 

Figure 1-7  

 



 34 

Figure 2-1 

 



 35 

Figure 2-2 

 



 36 

Figure 2-3 

 



 37 

Figure 3-1 



 38 

 

Figure 4-1 

 


